linux-stable/include/linux/amba/bus.h
Linus Torvalds 500a434fc5 Driver core changes for 5.19-rc1
Here is the set of driver core changes for 5.19-rc1.
 
 Note, I'm not really happy with this pull request as-is, see below for
 details, but overall this is all good for everything but a small set of
 systems, which we have a fix for already.
 
 Lots of tiny driver core changes and cleanups happened this cycle,
 but the two major things were:
 
 	- firmware_loader reorganization and additions including the
 	  ability to have XZ compressed firmware images and the ability
 	  for userspace to initiate the firmware load when it needs to,
 	  instead of being always initiated by the kernel. FPGA devices
 	  specifically want this ability to have their firmware changed
 	  over the lifetime of the system boot, and this allows them to
 	  work without having to come up with yet-another-custom-uapi
 	  interface for loading firmware for them.
 	- physical location support added to sysfs so that devices that
 	  know this information, can tell userspace where they are
 	  located in a common way.  Some ACPI devices already support
 	  this today, and more bus types should support this in the
 	  future.
 
 Smaller changes included:
 	- driver_override api cleanups and fixes
 	- error path cleanups and fixes
 	- get_abi script fixes
 	- deferred probe timeout changes.
 
 It's that last change that I'm the most worried about.  It has been
 reported to cause boot problems for a number of systems, and I have a
 tested patch series that resolves this issue.  But I didn't get it
 merged into my tree before 5.18-final came out, so it has not gotten any
 linux-next testing.
 
 I'll send the fixup patches (there are 2) as a follow-on series to this
 pull request if you want to take them directly, _OR_ I can just revert
 the probe timeout changes and they can wait for the next -rc1 merge
 cycle.  Given that the fixes are tested, and pretty simple, I'm leaning
 toward that choice.  Sorry this all came at the end of the merge window,
 I should have resolved this all 2 weeks ago, that's my fault as it was
 in the middle of some travel for me.
 
 All have been tested in linux-next for weeks, with no reported issues
 other than the above-mentioned boot time outs.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYpnv/A8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+yk/fACgvmenbo5HipqyHnOmTQlT50xQ9EYAn2eTq6ai
 GkjLXBGNWOPBa5cU52qf
 =yEi/
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core updates from Greg KH:
 "Here is the set of driver core changes for 5.19-rc1.

  Lots of tiny driver core changes and cleanups happened this cycle, but
  the two major things are:

   - firmware_loader reorganization and additions including the ability
     to have XZ compressed firmware images and the ability for userspace
     to initiate the firmware load when it needs to, instead of being
     always initiated by the kernel. FPGA devices specifically want this
     ability to have their firmware changed over the lifetime of the
     system boot, and this allows them to work without having to come up
     with yet-another-custom-uapi interface for loading firmware for
     them.

   - physical location support added to sysfs so that devices that know
     this information, can tell userspace where they are located in a
     common way. Some ACPI devices already support this today, and more
     bus types should support this in the future.

  Smaller changes include:

   - driver_override api cleanups and fixes

   - error path cleanups and fixes

   - get_abi script fixes

   - deferred probe timeout changes.

  It's that last change that I'm the most worried about. It has been
  reported to cause boot problems for a number of systems, and I have a
  tested patch series that resolves this issue. But I didn't get it
  merged into my tree before 5.18-final came out, so it has not gotten
  any linux-next testing.

  I'll send the fixup patches (there are 2) as a follow-on series to this
  pull request.

