linux-stable/include/linux/sched/signal.h
Linus Torvalds 67850b7bdc While looking at the ptrace problems with PREEMPT_RT and the problems
of Peter Zijlstra was encountering with ptrace in his freezer rewrite
 I identified some cleanups to ptrace_stop that make sense on their own
 and move make resolving the other problems much simpler.
 
 The biggest issue is the habbit of the ptrace code to change task->__state
 from the tracer to suppress TASK_WAKEKILL from waking up the tracee.  No
 other code in the kernel does that and it is straight forward to update
 signal_wake_up and friends to make that unnecessary.
 
 Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
 then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
 on the fact that all stopped states except the special stop states can
 tolerate spurious wake up and recover their state.
 
 The state of stopped and traced tasked is changed to be stored in
 task->jobctl as well as in task->__state.  This makes it possible for
 the freezer to recover tasks in these special states, as well as
 serving as a general cleanup.  With a little more work in that
 direction I believe TASK_STOPPED can learn to tolerate spurious wake
 ups and become an ordinary stop state.
 
 The TASK_TRACED state has to remain a special state as the registers for
 a process are only reliably available when the process is stopped in
 the scheduler.  Fundamentally ptrace needs acess to the saved
 register values of a task.
 
 There are bunch of semi-random ptrace related cleanups that were found
 while looking at these issues.
 
 One cleanup that deserves to be called out is from commit 57b6de08b5
 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs").  This
 makes a change that is technically user space visible, in the handling
 of what happens to a tracee when a tracer dies unexpectedly.
 According to our testing and our understanding of userspace nothing
 cares that spurious SIGTRAPs can be generated in that case.
 
 The entire discussion can be found at:
   https://lkml.kernel.org/r/87a6bv6dl6.fsf_-_@email.froward.int.ebiederm.org
 
 Eric W. Biederman (11):
       signal: Rename send_signal send_signal_locked
       signal: Replace __group_send_sig_info with send_signal_locked
       ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
       ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
       ptrace: Remove arch_ptrace_attach
       signal: Use lockdep_assert_held instead of assert_spin_locked
       ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
       ptrace: Document that wait_task_inactive can't fail
       ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
       ptrace: Don't change __state
       ptrace: Always take siglock in ptrace_resume
 
 Peter Zijlstra (1):
       sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
 
  arch/ia64/include/asm/ptrace.h    |   4 --
  arch/ia64/kernel/ptrace.c         |  57 ----------------
  arch/um/include/asm/thread_info.h |   2 +
  arch/um/kernel/exec.c             |   2 +-
  arch/um/kernel/process.c          |   2 +-
  arch/um/kernel/ptrace.c           |   8 +--
  arch/um/kernel/signal.c           |   4 +-
  arch/x86/kernel/step.c            |   3 +-
  arch/xtensa/kernel/ptrace.c       |   4 +-
  arch/xtensa/kernel/signal.c       |   4 +-
  drivers/tty/tty_jobctrl.c         |   4 +-
  include/linux/ptrace.h            |   7 --
  include/linux/sched.h             |  10 ++-
  include/linux/sched/jobctl.h      |   8 +++
  include/linux/sched/signal.h      |  20 ++++--
  include/linux/signal.h            |   3 +-
  kernel/ptrace.c                   |  87 ++++++++---------------
  kernel/sched/core.c               |   5 +-
  kernel/signal.c                   | 140 +++++++++++++++++---------------------
  kernel/time/posix-cpu-timers.c    |   6 +-
  20 files changed, 140 insertions(+), 240 deletions(-)
 
