linux-stable/arch/m32r/mm/fault.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

550 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/m32r/mm/fault.c
*
* Copyright (c) 2001, 2002 Hitoshi Yamamoto, and H. Kondo
* Copyright (c) 2004 Naoto Sugai, NIIBE Yutaka
*
* Some code taken from i386 version.
* Copyright (C) 1995 Linus Torvalds
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/tty.h>
#include <linux/vt_kern.h> /* For unblank_screen() */
#include <linux/highmem.h>
#include <linux/extable.h>
#include <linux/uaccess.h>
#include <asm/m32r.h>
#include <asm/hardirq.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
extern void die(const char *, struct pt_regs *, long);
#ifndef CONFIG_SMP
asmlinkage unsigned int tlb_entry_i_dat;
asmlinkage unsigned int tlb_entry_d_dat;
#define tlb_entry_i tlb_entry_i_dat
#define tlb_entry_d tlb_entry_d_dat
#else
unsigned int tlb_entry_i_dat[NR_CPUS];
unsigned int tlb_entry_d_dat[NR_CPUS];
#define tlb_entry_i tlb_entry_i_dat[smp_processor_id()]
#define tlb_entry_d tlb_entry_d_dat[smp_processor_id()]
#endif
extern void init_tlb(void);
/*======================================================================*
* do_page_fault()
*======================================================================*
* This routine handles page faults. It determines the address,
* and the problem, and then passes it off to one of the appropriate
* routines.
*
* ARGUMENT:
* regs : M32R SP reg.
* error_code : See below
* address : M32R MMU MDEVA reg. (Operand ACE)
* : M32R BPC reg. (Instruction ACE)
*
* error_code :
* bit 0 == 0 means no page found, 1 means protection fault
* bit 1 == 0 means read, 1 means write
* bit 2 == 0 means kernel, 1 means user-mode
* bit 3 == 0 means data, 1 means instruction
*======================================================================*/
#define ACE_PROTECTION 1
#define ACE_WRITE 2
#define ACE_USERMODE 4
#define ACE_INSTRUCTION 8
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
struct task_struct *tsk;
struct mm_struct *mm;
struct vm_area_struct * vma;
unsigned long page, addr;
unsigned long flags = 0;
int fault;
siginfo_t info;
/*
* If BPSW IE bit enable --> set PSW IE bit
*/
if (regs->psw & M32R_PSW_BIE)
local_irq_enable();
tsk = current;
info.si_code = SEGV_MAPERR;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*
* This verifies that the fault happens in kernel space
* (error_code & ACE_USERMODE) == 0, and that the fault was not a
* protection error (error_code & ACE_PROTECTION) == 0.
*/
if (address >= TASK_SIZE && !(error_code & ACE_USERMODE))
goto vmalloc_fault;
mm = tsk->mm;
/*
* If we're in an interrupt or have no user context or have pagefaults
* disabled then we must not take the fault.
*/
if (faulthandler_disabled() || !mm)
goto bad_area_nosemaphore;
if (error_code & ACE_USERMODE)
flags |= FAULT_FLAG_USER;
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunately, in the case of an
* erroneous fault occurring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibility of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if ((error_code & ACE_USERMODE) == 0 &&
!search_exception_tables(regs->psw))
goto bad_area_nosemaphore;
down_read(&mm->mmap_sem);
}
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (error_code & ACE_USERMODE) {
/*
* accessing the stack below "spu" is always a bug.
* The "+ 4" is there due to the push instruction
* doing pre-decrement on the stack and that
* doesn't show up until later..
*/
if (address + 4 < regs->spu)
goto bad_area;
}
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
info.si_code = SEGV_ACCERR;
switch (error_code & (ACE_WRITE|ACE_PROTECTION)) {
default: /* 3: write, present */
/* fall through */
case ACE_WRITE: /* write, not present */
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
flags |= FAULT_FLAG_WRITE;
break;
case ACE_PROTECTION: /* read, present */
case 0: /* read, not present */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* For instruction access exception, check if the area is executable
*/
if ((error_code & ACE_INSTRUCTION) && !(vma->vm_flags & VM_EXEC))
goto bad_area;
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
addr = (address & PAGE_MASK);
set_thread_fault_code(error_code);
fault = handle_mm_fault(vma, addr, flags);
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
else if (fault & VM_FAULT_SIGSEGV)
goto bad_area;
else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;
BUG();
}
if (fault & VM_FAULT_MAJOR)
tsk->maj_flt++;
else
tsk->min_flt++;
set_thread_fault_code(0);
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (error_code & ACE_USERMODE) {
tsk->thread.address = address;
tsk->thread.error_code = error_code | (address >= TASK_SIZE);
tsk->thread.trap_no = 14;
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* info.si_code has been set above */
info.si_addr = (void __user *)address;
force_sig_info(SIGSEGV, &info, tsk);
return;
}
no_context:
/* Are we prepared to handle this kernel fault? */
if (fixup_exception(regs))
return;
/*
* Oops. The kernel tried to access some bad page. We'll have to
* terminate things with extreme prejudice.