  All have been tested in linux-next for weeks, with no reported issues
  other than the above-mentioned boot time-outs"

* tag 'driver-core-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits)
  driver core: fix deadlock in __device_attach
  kernfs: Separate kernfs_pr_cont_buf and rename_lock.
  topology: Remove unused cpu_cluster_mask()
  driver core: Extend deferred probe timeout on driver registration
  MAINTAINERS: add Russ Weight as a firmware loader maintainer
  driver: base: fix UAF when driver_attach failed
  test_firmware: fix end of loop test in upload_read_show()
  driver core: location: Add "back" as a possible output for panel
  driver core: location: Free struct acpi_pld_info *pld
  driver core: Add "*" wildcard support to driver_async_probe cmdline param
  driver core: location: Check for allocations failure
  arch_topology: Trace the update thermal pressure
  kernfs: Rename kernfs_put_open_node to kernfs_unlink_open_file.
  export: fix string handling of namespace in EXPORT_SYMBOL_NS
  rpmsg: use local 'dev' variable
  rpmsg: Fix calling device_lock() on non-initialized device
  firmware_loader: describe 'module' parameter of firmware_upload_register()
  firmware_loader: Move definitions from sysfs_upload.h to sysfs.h
  firmware_loader: Fix configs for sysfs split
  selftests: firmware: Add firmware upload selftests
  ...
2022-06-03 11:48:47 -07:00