 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmKaXaYACgkQC/v6Eiaj
 j0CgoA/+JncSQ6PY2D5Jh1apvHzmnRsFXzr3DRvtv/CVx4oIebOXRQFyVDeD5tRn
 TmMgB29HpBlHRDLojlmlZRGAld1HR/aPEW9j8W1D3Sy/ZFO5L8lQitv9aDHO9Ntw
 4lZvlhS1M0KhATudVVBqSPixiG6CnV5SsGmixqdOyg7xcXSY6G1l2nB7Zk9I3Tat
 ZlmhuZ6R5Z5qsm4MEq0vUSrnsHiGxYrpk6uQOaVz8Wkv8ZFmbutt6XgxF0tsyZNn
 mHSmWSiZzIgBjTlaibEmxi8urYJTPj3vGBeJQVYHblFwLFi6+Oy7bDxQbWjQvaZh
 DsgWPScfBF4Jm0+8hhCiSYpvPp8XnZuklb4LNCeok/VFr+KfSmpJTIhn00kagQ1u
 vxQDqLws8YLW4qsfGydfx9uUIFCbQE/V2VDYk5J3Re3gkUNDOOR1A56hPniKv6VB
 2aqGO2Fl0RdBbUa3JF+XI5Pwq5y1WrqR93EUvj+5+u5W9rZL/8WLBHBMEz6gbmfD
 DhwFE0y8TG2WRlWJVEDRId+5zo3di/YvasH0vJZ5HbrxhS2RE/yIGAd+kKGx/lZO
 qWDJC7IHvFJ7Mw5KugacyF0SHeNdloyBM7KZW6HeXmgKn9IMJBpmwib92uUkRZJx
 D8j/bHHqD/zsgQ39nO+c4M0MmhO/DsPLG/dnGKrRCu7v1tmEnkY=
 =ZUuO
 -----END PGP SIGNATURE-----

Merge tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace

Pull ptrace_stop cleanups from Eric Biederman:
 "While looking at the ptrace problems with PREEMPT_RT and the problems
  Peter Zijlstra was encountering with ptrace in his freezer rewrite I
  identified some cleanups to ptrace_stop that make sense on their own
  and move make resolving the other problems much simpler.

  The biggest issue is the habit of the ptrace code to change
  task->__state from the tracer to suppress TASK_WAKEKILL from waking up
  the tracee. No other code in the kernel does that and it is straight
  forward to update signal_wake_up and friends to make that unnecessary.

  Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and
  then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying
  on the fact that all stopped states except the special stop states can
  tolerate spurious wake up and recover their state.

  The state of stopped and traced tasked is changed to be stored in
  task->jobctl as well as in task->__state. This makes it possible for
  the freezer to recover tasks in these special states, as well as
  serving as a general cleanup. With a little more work in that
  direction I believe TASK_STOPPED can learn to tolerate spurious wake
  ups and become an ordinary stop state.

  The TASK_TRACED state has to remain a special state as the registers
  for a process are only reliably available when the process is stopped
  in the scheduler. Fundamentally ptrace needs acess to the saved
  register values of a task.

  There are bunch of semi-random ptrace related cleanups that were found
  while looking at these issues.

  One cleanup that deserves to be called out is from commit 57b6de08b5
  ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This
  makes a change that is technically user space visible, in the handling
  of what happens to a tracee when a tracer dies unexpectedly. According
  to our testing and our understanding of userspace nothing cares that
  spurious SIGTRAPs can be generated in that case"

* tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state
  ptrace: Always take siglock in ptrace_resume
  ptrace: Don't change __state
  ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs
  ptrace: Document that wait_task_inactive can't fail
  ptrace: Reimplement PTRACE_KILL by always sending SIGKILL
  signal: Use lockdep_assert_held instead of assert_spin_locked
  ptrace: Remove arch_ptrace_attach
  ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP
  ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP
  signal: Replace __group_send_sig_info with send_signal_locked
  signal: Rename send_signal send_signal_locked
2022-06-03 16:13:25 -07:00

