linux-stable/arch/m32r/kernel/ptrace.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

708 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/m32r/kernel/ptrace.c
*
* Copyright (C) 2002 Hirokazu Takata, Takeo Takahashi
* Copyright (C) 2004 Hirokazu Takata, Kei Sakamoto
*
* Original x86 implementation:
* By Ross Biro 1/23/92
* edited by Linus Torvalds
*
* Some code taken from sh version:
* Copyright (C) 1999, 2000 Kaz Kojima & Niibe Yutaka
* Some code taken from arm version:
* Copyright (C) 2000 Russell King
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/string.h>
#include <linux/signal.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/mmu_context.h>
/*
* This routine will get a word off of the process kernel stack.
*/
static inline unsigned long int
get_stack_long(struct task_struct *task, int offset)
{
unsigned long *stack;
stack = (unsigned long *)task_pt_regs(task);
return stack[offset];
}
/*
* This routine will put a word on the process kernel stack.
*/
static inline int
put_stack_long(struct task_struct *task, int offset, unsigned long data)
{
unsigned long *stack;
stack = (unsigned long *)task_pt_regs(task);
stack[offset] = data;
return 0;
}
static int reg_offset[] = {
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_FP, PT_LR, PT_SPU,
};
/*
* Read the word at offset "off" into the "struct user". We
* actually access the pt_regs stored on the kernel stack.
*/
static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
unsigned long __user *data)
{
unsigned long tmp;
#ifndef NO_FPU
struct user * dummy = NULL;
#endif
if ((off & 3) || off > sizeof(struct user) - 3)
return -EIO;
off >>= 2;
switch (off) {
case PT_EVB:
__asm__ __volatile__ (
"mvfc %0, cr5 \n\t"
: "=r" (tmp)
);
break;
case PT_CBR: {
unsigned long psw;
psw = get_stack_long(tsk, PT_PSW);
tmp = ((psw >> 8) & 1);
}
break;
case PT_PSW: {
unsigned long psw, bbpsw;
psw = get_stack_long(tsk, PT_PSW);
bbpsw = get_stack_long(tsk, PT_BBPSW);
tmp = ((psw >> 8) & 0xff) | ((bbpsw & 0xff) << 8);
}
break;
case PT_PC:
tmp = get_stack_long(tsk, PT_BPC);
break;
case PT_BPC:
off = PT_BBPC;
/* fall through */
default:
if (off < (sizeof(struct pt_regs) >> 2))
tmp = get_stack_long(tsk, off);
#ifndef NO_FPU
else if (off >= (long)(&dummy->fpu >> 2) &&
off < (long)(&dummy->u_fpvalid >> 2)) {
if (!tsk_used_math(tsk)) {
if (off == (long)(&dummy->fpu.fpscr >> 2))
tmp = FPSCR_INIT;
else
tmp = 0;
} else
tmp = ((long *)(&tsk->thread.fpu >> 2))
[off - (long)&dummy->fpu];
} else if (off == (long)(&dummy->u_fpvalid >> 2))
tmp = !!tsk_used_math(tsk);
#endif /* not NO_FPU */
else
tmp = 0;
}
return put_user(tmp, data);
}
static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
unsigned long data)
{
int ret = -EIO;
#ifndef NO_FPU
struct user * dummy = NULL;
#endif
if ((off & 3) || off > sizeof(struct user) - 3)
return -EIO;
off >>= 2;
switch (off) {
case PT_EVB:
case PT_BPC:
case PT_SPI:
/* We don't allow to modify evb. */
ret = 0;
break;
case PT_PSW:
case PT_CBR: {
/* We allow to modify only cbr in psw */
unsigned long psw;
psw = get_stack_long(tsk, PT_PSW);
psw = (psw & ~0x100) | ((data & 1) << 8);
ret = put_stack_long(tsk, PT_PSW, psw);
}
break;
case PT_PC:
off = PT_BPC;
data &= ~1;
/* fall through */
default:
if (off < (sizeof(struct pt_regs) >> 2))
ret = put_stack_long(tsk, off, data);
#ifndef NO_FPU
else if (off >= (long)(&dummy->fpu >> 2) &&
off < (long)(&dummy->u_fpvalid >> 2)) {
set_stopped_child_used_math(tsk);
((long *)&tsk->thread.fpu)
[off - (long)&dummy->fpu] = data;
ret = 0;
} else if (off == (long)(&dummy->u_fpvalid >> 2)) {
conditional_stopped_child_used_math(data, tsk);
ret = 0;
}
#endif /* not NO_FPU */
break;
}
return ret;
}
/*
* Get all user integer registers.