*/
bust_spinlocks(1);
if (address < PAGE_SIZE)
printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference");
else
printk(KERN_ALERT "Unable to handle kernel paging request");
printk(" at virtual address %08lx\n",address);
printk(KERN_ALERT " printing bpc:\n");
printk("%08lx\n", regs->bpc);
page = *(unsigned long *)MPTB;
page = ((unsigned long *) page)[address >> PGDIR_SHIFT];
printk(KERN_ALERT "*pde = %08lx\n", page);
if (page & _PAGE_PRESENT) {
page &= PAGE_MASK;
address &= 0x003ff000;
page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
printk(KERN_ALERT "*pte = %08lx\n", page);
}
die("Oops", regs, error_code);
bust_spinlocks(0);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (!(error_code & ACE_USERMODE))
goto no_context;
pagefault_out_of_memory();
return;
do_sigbus:
up_read(&mm->mmap_sem);
/* Kernel mode? Handle exception or die */
if (!(error_code & ACE_USERMODE))
goto no_context;
tsk->thread.address = address;
tsk->thread.error_code = error_code;
tsk->thread.trap_no = 14;
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
force_sig_info(SIGBUS, &info, tsk);
return;
vmalloc_fault:
{
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*
* Do _not_ use "tsk" here. We might be inside
* an interrupt in the middle of a task switch..
*/
int offset = pgd_index(address);
pgd_t *pgd, *pgd_k;
pmd_t *pmd, *pmd_k;
pte_t *pte_k;
pgd = (pgd_t *)*(unsigned long *)MPTB;
pgd = offset + (pgd_t *)pgd;
pgd_k = init_mm.pgd + offset;
if (!pgd_present(*pgd_k))
goto no_context;
/*
* set_pgd(pgd, *pgd_k); here would be useless on PAE
* and redundant with the set_pmd() on non-PAE.
*/
pmd = pmd_offset(pgd, address);
pmd_k = pmd_offset(pgd_k, address);
if (!pmd_present(*pmd_k))
goto no_context;
set_pmd(pmd, *pmd_k);
pte_k = pte_offset_kernel(pmd_k, address);
if (!pte_present(*pte_k))
goto no_context;
addr = (address & PAGE_MASK);
set_thread_fault_code(error_code);
update_mmu_cache(NULL, addr, pte_k);
set_thread_fault_code(0);
return;
}
}
/*======================================================================*
* update_mmu_cache()
*======================================================================*/
#define TLB_MASK (NR_TLB_ENTRIES - 1)
#define ITLB_END (unsigned long *)(ITLB_BASE + (NR_TLB_ENTRIES * 8))
#define DTLB_END (unsigned long *)(DTLB_BASE + (NR_TLB_ENTRIES * 8))
void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr,
pte_t *ptep)
{
volatile unsigned long *entry1, *entry2;
unsigned long pte_data, flags;
unsigned int *entry_dat;
int inst = get_thread_fault_code() & ACE_INSTRUCTION;
int i;
/* Ptrace may call this routine. */
if (vma && current->active_mm != vma->vm_mm)
return;
local_irq_save(flags);
vaddr = (vaddr & PAGE_MASK) | get_asid();
pte_data = pte_val(*ptep);
#ifdef CONFIG_CHIP_OPSP
entry1 = (unsigned long *)ITLB_BASE;
for (i = 0; i < NR_TLB_ENTRIES; i++) {
if (*entry1++ == vaddr) {
set_tlb_data(entry1, pte_data);
break;
}
entry1++;
}
entry2 = (unsigned long *)DTLB_BASE;
for (i = 0; i < NR_TLB_ENTRIES; i++) {
if (*entry2++ == vaddr) {
set_tlb_data(entry2, pte_data);
break;
}
entry2++;
}
#else
/*
* Update TLB entries
* entry1: ITLB entry address
* entry2: DTLB entry address
*/
__asm__ __volatile__ (
"seth %0, #high(%4) \n\t"
"st %2, @(%5, %0) \n\t"
"ldi %1, #1 \n\t"
"st %1, @(%6, %0) \n\t"
"add3 r4, %0, %7 \n\t"
".fillinsn \n"
"1: \n\t"
"ld %1, @(%6, %0) \n\t"
"bnez %1, 1b \n\t"
"ld %0, @r4+ \n\t"
"ld %1, @r4 \n\t"
"st %3, @+%0 \n\t"
"st %3, @+%1 \n\t"