783 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_SIGNAL_H
#define _LINUX_SCHED_SIGNAL_H
#include <linux/rculist.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/jobctl.h>
#include <linux/sched/task.h>
#include <linux/cred.h>
#include <linux/refcount.h>
#include <linux/posix-timers.h>
#include <linux/mm_types.h>
#include <asm/ptrace.h>
/*
* Types defining task->signal and task->sighand and APIs using them:
*/
struct sighand_struct {
spinlock_t siglock;
refcount_t count;
wait_queue_head_t signalfd_wqh;
struct k_sigaction action[_NSIG];
};
/*
* Per-process accounting stats:
*/
struct pacct_struct {
int ac_flag;
long ac_exitcode;
unsigned long ac_mem;
u64 ac_utime, ac_stime;
unsigned long ac_minflt, ac_majflt;
};
struct cpu_itimer {
u64 expires;
u64 incr;
};
/*
* This is the atomic variant of task_cputime, which can be used for
* storing and updating task_cputime statistics without locking.
*/
struct task_cputime_atomic {
atomic64_t utime;
atomic64_t stime;
atomic64_t sum_exec_runtime;
};
#define INIT_CPUTIME_ATOMIC \
(struct task_cputime_atomic) { \
.utime = ATOMIC64_INIT(0), \
.stime = ATOMIC64_INIT(0), \
.sum_exec_runtime = ATOMIC64_INIT(0), \
}
/**
* struct thread_group_cputimer - thread group interval timer counts
* @cputime_atomic: atomic thread group interval timers.
*
* This structure contains the version of task_cputime, above, that is
* used for thread group CPU timer calculations.
*/
struct thread_group_cputimer {
struct task_cputime_atomic cputime_atomic;
};
struct multiprocess_signals {
sigset_t signal;
struct hlist_node node;
};
struct core_thread {
struct task_struct *task;
struct core_thread *next;
};
struct core_state {
atomic_t nr_threads;
struct core_thread dumper;
struct completion startup;
};
/*
* NOTE! "signal_struct" does not have its own
* locking, because a shared signal_struct always
* implies a shared sighand_struct, so locking
* sighand_struct is always a proper superset of
* the locking of signal_struct.
*/
struct signal_struct {
refcount_t sigcnt;
atomic_t live;
int nr_threads;
struct list_head thread_head;
wait_queue_head_t wait_chldexit; /* for wait4() */
/* current thread group signal load-balancing target: */
struct task_struct *curr_target;
/* shared signal handling: */
struct sigpending shared_pending;
/* For collecting multiprocess signals during fork */
struct hlist_head multiprocess;
/* thread group exit support */
int group_exit_code;
/* notify group_exec_task when notify_count is less or equal to 0 */
int notify_count;
struct task_struct *group_exec_task;
/* thread group stop support, overloads group_exit_code too */
int group_stop_count;
unsigned int flags; /* see SIGNAL_* flags below */
struct core_state *core_state; /* coredumping support */
/*
* PR_SET_CHILD_SUBREAPER marks a process, like a service
* manager, to re-parent orphan (double-forking) child processes
* to this process instead of 'init'. The service manager is
* able to receive SIGCHLD signals and is able to investigate
* the process until it calls wait(). All children of this
* process will inherit a flag if they should look for a
* child_subreaper process at exit.
*/
unsigned int is_child_subreaper:1;
unsigned int has_child_subreaper:1;
#ifdef CONFIG_POSIX_TIMERS
/* POSIX.1b Interval Timers */
int posix_timer_id;
struct list_head posix_timers;
/* ITIMER_REAL timer for the process */
struct hrtimer real_timer;
ktime_t it_real_incr;
/*
* ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
* CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
* values are defined to 0 and 1 respectively
*/
struct cpu_itimer it[2];
/*
* Thread group totals for process CPU timers.
* See thread_group_cputimer(), et al, for details.
*/
struct thread_group_cputimer cputimer;
#endif
/* Empty if CONFIG_POSIX_TIMERS=n */
struct posix_cputimers posix_cputimers;
/* PID/PID hash table linkage. */
struct pid *pids[PIDTYPE_MAX];
#ifdef CONFIG_NO_HZ_FULL
atomic_t tick_dep_mask;
#endif
struct pid *tty_old_pgrp;
