mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-29 23:53:32 +00:00
9b15d109a6
This patch improves discard bio split for address and size alignment in __blkdev_issue_discard(). The aligned discard bio may help underlying device controller to perform better discard and internal garbage collection, and avoid unnecessary internal fragment. Current discard bio split algorithm in __blkdev_issue_discard() may have non-discarded fregment on device even the discard bio LBA and size are both aligned to device's discard granularity size. Here is the example steps on how to reproduce the above problem. - On a VMWare ESXi 6.5 update3 installation, create a 51GB virtual disk with thin mode and give it to a Linux virtual machine. - Inside the Linux virtual machine, if the 50GB virtual disk shows up as /dev/sdb, fill data into the first 50GB by, # dd if=/dev/zero of=/dev/sdb bs=4096 count=13107200 - Discard the 50GB range from offset 0 on /dev/sdb, # blkdiscard /dev/sdb -o 0 -l 53687091200 - Observe the underlying mapping status of the device # sg_get_lba_status /dev/sdb -m 1048 --lba=0 descriptor LBA: 0x0000000000000000 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000000000800 blocks: 16773120 deallocated descriptor LBA: 0x0000000000fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000001000000 blocks:8386560
deallocated descriptor LBA: 0x00000000017ff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000001800000 blocks:8386560
deallocated descriptor LBA: 0x0000000001fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000002000000 blocks:8386560
deallocated descriptor LBA: 0x00000000027ff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000002800000 blocks:8386560
deallocated descriptor LBA: 0x0000000002fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000003000000 blocks:8386560
deallocated descriptor LBA: 0x00000000037ff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000003800000 blocks:8386560
deallocated descriptor LBA: 0x0000000003fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000004000000 blocks:8386560
deallocated descriptor LBA: 0x00000000047ff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000004800000 blocks:8386560
deallocated descriptor LBA: 0x0000000004fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000005000000 blocks:8386560
deallocated descriptor LBA: 0x00000000057ff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000005800000 blocks:8386560
deallocated descriptor LBA: 0x0000000005fff800 blocks: 2048 mapped (or unknown) descriptor LBA: 0x0000000006000000 blocks: 6291456 deallocated descriptor LBA: 0x0000000006600000 blocks: 0 deallocated Although the discard bio starts at LBA 0 and has 50<<30 bytes size which are perfect aligned to the discard granularity, from the above list these are many 1MB (2048 sectors) internal fragments exist unexpectedly. The problem is in __blkdev_issue_discard(), an improper algorithm causes an improper bio size which is not aligned. 25 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 26 sector_t nr_sects, gfp_t gfp_mask, int flags, 27 struct bio **biop) 28 { 29 struct request_queue *q = bdev_get_queue(bdev); [snipped] 56 57 while (nr_sects) { 58 sector_t req_sects = min_t(sector_t, nr_sects, 59 bio_allowed_max_sectors(q)); 60 61 WARN_ON_ONCE((req_sects << 9) > UINT_MAX); 62 63 bio = blk_next_bio(bio, 0, gfp_mask); 64 bio->bi_iter.bi_sector = sector; 65 bio_set_dev(bio, bdev); 66 bio_set_op_attrs(bio, op, 0); 67 68 bio->bi_iter.bi_size = req_sects << 9; 69 sector += req_sects; 70 nr_sects -= req_sects; [snipped] 79 } 80 81 *biop = bio; 82 return 0; 83 } 84 EXPORT_SYMBOL(__blkdev_issue_discard); At line 58-59, to discard a 50GB range, req_sects is set as return value of bio_allowed_max_sectors(q), which is 8388607 sectors. In the above case, the discard granularity is 2048 sectors, although the start LBA and discard length are aligned to discard granularity, req_sects never has chance to be aligned to discard granularity. This is why there are some still-mapped 2048 sectors fragment in every 4 or 8 GB range. If req_sects at line 58 is set to a value aligned to discard_granularity and close to UNIT_MAX, then all consequent split bios inside device driver are (almostly) aligned