196 lines
6.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/include/amba/bus.h
*
* This device type deals with ARM PrimeCells and anything else that
* presents a proper CID (0xB105F00D) at the end of the I/O register
* region or that is derived from a PrimeCell.
*
* Copyright (C) 2003 Deep Blue Solutions Ltd, All Rights Reserved.
*/
#ifndef ASMARM_AMBA_H
#define ASMARM_AMBA_H
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/mod_devicetable.h>
#include <linux/err.h>
#include <linux/resource.h>
#include <linux/regulator/consumer.h>
#define AMBA_NR_IRQS 9
#define AMBA_CID 0xb105f00d
#define CORESIGHT_CID 0xb105900d
/*
* CoreSight Architecture specification updates the ID specification
* for components on the AMBA bus. (ARM IHI 0029E)
*
* Bits 15:12 of the CID are the device class.
*
* Class 0xF remains for PrimeCell and legacy components. (AMBA_CID above)
* Class 0x9 defines the component as CoreSight (CORESIGHT_CID above)
* Class 0x0, 0x1, 0xB, 0xE define components that do not have driver support
* at present.
* Class 0x2-0x8,0xA and 0xD-0xD are presently reserved.
*
* Remaining CID bits stay as 0xb105-00d
*/
/**
* Class 0x9 components use additional values to form a Unique Component
* Identifier (UCI), where peripheral ID values are identical for different
* components. Passed to the amba bus code from the component driver via
* the amba_id->data pointer.
* @devarch : coresight devarch register value
* @devarch_mask: mask bits used for matching. 0 indicates UCI not used.
* @devtype : coresight device type value
* @data : additional driver data. As we have usurped the original
* pointer some devices may still need additional data
*/
struct amba_cs_uci_id {
unsigned int devarch;
unsigned int devarch_mask;
unsigned int devtype;
void *data;
};
/* define offsets for registers used by UCI */
#define UCI_REG_DEVTYPE_OFFSET 0xFCC
#define UCI_REG_DEVARCH_OFFSET 0xFBC
struct clk;
struct amba_device {
struct device dev;
struct resource res;
struct clk *pclk;
struct device_dma_parameters dma_parms;
unsigned int periphid;
unsigned int cid;
struct amba_cs_uci_id uci;
unsigned int irq[AMBA_NR_IRQS];
/*
* Driver name to force a match. Do not set directly, because core
* frees it. Use driver_set_override() to set or clear it.
*/
const char *driver_override;
};
struct amba_driver {
struct device_driver drv;
int (*probe)(struct amba_device *, const struct amba_id *);
void (*remove)(struct amba_device *);
void (*shutdown)(struct amba_device *);
const struct amba_id *id_table;
/*
* For most device drivers, no need to care about this flag as long as
* all DMAs are handled through the kernel DMA API. For some special
* ones, for example VFIO drivers, they know how to manage the DMA
* themselves and set this flag so that the IOMMU layer will allow them
* to setup and manage their own I/O address space.
*/
bool driver_managed_dma;
};
/*
* Constants for the designer field of the Peripheral ID register. When bit 7
* is set to '1', bits [6:0] should be the JEP106 manufacturer identity code.
*/
enum amba_vendor {
AMBA_VENDOR_ARM = 0x41,
AMBA_VENDOR_ST = 0x80,
AMBA_VENDOR_QCOM = 0x51,
AMBA_VENDOR_LSI = 0xb6,
};
extern struct bus_type amba_bustype;
#define to_amba_device(d) container_of(d, struct amba_device, dev)
#define amba_get_drvdata(d) dev_get_drvdata(&d->dev)
#define amba_set_drvdata(d,p) dev_set_drvdata(&d->dev, p)
#ifdef CONFIG_ARM_AMBA
int amba_driver_register(struct amba_driver *);
void amba_driver_unregister(struct amba_driver *);
#else
static inline int amba_driver_register(struct amba_driver *drv)
{
return -EINVAL;
}
static inline void amba_driver_unregister(struct amba_driver *drv)
{
}
#endif
struct amba_device *amba_device_alloc(const char *, resource_size_t, size_t);
void amba_device_put(struct amba_device *);
int amba_device_add(struct amba_device *, struct resource *);
int amba_device_register(struct amba_device *, struct resource *);
void amba_device_unregister(struct amba_device *);
int amba_request_regions(struct amba_device *, const char *);
void amba_release_regions(struct amba_device *);
/* Some drivers don't use the struct amba_device */
#define AMBA_CONFIG_BITS(a) (((a) >> 24) & 0xff)
#define AMBA_REV_BITS(a) (((a) >> 20) & 0x0f)
#define AMBA_MANF_BITS(a) (((a) >> 12) & 0xff)
#define AMBA_PART_BITS(a) ((a) & 0xfff)
#define amba_config(d) AMBA_CONFIG_BITS((d)->periphid)
#define amba_rev(d) AMBA_REV_BITS((d)->periphid)
#define amba_manf(d) AMBA_MANF_BITS((d)->periphid)
#define amba_part(d) AMBA_PART_BITS((d)->periphid)
#define __AMBA_DEV(busid, data, mask) \
{ \
.coherent_dma_mask = mask, \
.init_name = busid, \
.platform_data = data, \
}
/*
* APB devices do not themselves have the ability to address memory,
* so DMA masks should be zero (much like USB peripheral devices.)
* The DMA controller DMA masks should be used instead (much like
* USB host controllers in conventional PCs.)
*/
#define AMBA_APB_DEVICE(name, busid, id, base, irqs, data) \
struct amba_device name##_device = { \
.dev = __AMBA_DEV(busid, data, 0), \
.res = DEFINE_RES_MEM(base, SZ_4K), \
.irq = irqs, \
.periphid = id, \
}
/*
* AHB devices are DMA capable, so set their DMA masks
*/
#define AMBA_AHB_DEVICE(name, busid, id, base, irqs, data) \
struct amba_device name##_device = { \
.dev = __AMBA_DEV(busid, data, ~0ULL), \
.res = DEFINE_RES_MEM(base, SZ_4K), \
.irq = irqs, \
.periphid = id, \
}
/*
* module_amba_driver() - Helper macro for drivers that don't do anything
* special in module init/exit. This eliminates a lot of boilerplate. Each
* module may only use this macro once, and calling it replaces module_init()
* and module_exit()
*/
#define module_amba_driver(__amba_drv) \
module_driver(__amba_drv, amba_driver_register, amba_driver_unregister)
/*
* builtin_amba_driver() - Helper macro for drivers that don't do anything
* special in driver initcall. This eliminates a lot of boilerplate. Each
* driver may only use this macro once, and calling it replaces the instance
* device_initcall().
*/
#define builtin_amba_driver(__amba_drv) \
builtin_driver(__amba_drv, amba_driver_register)
#endif