/* boolean value for session group leader */
int leader;
struct tty_struct *tty; /* NULL if no tty */
#ifdef CONFIG_SCHED_AUTOGROUP
struct autogroup *autogroup;
#endif
/*
* Cumulative resource counters for dead threads in the group,
* and for reaped dead child processes forked by this group.
* Live threads maintain their own counters and add to these
* in __exit_signal, except for the group leader.
*/
seqlock_t stats_lock;
u64 utime, stime, cutime, cstime;
u64 gtime;
u64 cgtime;
struct prev_cputime prev_cputime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
unsigned long inblock, oublock, cinblock, coublock;
unsigned long maxrss, cmaxrss;
struct task_io_accounting ioac;
/*
* Cumulative ns of schedule CPU time fo dead threads in the
* group, not including a zombie group leader, (This only differs
* from jiffies_to_ns(utime + stime) if sched_clock uses something
* other than jiffies.)
*/
unsigned long long sum_sched_runtime;
/*
* We don't bother to synchronize most readers of this at all,
* because there is no reader checking a limit that actually needs
* to get both rlim_cur and rlim_max atomically, and either one
* alone is a single word that can safely be read normally.
* getrlimit/setrlimit use task_lock(current->group_leader) to
* protect this instead of the siglock, because they really
* have no need to disable irqs.
*/
struct rlimit rlim[RLIM_NLIMITS];
#ifdef CONFIG_BSD_PROCESS_ACCT
struct pacct_struct pacct; /* per-process accounting information */
#endif
#ifdef CONFIG_TASKSTATS
struct taskstats *stats;
#endif
#ifdef CONFIG_AUDIT
unsigned audit_tty;
struct tty_audit_buf *tty_audit_buf;
#endif
/*
* Thread is the potential origin of an oom condition; kill first on
* oom
*/
bool oom_flag_origin;
short oom_score_adj; /* OOM kill score adjustment */
short oom_score_adj_min; /* OOM kill score adjustment min value.
* Only settable by CAP_SYS_RESOURCE. */
struct mm_struct *oom_mm; /* recorded mm when the thread group got
* killed by the oom killer */
struct mutex cred_guard_mutex; /* guard against foreign influences on
* credential calculations
* (notably. ptrace)
* Deprecated do not use in new code.
* Use exec_update_lock instead.
*/
struct rw_semaphore exec_update_lock; /* Held while task_struct is
* being updated during exec,
* and may have inconsistent
* permissions.
*/
} __randomize_layout;
/*
* Bits in flags field of signal_struct.
*/
#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
/*
* Pending notifications to parent.
*/
#define SIGNAL_CLD_STOPPED 0x00000010
#define SIGNAL_CLD_CONTINUED 0x00000020
#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
SIGNAL_STOP_CONTINUED)
static inline void signal_set_stop_flags(struct signal_struct *sig,
unsigned int flags)
{
WARN_ON(sig->flags & SIGNAL_GROUP_EXIT);
sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
}
extern void flush_signals(struct task_struct *);
extern void ignore_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *task, sigset_t *mask,
kernel_siginfo_t *info, enum pid_type *type);
static inline int kernel_dequeue_signal(void)
{
struct task_struct *task = current;
kernel_siginfo_t __info;
enum pid_type __type;
int ret;
spin_lock_irq(&task->sighand->siglock);
ret = dequeue_signal(task, &task->blocked, &__info, &__type);
spin_unlock_irq(&task->sighand->siglock);
return ret;
}
static inline void kernel_signal_stop(void)
{
spin_lock_irq(&current->sighand->siglock);
if (current->jobctl & JOBCTL_STOP_DEQUEUED) {
current->jobctl |= JOBCTL_STOPPED;
set_special_state(TASK_STOPPED);
}
spin_unlock_irq(&current->sighand->siglock);
schedule();
}
#ifdef __ia64__
# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
#else
# define ___ARCH_SI_IA64(_a1, _a2, _a3)
#endif
int force_sig_fault_to_task(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t);
int force_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
int send_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t);
int force_sig_mceerr(int code, void __user *, short);
int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