to discard_granularity of the device queue. The 2048 sectors still-mapped fragment will disappear. This patch introduces bio_aligned_discard_max_sectors() to return the the value which is aligned to q->limits.discard_granularity and closest to UINT_MAX. Then this patch replaces bio_allowed_max_sectors() with this new routine to decide a more proper split bio length. But we still need to handle the situation when discard start LBA is not aligned to q->limits.discard_granularity, otherwise even the length is aligned, current code may still leave 2048 fragment around every 4GB range. Therefore, to calculate req_sects, firstly the start LBA of discard range is checked (including partition offset), if it is not aligned to discard granularity, the first split location should make sure following bio has bi_sector aligned to discard granularity. Then there won't be still-mapped fragment in the middle of the discard range. The above is how this patch improves discard bio alignment in __blkdev_issue_discard(). Now with this patch, after discard with same command line mentiond previously, sg_get_lba_status returns, descriptor LBA: 0x0000000000000000 blocks: 106954752 deallocated descriptor LBA: 0x0000000006600000 blocks: 0 deallocated We an see there is no 2048 sectors segment anymore, everything is clean. Reported-and-tested-by: Acshai Manoj <acshai.manoj@microfocus.com> Signed-off-by: Coly Li <colyli@suse.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Ming Lei <ming.lei@redhat.com> Reviewed-by: Xiao Ni <xni@redhat.com> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Enzo Matsumiya <ematsumiya@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Jens Axboe <axboe@kernel.dk>
440 lines
13 KiB
C
440 lines
13 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef BLK_INTERNAL_H
|
|
#define BLK_INTERNAL_H
|
|
|
|
#include <linux/idr.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/part_stat.h>
|
|
#include <linux/blk-crypto.h>
|
|
#include <xen/xen.h>
|
|
#include "blk-crypto-internal.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-sched.h"
|
|
|
|
/* Max future timer expiry for timeouts */
|
|
#define BLK_MAX_TIMEOUT (5 * HZ)
|
|
|
|
extern struct dentry *blk_debugfs_root;
|
|
|
|
struct blk_flush_queue {
|
|
unsigned int flush_pending_idx:1;
|
|
unsigned int flush_running_idx:1;
|
|
blk_status_t rq_status;
|
|
unsigned long flush_pending_since;
|
|
struct list_head flush_queue[2];
|
|
struct list_head flush_data_in_flight;
|
|
struct request *flush_rq;
|
|
|
|
struct lock_class_key key;
|
|
spinlock_t mq_flush_lock;
|
|
};
|
|
|
|
extern struct kmem_cache *blk_requestq_cachep;
|
|
extern struct kobj_type blk_queue_ktype;
|
|
extern struct ida blk_queue_ida;
|
|
|
|
static inline struct blk_flush_queue *
|
|
blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
|
|
{
|
|
return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
|
|
}
|
|
|
|
static inline void __blk_get_queue(struct request_queue *q)
|
|
{
|
|
kobject_get(&q->kobj);
|
|
}
|
|
|
|
static inline bool
|
|
is_flush_rq(struct request *req, struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
return hctx->fq->flush_rq == req;
|
|
}
|
|
|
|
struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
|
|
gfp_t flags);
|
|
void blk_free_flush_queue(struct blk_flush_queue *q);
|
|
|
|
void blk_freeze_queue(struct request_queue *q);
|
|
|
|
static inline bool biovec_phys_mergeable(struct request_queue *q,
|
|
struct bio_vec *vec1, struct bio_vec *vec2)
|
|
{
|
|
unsigned long mask = queue_segment_boundary(q);
|
|
phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
|
|
phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
|
|
|
|
if (addr1 + vec1->bv_len != addr2)
|
|
return false;
|
|
if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
|
|
return false;
|
|
if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static inline bool __bvec_gap_to_prev(struct request_queue *q,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
return (offset & queue_virt_boundary(q)) ||
|
|
((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
|
|
}
|
|
|
|
/*
|
|
* Check if adding a bio_vec after bprv with offset would create a gap in
|
|
* the SG list. Most drivers don't care about this, but some do.