*/
static int ptrace_getregs(struct task_struct *tsk, void __user *uregs)
{
struct pt_regs *regs = task_pt_regs(tsk);
return copy_to_user(uregs, regs, sizeof(struct pt_regs)) ? -EFAULT : 0;
}
/*
* Set all user integer registers.
*/
static int ptrace_setregs(struct task_struct *tsk, void __user *uregs)
{
struct pt_regs newregs;
int ret;
ret = -EFAULT;
if (copy_from_user(&newregs, uregs, sizeof(struct pt_regs)) == 0) {
struct pt_regs *regs = task_pt_regs(tsk);
*regs = newregs;
ret = 0;
}
return ret;
}
static inline int
check_condition_bit(struct task_struct *child)
{
return (int)((get_stack_long(child, PT_PSW) >> 8) & 1);
}
static int
check_condition_src(unsigned long op, unsigned long regno1,
unsigned long regno2, struct task_struct *child)
{
unsigned long reg1, reg2;
reg2 = get_stack_long(child, reg_offset[regno2]);
switch (op) {
case 0x0: /* BEQ */
reg1 = get_stack_long(child, reg_offset[regno1]);
return reg1 == reg2;
case 0x1: /* BNE */
reg1 = get_stack_long(child, reg_offset[regno1]);
return reg1 != reg2;
case 0x8: /* BEQZ */
return reg2 == 0;
case 0x9: /* BNEZ */
return reg2 != 0;
case 0xa: /* BLTZ */
return (int)reg2 < 0;
case 0xb: /* BGEZ */
return (int)reg2 >= 0;
case 0xc: /* BLEZ */
return (int)reg2 <= 0;
case 0xd: /* BGTZ */
return (int)reg2 > 0;
default:
/* never reached */
return 0;
}
}
static void
compute_next_pc_for_16bit_insn(unsigned long insn, unsigned long pc,
unsigned long *next_pc,
struct task_struct *child)
{
unsigned long op, op2, op3;
unsigned long disp;
unsigned long regno;
int parallel = 0;
if (insn & 0x00008000)
parallel = 1;
if (pc & 3)
insn &= 0x7fff; /* right slot */
else
insn >>= 16; /* left slot */
op = (insn >> 12) & 0xf;
op2 = (insn >> 8) & 0xf;
op3 = (insn >> 4) & 0xf;
if (op == 0x7) {
switch (op2) {
case 0xd: /* BNC */
case 0x9: /* BNCL */
if (!check_condition_bit(child)) {
disp = (long)(insn << 24) >> 22;
*next_pc = (pc & ~0x3) + disp;
return;
}
break;
case 0x8: /* BCL */
case 0xc: /* BC */
if (check_condition_bit(child)) {
disp = (long)(insn << 24) >> 22;
*next_pc = (pc & ~0x3) + disp;
return;
}
break;
case 0xe: /* BL */
case 0xf: /* BRA */
disp = (long)(insn << 24) >> 22;
*next_pc = (pc & ~0x3) + disp;
return;
break;
}
} else if (op == 0x1) {
switch (op2) {
case 0x0:
if (op3 == 0xf) { /* TRAP */
#if 1
/* pass through */
#else
/* kernel space is not allowed as next_pc */
unsigned long evb;
unsigned long trapno;
trapno = insn & 0xf;
__asm__ __volatile__ (
"mvfc %0, cr5\n"
:"=r"(evb)
:
);
*next_pc = evb + (trapno << 2);
return;
#endif
} else if (op3 == 0xd) { /* RTE */
*next_pc = get_stack_long(child, PT_BPC);
return;
}
break;
case 0xc: /* JC */
if (op3 == 0xc && check_condition_bit(child)) {
regno = insn & 0xf;
*next_pc = get_stack_long(child,
reg_offset[regno]);
return;
}
break;
case 0xd: /* JNC */
if (op3 == 0xc && !check_condition_bit(child)) {
regno = insn & 0xf;
*next_pc = get_stack_long(child,
reg_offset[regno]);
return;
}
break;
case 0xe: /* JL */
case 0xf: /* JMP */
if (op3 == 0xc) { /* JMP */
regno = insn & 0xf;
*next_pc = get_stack_long(child,
reg_offset[regno]);
return;
}
break;
}
}
if (parallel)
*next_pc = pc + 4;
else
*next_pc = pc + 2;
}
static void
compute_next_pc_for_32bit_insn(unsigned long insn, unsigned long pc,
unsigned long *next_pc,
struct task_struct *child)
{
unsigned long op;
unsigned long op2;
unsigned long disp;
unsigned long regno1, regno2;
op = (insn >> 28) & 0xf;
if (op == 0xf) { /* branch 24-bit relative */