int force_sig_pkuerr(void __user *addr, u32 pkey);
int send_sig_perf(void __user *addr, u32 type, u64 sig_data);
int force_sig_ptrace_errno_trap(int errno, void __user *addr);
int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno);
int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
struct task_struct *t);
int force_sig_seccomp(int syscall, int reason, bool force_coredump);
extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
extern void force_sigsegv(int sig);
extern int force_sig_info(struct kernel_siginfo *);
extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
const struct cred *);
extern int kill_pgrp(struct pid *pid, int sig, int priv);
extern int kill_pid(struct pid *pid, int sig, int priv);
extern __must_check bool do_notify_parent(struct task_struct *, int);
extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
extern void force_sig(int);
extern void force_fatal_sig(int);
extern void force_exit_sig(int);
extern int send_sig(int, struct task_struct *, int);
extern int zap_other_threads(struct task_struct *p);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
static inline void clear_notify_signal(void)
{
clear_thread_flag(TIF_NOTIFY_SIGNAL);
smp_mb__after_atomic();
}
/*
* Returns 'true' if kick_process() is needed to force a transition from
* user -> kernel to guarantee expedient run of TWA_SIGNAL based task_work.
*/
static inline bool __set_notify_signal(struct task_struct *task)
{
return !test_and_set_tsk_thread_flag(task, TIF_NOTIFY_SIGNAL) &&
!wake_up_state(task, TASK_INTERRUPTIBLE);
}
/*
* Called to break out of interruptible wait loops, and enter the
* exit_to_user_mode_loop().
*/
static inline void set_notify_signal(struct task_struct *task)
{
if (__set_notify_signal(task))
kick_process(task);
}
static inline int restart_syscall(void)
{
set_tsk_thread_flag(current, TIF_SIGPENDING);
return -ERESTARTNOINTR;
}
static inline int task_sigpending(struct task_struct *p)
{
return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
}
static inline int signal_pending(struct task_struct *p)
{
/*
* TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
* behavior in terms of ensuring that we break out of wait loops
* so that notify signal callbacks can be processed.
*/
if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
return 1;
return task_sigpending(p);
}
static inline int __fatal_signal_pending(struct task_struct *p)
{
return unlikely(sigismember(&p->pending.signal, SIGKILL));
}
static inline int fatal_signal_pending(struct task_struct *p)
{
return task_sigpending(p) && __fatal_signal_pending(p);
}
static inline int signal_pending_state(unsigned int state, struct task_struct *p)
{
if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
return 0;
if (!signal_pending(p))
return 0;
return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
}
/*
* This should only be used in fault handlers to decide whether we
* should stop the current fault routine to handle the signals
* instead, especially with the case where we've got interrupted with
* a VM_FAULT_RETRY.
*/
static inline bool fault_signal_pending(vm_fault_t fault_flags,
struct pt_regs *regs)
{
return unlikely((fault_flags & VM_FAULT_RETRY) &&
(fatal_signal_pending(current) ||
(user_mode(regs) && signal_pending(current))));
}
/*
* Reevaluate whether the task has signals pending delivery.
* Wake the task if so.
* This is required every time the blocked sigset_t changes.
* callers must hold sighand->siglock.
*/
extern void recalc_sigpending_and_wake(struct task_struct *t);
extern void recalc_sigpending(void);
extern void calculate_sigpending(void);
extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
static inline void signal_wake_up(struct task_struct *t, bool fatal)
{
unsigned int state = 0;
if (fatal && !(t->jobctl & JOBCTL_PTRACE_FROZEN)) {
t->jobctl &= ~(JOBCTL_STOPPED | JOBCTL_TRACED);
state = TASK_WAKEKILL | __TASK_TRACED;
}
signal_wake_up_state(t, state);
}
static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