|
|
*/
|
|
static inline bool bvec_gap_to_prev(struct request_queue *q,
|
|
struct bio_vec *bprv, unsigned int offset)
|
|
{
|
|
if (!queue_virt_boundary(q))
|
|
return false;
|
|
return __bvec_gap_to_prev(q, bprv, offset);
|
|
}
|
|
|
|
static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
rq->nr_phys_segments = nr_segs;
|
|
rq->__data_len = bio->bi_iter.bi_size;
|
|
rq->bio = rq->biotail = bio;
|
|
rq->ioprio = bio_prio(bio);
|
|
|
|
if (bio->bi_disk)
|
|
rq->rq_disk = bio->bi_disk;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
void blk_flush_integrity(void);
|
|
bool __bio_integrity_endio(struct bio *);
|
|
void bio_integrity_free(struct bio *bio);
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
if (bio_integrity(bio))
|
|
return __bio_integrity_endio(bio);
|
|
return true;
|
|
}
|
|
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(req->bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(next);
|
|
|
|
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
struct bio_integrity_payload *bip = bio_integrity(bio);
|
|
struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
|
|
|
|
return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
|
|
bip_next->bip_vec[0].bv_offset);
|
|
}
|
|
|
|
void blk_integrity_add(struct gendisk *);
|
|
void blk_integrity_del(struct gendisk *);
|
|
#else /* CONFIG_BLK_DEV_INTEGRITY */
|
|
static inline bool integrity_req_gap_back_merge(struct request *req,
|
|
struct bio *next)
|
|
{
|
|
return false;
|
|
}
|
|
static inline bool integrity_req_gap_front_merge(struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void blk_flush_integrity(void)
|
|
{
|
|
}
|
|
static inline bool bio_integrity_endio(struct bio *bio)
|
|
{
|
|
return true;
|
|
}
|
|
static inline void bio_integrity_free(struct bio *bio)
|
|
{
|
|
}
|
|
static inline void blk_integrity_add(struct gendisk *disk)
|
|
{
|
|
}
|
|
static inline void blk_integrity_del(struct gendisk *disk)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
unsigned long blk_rq_timeout(unsigned long timeout);
|
|
void blk_add_timer(struct request *req);
|
|
|
|
bool bio_attempt_front_merge(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool bio_attempt_back_merge(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
|
|
struct bio *bio);
|
|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs, struct request **same_queue_rq);
|
|
|
|
void blk_account_io_start(struct request *req);
|
|
void blk_account_io_done(struct request *req, u64 now);
|
|
|
|
/*
|
|
* Internal elevator interface
|
|
*/
|
|
#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
|
|
|
|
void blk_insert_flush(struct request *rq);
|
|
|
|
void elevator_init_mq(struct request_queue *q);
|
|
int elevator_switch_mq(struct request_queue *q,
|
|
struct elevator_type *new_e);
|
|
void __elevator_exit(struct request_queue *, struct elevator_queue *);
|
|
int elv_register_queue(struct request_queue *q, bool uevent);
|
|
void elv_unregister_queue(struct request_queue *q);
|
|
|
|
static inline void elevator_exit(struct request_queue *q,
|
|
struct elevator_queue *e)
|
|
{
|
|
lockdep_assert_held(&q->sysfs_lock);
|
|
|
|
blk_mq_sched_free_requests(q);
|
|
__elevator_exit(q, e);
|
|
}
|
|
|
|
struct hd_struct *__disk_get_part(struct gendisk *disk, int partno);
|
|
|
|
ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf);
|
|
ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t count);
|
|
ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
|
|
ssize_t part_timeout_store(struct device *, struct device_attribute *,
|
|
const char *, size_t);
|
|
|
|
void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
|
|
int ll_back_merge_fn(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