: "=&r" (entry1), "=&r" (entry2)
: "r" (vaddr), "r" (pte_data), "i" (MMU_REG_BASE),
"i" (MSVA_offset), "i" (MTOP_offset), "i" (MIDXI_offset)
: "r4", "memory"
);
#endif
if ((!inst && entry2 >= DTLB_END) || (inst && entry1 >= ITLB_END))
goto notfound;
found:
local_irq_restore(flags);
return;
/* Valid entry not found */
notfound:
/*
* Update ITLB or DTLB entry
* entry1: TLB entry address
* entry2: TLB base address
*/
if (!inst) {
entry2 = (unsigned long *)DTLB_BASE;
entry_dat = &tlb_entry_d;
} else {
entry2 = (unsigned long *)ITLB_BASE;
entry_dat = &tlb_entry_i;
}
entry1 = entry2 + (((*entry_dat - 1) & TLB_MASK) << 1);
for (i = 0 ; i < NR_TLB_ENTRIES ; i++) {
if (!(entry1[1] & 2)) /* Valid bit check */
break;
if (entry1 != entry2)
entry1 -= 2;
else
entry1 += TLB_MASK << 1;
}
if (i >= NR_TLB_ENTRIES) { /* Empty entry not found */
entry1 = entry2 + (*entry_dat << 1);
*entry_dat = (*entry_dat + 1) & TLB_MASK;
}
*entry1++ = vaddr; /* Set TLB tag */
set_tlb_data(entry1, pte_data);
goto found;
}
/*======================================================================*
* flush_tlb_page() : flushes one page
*======================================================================*/
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
if (vma->vm_mm && mm_context(vma->vm_mm) != NO_CONTEXT) {
unsigned long flags;
local_irq_save(flags);
page &= PAGE_MASK;
page |= (mm_context(vma->vm_mm) & MMU_CONTEXT_ASID_MASK);
__flush_tlb_page(page);
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_range() : flushes a range of pages
*======================================================================*/
void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
struct mm_struct *mm;
mm = vma->vm_mm;
if (mm_context(mm) != NO_CONTEXT) {
unsigned long flags;
int size;
local_irq_save(flags);
size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
if (size > (NR_TLB_ENTRIES / 4)) { /* Too many TLB to flush */
mm_context(mm) = NO_CONTEXT;
if (mm == current->mm)
activate_context(mm);
} else {
unsigned long asid;
asid = mm_context(mm) & MMU_CONTEXT_ASID_MASK;
start &= PAGE_MASK;
end += (PAGE_SIZE - 1);
end &= PAGE_MASK;
start |= asid;
end |= asid;
while (start < end) {
__flush_tlb_page(start);
start += PAGE_SIZE;
}
}
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_mm() : flushes the specified mm context TLB's
*======================================================================*/
void local_flush_tlb_mm(struct mm_struct *mm)
{
/* Invalidate all TLB of this process. */
/* Instead of invalidating each TLB, we get new MMU context. */
if (mm_context(mm) != NO_CONTEXT) {
unsigned long flags;
local_irq_save(flags);
mm_context(mm) = NO_CONTEXT;
if (mm == current->mm)
activate_context(mm);
local_irq_restore(flags);
}
}
/*======================================================================*
* flush_tlb_all() : flushes all processes TLBs
*======================================================================*/
void local_flush_tlb_all(void)
{
unsigned long flags;
local_irq_save(flags);
__flush_tlb_all();
local_irq_restore(flags);
}
/*======================================================================*
* init_mmu()
*======================================================================*/
void __init init_mmu(void)
{
tlb_entry_i = 0;
tlb_entry_d = 0;
mmu_context_cache = MMU_CONTEXT_FIRST_VERSION;
set_asid(mmu_context_cache & MMU_CONTEXT_ASID_MASK);
*(volatile unsigned long *)MPTB = (unsigned long)swapper_pg_dir;
}