{
unsigned int state = 0;
if (resume) {
t->jobctl &= ~JOBCTL_TRACED;
state = __TASK_TRACED;
}
signal_wake_up_state(t, state);
}
void task_join_group_stop(struct task_struct *task);
#ifdef TIF_RESTORE_SIGMASK
/*
* Legacy restore_sigmask accessors. These are inefficient on
* SMP architectures because they require atomic operations.
*/
/**
* set_restore_sigmask() - make sure saved_sigmask processing gets done
*
* This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
* will run before returning to user mode, to process the flag. For
* all callers, TIF_SIGPENDING is already set or it's no harm to set
* it. TIF_RESTORE_SIGMASK need not be in the set of bits that the
* arch code will notice on return to user mode, in case those bits
* are scarce. We set TIF_SIGPENDING here to ensure that the arch
* signal code always gets run when TIF_RESTORE_SIGMASK is set.
*/
static inline void set_restore_sigmask(void)
{
set_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline void clear_tsk_restore_sigmask(struct task_struct *task)
{
clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
}
static inline void clear_restore_sigmask(void)
{
clear_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
{
return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
}
static inline bool test_restore_sigmask(void)
{
return test_thread_flag(TIF_RESTORE_SIGMASK);
}
static inline bool test_and_clear_restore_sigmask(void)
{
return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
}
#else /* TIF_RESTORE_SIGMASK */
/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
static inline void set_restore_sigmask(void)
{
current->restore_sigmask = true;
}
static inline void clear_tsk_restore_sigmask(struct task_struct *task)
{
task->restore_sigmask = false;
}
static inline void clear_restore_sigmask(void)
{
current->restore_sigmask = false;
}
static inline bool test_restore_sigmask(void)
{
return current->restore_sigmask;
}
static inline bool test_tsk_restore_sigmask(struct task_struct *task)
{
return task->restore_sigmask;
}
static inline bool test_and_clear_restore_sigmask(void)
{
if (!current->restore_sigmask)
return false;
current->restore_sigmask = false;
return true;
}
#endif
static inline void restore_saved_sigmask(void)
{
if (test_and_clear_restore_sigmask())
__set_current_blocked(&current->saved_sigmask);
}
extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
static inline void restore_saved_sigmask_unless(bool interrupted)
{
if (interrupted)
WARN_ON(!signal_pending(current));
else
restore_saved_sigmask();
}
static inline sigset_t *sigmask_to_save(void)
{
sigset_t *res = &current->blocked;
if (unlikely(test_restore_sigmask()))
res = &current->saved_sigmask;
return res;
}
static inline int kill_cad_pid(int sig, int priv)
{
return kill_pid(cad_pid, sig, priv);
}
/* These can be the second arg to send_sig_info/send_group_sig_info. */
#define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
#define SEND_SIG_PRIV ((struct kernel_siginfo *) 1)
static inline int __on_sig_stack(unsigned long sp)
{
#ifdef CONFIG_STACK_GROWSUP
return sp >= current->sas_ss_sp &&
sp - current->sas_ss_sp < current->sas_ss_size;
#else
return sp > current->sas_ss_sp &&
sp - current->sas_ss_sp <= current->sas_ss_size;
#endif
}
/*
* True if we are on the alternate signal stack.
*/
static inline int on_sig_stack(unsigned long sp)
{
/*
* If the signal stack is SS_AUTODISARM then, by construction, we
* can't be on the signal stack unless user code deliberately set
* SS_AUTODISARM when we were already on it.
*
* This improves reliability: if user state gets corrupted such that
* the stack pointer points very close to the end of the signal stack,
* then this check will enable the signal to be handled anyway.
*/
if (current->sas_ss_flags & SS_AUTODISARM)
return 0;
return __on_sig_stack(sp);
}
static inline int sas_ss_flags(unsigned long sp)
{
if (!current->sas_ss_size)
return SS_DISABLE;
return on_sig_stack(sp) ? SS_ONSTACK : 0;
}
static inline void sas_ss_reset(struct task_struct *p)