op2 = (insn >> 24) & 0xf;
switch (op2) {
case 0xd: /* BNC */
case 0x9: /* BNCL */
if (!check_condition_bit(child)) {
disp = (long)(insn << 8) >> 6;
*next_pc = (pc & ~0x3) + disp;
return;
}
break;
case 0x8: /* BCL */
case 0xc: /* BC */
if (check_condition_bit(child)) {
disp = (long)(insn << 8) >> 6;
*next_pc = (pc & ~0x3) + disp;
return;
}
break;
case 0xe: /* BL */
case 0xf: /* BRA */
disp = (long)(insn << 8) >> 6;
*next_pc = (pc & ~0x3) + disp;
return;
}
} else if (op == 0xb) { /* branch 16-bit relative */
op2 = (insn >> 20) & 0xf;
switch (op2) {
case 0x0: /* BEQ */
case 0x1: /* BNE */
case 0x8: /* BEQZ */
case 0x9: /* BNEZ */
case 0xa: /* BLTZ */
case 0xb: /* BGEZ */
case 0xc: /* BLEZ */
case 0xd: /* BGTZ */
regno1 = ((insn >> 24) & 0xf);
regno2 = ((insn >> 16) & 0xf);
if (check_condition_src(op2, regno1, regno2, child)) {
disp = (long)(insn << 16) >> 14;
*next_pc = (pc & ~0x3) + disp;
return;
}
break;
}
}
*next_pc = pc + 4;
}
static inline void
compute_next_pc(unsigned long insn, unsigned long pc,
unsigned long *next_pc, struct task_struct *child)
{
if (insn & 0x80000000)
compute_next_pc_for_32bit_insn(insn, pc, next_pc, child);
else
compute_next_pc_for_16bit_insn(insn, pc, next_pc, child);
}
static int
register_debug_trap(struct task_struct *child, unsigned long next_pc,
unsigned long next_insn, unsigned long *code)
{
struct debug_trap *p = &child->thread.debug_trap;
unsigned long addr = next_pc & ~3;
if (p->nr_trap == MAX_TRAPS) {
printk("kernel BUG at %s %d: p->nr_trap = %d\n",
__FILE__, __LINE__, p->nr_trap);
return -1;
}
p->addr[p->nr_trap] = addr;
p->insn[p->nr_trap] = next_insn;
p->nr_trap++;
if (next_pc & 3) {
*code = (next_insn & 0xffff0000) | 0x10f1;
/* xxx --> TRAP1 */
} else {
if ((next_insn & 0x80000000) || (next_insn & 0x8000)) {
*code = 0x10f17000;
/* TRAP1 --> NOP */
} else {
*code = (next_insn & 0xffff) | 0x10f10000;
/* TRAP1 --> xxx */
}
}
return 0;
}
static int
unregister_debug_trap(struct task_struct *child, unsigned long addr,
unsigned long *code)
{
struct debug_trap *p = &child->thread.debug_trap;
int i;
/* Search debug trap entry. */
for (i = 0; i < p->nr_trap; i++) {
if (p->addr[i] == addr)
break;
}
if (i >= p->nr_trap) {
/* The trap may be requested from debugger.
* ptrace should do nothing in this case.
*/
return 0;
}
/* Recover original instruction code. */
*code = p->insn[i];
/* Shift debug trap entries. */
while (i < p->nr_trap - 1) {
p->insn[i] = p->insn[i + 1];
p->addr[i] = p->addr[i + 1];
i++;
}
p->nr_trap--;
return 1;
}
static void
unregister_all_debug_traps(struct task_struct *child)
{
struct debug_trap *p = &child->thread.debug_trap;
int i;
for (i = 0; i < p->nr_trap; i++)
access_process_vm(child, p->addr[i], &p->insn[i], sizeof(p->insn[i]),
FOLL_FORCE | FOLL_WRITE);
p->nr_trap = 0;
}
static inline void
invalidate_cache(void)
{
#if defined(CONFIG_CHIP_M32700) || defined(CONFIG_CHIP_OPSP)
_flush_cache_copyback_all();
#else /* ! CONFIG_CHIP_M32700 */
/* Invalidate cache */
__asm__ __volatile__ (
"ldi r0, #-1 \n\t"
"ldi r1, #0 \n\t"
"stb r1, @r0 ; cache off \n\t"
"; \n\t"
"ldi r0, #-2 \n\t"
"ldi r1, #1 \n\t"
"stb r1, @r0 ; cache invalidate \n\t"
".fillinsn \n"
"0: \n\t"
"ldb r1, @r0 ; invalidate check \n\t"
"bnez r1, 0b \n\t"
"; \n\t"
"ldi r0, #-1 \n\t"
"ldi r1, #1 \n\t"
"stb r1, @r0 ; cache on \n\t"
: : : "r0", "r1", "memory"
);
/* FIXME: copying-back d-cache and invalidating i-cache are needed.