int ll_front_merge_fn(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs);
|
|
struct request *attempt_back_merge(struct request_queue *q, struct request *rq);
|
|
struct request *attempt_front_merge(struct request_queue *q, struct request *rq);
|
|
int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
|
|
struct request *next);
|
|
unsigned int blk_recalc_rq_segments(struct request *rq);
|
|
void blk_rq_set_mixed_merge(struct request *rq);
|
|
bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
|
|
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
|
|
|
|
int blk_dev_init(void);
|
|
|
|
/*
|
|
* Contribute to IO statistics IFF:
|
|
*
|
|
* a) it's attached to a gendisk, and
|
|
* b) the queue had IO stats enabled when this request was started
|
|
*/
|
|
static inline bool blk_do_io_stat(struct request *rq)
|
|
{
|
|
return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
|
|
}
|
|
|
|
static inline void req_set_nomerge(struct request_queue *q, struct request *req)
|
|
{
|
|
req->cmd_flags |= REQ_NOMERGE;
|
|
if (req == q->last_merge)
|
|
q->last_merge = NULL;
|
|
}
|
|
|
|
/*
|
|
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
|
|
* is defined as 'unsigned int', meantime it has to aligned to with logical
|
|
* block size which is the minimum accepted unit by hardware.
|
|
*/
|
|
static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
|
|
{
|
|
return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
|
|
}
|
|
|
|
/*
|
|
* The max bio size which is aligned to q->limits.discard_granularity. This
|
|
* is a hint to split large discard bio in generic block layer, then if device
|
|
* driver needs to split the discard bio into smaller ones, their bi_size can
|
|
* be very probably and easily aligned to discard_granularity of the device's
|
|
* queue.
|
|
*/
|
|
static inline unsigned int bio_aligned_discard_max_sectors(
|
|
struct request_queue *q)
|
|
{
|
|
return round_down(UINT_MAX, q->limits.discard_granularity) >>
|
|
SECTOR_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Internal io_context interface
|
|
*/
|
|
void get_io_context(struct io_context *ioc);
|
|
struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
|
|
struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
|
|
gfp_t gfp_mask);
|
|
void ioc_clear_queue(struct request_queue *q);
|
|
|
|
int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
|
|
|
|
/*
|
|
* Internal throttling interface
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING
|
|
extern int blk_throtl_init(struct request_queue *q);
|
|
extern void blk_throtl_exit(struct request_queue *q);
|
|
extern void blk_throtl_register_queue(struct request_queue *q);
|
|
bool blk_throtl_bio(struct bio *bio);
|
|
#else /* CONFIG_BLK_DEV_THROTTLING */
|
|
static inline int blk_throtl_init(struct request_queue *q) { return 0; }
|
|
static inline void blk_throtl_exit(struct request_queue *q) { }
|
|
static inline void blk_throtl_register_queue(struct request_queue *q) { }
|
|
static inline bool blk_throtl_bio(struct bio *bio) { return false; }
|
|
#endif /* CONFIG_BLK_DEV_THROTTLING */
|
|
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
|
|
extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
|
|
extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
|
|
const char *page, size_t count);
|
|
extern void blk_throtl_bio_endio(struct bio *bio);
|
|
extern void blk_throtl_stat_add(struct request *rq, u64 time);
|
|
#else
|
|
static inline void blk_throtl_bio_endio(struct bio *bio) { }
|
|
static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_BOUNCE
|
|
extern int init_emergency_isa_pool(void);
|
|
extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
|
|
#else
|
|