{
p->sas_ss_sp = 0;
p->sas_ss_size = 0;
p->sas_ss_flags = SS_DISABLE;
}
static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
{
if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
#ifdef CONFIG_STACK_GROWSUP
return current->sas_ss_sp;
#else
return current->sas_ss_sp + current->sas_ss_size;
#endif
return sp;
}
extern void __cleanup_sighand(struct sighand_struct *);
extern void flush_itimer_signals(void);
#define tasklist_empty() \
list_empty(&init_task.tasks)
#define next_task(p) \
list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
#define for_each_process(p) \
for (p = &init_task ; (p = next_task(p)) != &init_task ; )
extern bool current_is_single_threaded(void);
/*
* Careful: do_each_thread/while_each_thread is a double loop so
* 'break' will not work as expected - use goto instead.
*/
#define do_each_thread(g, t) \
for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
#define while_each_thread(g, t) \
while ((t = next_thread(t)) != g)
#define __for_each_thread(signal, t) \
list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
#define for_each_thread(p, t) \
__for_each_thread((p)->signal, t)
/* Careful: this is a double loop, 'break' won't work as expected. */
#define for_each_process_thread(p, t) \
for_each_process(p) for_each_thread(p, t)
typedef int (*proc_visitor)(struct task_struct *p, void *data);
void walk_process_tree(struct task_struct *top, proc_visitor, void *);
static inline
struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
if (type == PIDTYPE_PID)
pid = task_pid(task);
else
pid = task->signal->pids[type];
return pid;
}
static inline struct pid *task_tgid(struct task_struct *task)
{
return task->signal->pids[PIDTYPE_TGID];
}
/*
* Without tasklist or RCU lock it is not safe to dereference
* the result of task_pgrp/task_session even if task == current,
* we can race with another thread doing sys_setsid/sys_setpgid.
*/
static inline struct pid *task_pgrp(struct task_struct *task)
{
return task->signal->pids[PIDTYPE_PGID];
}
static inline struct pid *task_session(struct task_struct *task)
{
return task->signal->pids[PIDTYPE_SID];
}
static inline int get_nr_threads(struct task_struct *task)
{
return task->signal->nr_threads;
}
static inline bool thread_group_leader(struct task_struct *p)
{
return p->exit_signal >= 0;
}
static inline
bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
{
return p1->signal == p2->signal;
}
static inline struct task_struct *next_thread(const struct task_struct *p)
{
return list_entry_rcu(p->thread_group.next,
struct task_struct, thread_group);
}
static inline int thread_group_empty(struct task_struct *p)
{
return list_empty(&p->thread_group);
}
#define delay_group_leader(p) \
(thread_group_leader(p) && !thread_group_empty(p))
extern bool thread_group_exited(struct pid *pid);
extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
unsigned long *flags);
static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
unsigned long *flags)
{
struct sighand_struct *ret;
ret = __lock_task_sighand(task, flags);
(void)__cond_lock(&task->sighand->siglock, ret);
return ret;
}
static inline void unlock_task_sighand(struct task_struct *task,
unsigned long *flags)
{
spin_unlock_irqrestore(&task->sighand->siglock, *flags);
}
#ifdef CONFIG_LOCKDEP
extern void lockdep_assert_task_sighand_held(struct task_struct *task);
#else
static inline void lockdep_assert_task_sighand_held(struct task_struct *task) { }
#endif
static inline unsigned long task_rlimit(const struct task_struct *task,
unsigned int limit)
{
return READ_ONCE(task->signal->rlim[limit].rlim_cur);
}
static inline unsigned long task_rlimit_max(const struct task_struct *task,
unsigned int limit)
{
return READ_ONCE(task->signal->rlim[limit].rlim_max);
}
static inline unsigned long rlimit(unsigned int limit)
{
return task_rlimit(current, limit);
}
static inline unsigned long rlimit_max(unsigned int limit)
{
return task_rlimit_max(current, limit);
}
#endif /* _LINUX_SCHED_SIGNAL_H */