*/
#endif /* CONFIG_CHIP_M32700 */
}
/* Embed a debug trap (TRAP1) code */
static int
embed_debug_trap(struct task_struct *child, unsigned long next_pc)
{
unsigned long next_insn, code;
unsigned long addr = next_pc & ~3;
if (access_process_vm(child, addr, &next_insn, sizeof(next_insn),
FOLL_FORCE)
!= sizeof(next_insn)) {
return -1; /* error */
}
/* Set a trap code. */
if (register_debug_trap(child, next_pc, next_insn, &code)) {
return -1; /* error */
}
if (access_process_vm(child, addr, &code, sizeof(code),
FOLL_FORCE | FOLL_WRITE)
!= sizeof(code)) {
return -1; /* error */
}
return 0; /* success */
}
void
withdraw_debug_trap(struct pt_regs *regs)
{
unsigned long addr;
unsigned long code;
addr = (regs->bpc - 2) & ~3;
regs->bpc -= 2;
if (unregister_debug_trap(current, addr, &code)) {
access_process_vm(current, addr, &code, sizeof(code),
FOLL_FORCE | FOLL_WRITE);
invalidate_cache();
}
}
void
init_debug_traps(struct task_struct *child)
{
struct debug_trap *p = &child->thread.debug_trap;
int i;
p->nr_trap = 0;
for (i = 0; i < MAX_TRAPS; i++) {
p->addr[i] = 0;
p->insn[i] = 0;
}
}
void user_enable_single_step(struct task_struct *child)
{
unsigned long next_pc;
unsigned long pc, insn;
clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
/* Compute next pc. */
pc = get_stack_long(child, PT_BPC);
if (access_process_vm(child, pc&~3, &insn, sizeof(insn),
FOLL_FORCE)
!= sizeof(insn))
return;
compute_next_pc(insn, pc, &next_pc, child);
if (next_pc & 0x80000000)
return;
if (embed_debug_trap(child, next_pc))
return;
invalidate_cache();
}
void user_disable_single_step(struct task_struct *child)
{
unregister_all_debug_traps(child);
invalidate_cache();
}
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure single step bits etc are not set.
*/
void ptrace_disable(struct task_struct *child)
{
/* nothing to do.. */
}
long
arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
unsigned long __user *datap = (unsigned long __user *) data;
switch (request) {
/*
* read word at location "addr" in the child process.
*/
case PTRACE_PEEKTEXT:
case PTRACE_PEEKDATA:
ret = generic_ptrace_peekdata(child, addr, data);
break;
/*
* read the word at location addr in the USER area.
*/
case PTRACE_PEEKUSR:
ret = ptrace_read_user(child, addr, datap);
break;
/*
* write the word at location addr.
*/
case PTRACE_POKETEXT:
case PTRACE_POKEDATA:
ret = generic_ptrace_pokedata(child, addr, data);
if (ret == 0 && request == PTRACE_POKETEXT)
invalidate_cache();
break;
/*
* write the word at location addr in the USER area.
*/
case PTRACE_POKEUSR:
ret = ptrace_write_user(child, addr, data);
break;
case PTRACE_GETREGS:
ret = ptrace_getregs(child, datap);
break;
case PTRACE_SETREGS:
ret = ptrace_setregs(child, datap);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
return ret;
}
/* notification of system call entry/exit
* - triggered by current->work.syscall_trace
*/
void do_syscall_trace(void)
{
if (!test_thread_flag(TIF_SYSCALL_TRACE))
return;
if (!(current->ptrace & PT_PTRACED))
return;
/* the 0x80 provides a way for the tracing parent to distinguish
between a syscall stop and SIGTRAP delivery */
ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD)
? 0x80 : 0));
/*
* this isn't the same as continuing with a signal, but it will do
* for normal use. strace only continues with a signal if the
* stopping signal is not SIGTRAP. -brl
*/
if (current->exit_code) {
send_sig(current->exit_code, current, 1);
current->exit_code = 0;
}
}