static inline int init_emergency_isa_pool(void)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BOUNCE */
|
|
|
|
#ifdef CONFIG_BLK_CGROUP_IOLATENCY
|
|
extern int blk_iolatency_init(struct request_queue *q);
|
|
#else
|
|
static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
|
|
#endif
|
|
|
|
struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
void blk_queue_free_zone_bitmaps(struct request_queue *q);
|
|
#else
|
|
static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
|
|
#endif
|
|
|
|
struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector);
|
|
|
|
int blk_alloc_devt(struct hd_struct *part, dev_t *devt);
|
|
void blk_free_devt(dev_t devt);
|
|
void blk_invalidate_devt(dev_t devt);
|
|
char *disk_name(struct gendisk *hd, int partno, char *buf);
|
|
#define ADDPART_FLAG_NONE 0
|
|
#define ADDPART_FLAG_RAID 1
|
|
#define ADDPART_FLAG_WHOLEDISK 2
|
|
void delete_partition(struct gendisk *disk, struct hd_struct *part);
|
|
int bdev_add_partition(struct block_device *bdev, int partno,
|
|
sector_t start, sector_t length);
|
|
int bdev_del_partition(struct block_device *bdev, int partno);
|
|
int bdev_resize_partition(struct block_device *bdev, int partno,
|
|
sector_t start, sector_t length);
|
|
int disk_expand_part_tbl(struct gendisk *disk, int target);
|
|
int hd_ref_init(struct hd_struct *part);
|
|
|
|
/* no need to get/put refcount of part0 */
|
|
static inline int hd_struct_try_get(struct hd_struct *part)
|
|
{
|
|
if (part->partno)
|
|
return percpu_ref_tryget_live(&part->ref);
|
|
return 1;
|
|
}
|
|
|
|
static inline void hd_struct_put(struct hd_struct *part)
|
|
{
|
|
if (part->partno)
|
|
percpu_ref_put(&part->ref);
|
|
}
|
|
|
|
static inline void hd_free_part(struct hd_struct *part)
|
|
{
|
|
free_percpu(part->dkstats);
|
|
kfree(part->info);
|
|
percpu_ref_exit(&part->ref);
|
|
}
|
|
|
|
/*
|
|
* Any access of part->nr_sects which is not protected by partition
|
|
* bd_mutex or gendisk bdev bd_mutex, should be done using this
|
|
* accessor function.
|
|
*
|
|
* Code written along the lines of i_size_read() and i_size_write().
|
|
* CONFIG_PREEMPTION case optimizes the case of UP kernel with preemption
|
|
* on.
|
|
*/
|
|
static inline sector_t part_nr_sects_read(struct hd_struct *part)
|
|
{
|
|
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
|
|
sector_t nr_sects;
|
|
unsigned seq;
|
|
do {
|
|
seq = read_seqcount_begin(&part->nr_sects_seq);
|
|
nr_sects = part->nr_sects;
|
|
} while (read_seqcount_retry(&part->nr_sects_seq, seq));
|
|
return nr_sects;
|
|
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
|
|
sector_t nr_sects;
|
|
|
|
preempt_disable();
|
|
nr_sects = part->nr_sects;
|
|
preempt_enable();
|
|
return nr_sects;
|
|
#else
|
|
return part->nr_sects;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Should be called with mutex lock held (typically bd_mutex) of partition
|
|
* to provide mutual exlusion among writers otherwise seqcount might be
|
|
* left in wrong state leaving the readers spinning infinitely.
|
|
*/
|
|
static inline void part_nr_sects_write(struct hd_struct *part, sector_t size)
|
|
{
|
|
#if BITS_PER_LONG==32 && defined(CONFIG_SMP)
|
|
preempt_disable();
|
|
write_seqcount_begin(&part->nr_sects_seq);
|
|
part->nr_sects = size;
|
|
write_seqcount_end(&part->nr_sects_seq);
|
|
preempt_enable();
|
|
#elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION)
|
|
preempt_disable();
|
|
part->nr_sects = size;
|
|
preempt_enable();
|
|
#else
|
|
part->nr_sects = size;
|
|
#endif
|
|
}
|
|
|
|
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
|
|
struct page *page, unsigned int len, unsigned int offset,
|
|
unsigned int max_sectors, bool *same_page);
|
|
|
|
#endif /* BLK_INTERNAL_H */
|