linux-stable/include/linux/gpio/driver.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

407 lines
14 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_GPIO_DRIVER_H
#define __LINUX_GPIO_DRIVER_H
#include <linux/device.h>
#include <linux/types.h>
#include <linux/irq.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/lockdep.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/pinconf-generic.h>
struct gpio_desc;
struct of_phandle_args;
struct device_node;
struct seq_file;
struct gpio_device;
struct module;
#ifdef CONFIG_GPIOLIB
/**
* struct gpio_chip - abstract a GPIO controller
* @label: a functional name for the GPIO device, such as a part
* number or the name of the SoC IP-block implementing it.
* @gpiodev: the internal state holder, opaque struct
* @parent: optional parent device providing the GPIOs
* @owner: helps prevent removal of modules exporting active GPIOs
* @request: optional hook for chip-specific activation, such as
* enabling module power and clock; may sleep
* @free: optional hook for chip-specific deactivation, such as
* disabling module power and clock; may sleep
* @get_direction: returns direction for signal "offset", 0=out, 1=in,
* (same as GPIOF_DIR_XXX), or negative error
* @direction_input: configures signal "offset" as input, or returns error
* @direction_output: configures signal "offset" as output, or returns error
* @get: returns value for signal "offset", 0=low, 1=high, or negative error
* @set: assigns output value for signal "offset"
* @set_multiple: assigns output values for multiple signals defined by "mask"
* @set_config: optional hook for all kinds of settings. Uses the same
* packed config format as generic pinconf.
* @to_irq: optional hook supporting non-static gpio_to_irq() mappings;
* implementation may not sleep
* @dbg_show: optional routine to show contents in debugfs; default code
* will be used when this is omitted, but custom code can show extra
* state (such as pullup/pulldown configuration).
* @base: identifies the first GPIO number handled by this chip;
* or, if negative during registration, requests dynamic ID allocation.
* DEPRECATION: providing anything non-negative and nailing the base
* offset of GPIO chips is deprecated. Please pass -1 as base to
* let gpiolib select the chip base in all possible cases. We want to
* get rid of the static GPIO number space in the long run.
* @ngpio: the number of GPIOs handled by this controller; the last GPIO
* handled is (base + ngpio - 1).
* @names: if set, must be an array of strings to use as alternative
* names for the GPIOs in this chip. Any entry in the array
* may be NULL if there is no alias for the GPIO, however the
* array must be @ngpio entries long. A name can include a single printk
* format specifier for an unsigned int. It is substituted by the actual
* number of the gpio.
* @can_sleep: flag must be set iff get()/set() methods sleep, as they
* must while accessing GPIO expander chips over I2C or SPI. This
* implies that if the chip supports IRQs, these IRQs need to be threaded
* as the chip access may sleep when e.g. reading out the IRQ status
* registers.
* @read_reg: reader function for generic GPIO
* @write_reg: writer function for generic GPIO
* @pin2mask: some generic GPIO controllers work with the big-endian bits
* notation, e.g. in a 8-bits register, GPIO7 is the least significant
* bit. This callback assigns the right bit mask.
* @reg_dat: data (in) register for generic GPIO
* @reg_set: output set register (out=high) for generic GPIO
* @reg_clr: output clear register (out=low) for generic GPIO
* @reg_dir: direction setting register for generic GPIO
* @bgpio_bits: number of register bits used for a generic GPIO i.e.
* <register width> * 8
* @bgpio_lock: used to lock chip->bgpio_data. Also, this is needed to keep
* shadowed and real data registers writes together.
* @bgpio_data: shadowed data register for generic GPIO to clear/set bits
* safely.
* @bgpio_dir: shadowed direction register for generic GPIO to clear/set
* direction safely.
* @irqchip: GPIO IRQ chip impl, provided by GPIO driver
* @irqdomain: Interrupt translation domain; responsible for mapping
* between GPIO hwirq number and linux irq number
* @irq_base: first linux IRQ number assigned to GPIO IRQ chip (deprecated)
* @irq_handler: the irq handler to use (often a predefined irq core function)
* for GPIO IRQs, provided by GPIO driver
* @irq_default_type: default IRQ triggering type applied during GPIO driver
* initialization, provided by GPIO driver
* @irq_chained_parent: GPIO IRQ chip parent/bank linux irq number,
* provided by GPIO driver for chained interrupt (not for nested
* interrupts).
* @irq_nested: True if set the interrupt handling is nested.
* @irq_need_valid_mask: If set core allocates @irq_valid_mask with all
* bits set to one
* @irq_valid_mask: If not %NULL holds bitmask of GPIOs which are valid to
* be included in IRQ domain of the chip
* @lock_key: per GPIO IRQ chip lockdep class
*
* A gpio_chip can help platforms abstract various sources of GPIOs so
* they can all be accessed through a common programing interface.
* Example sources would be SOC controllers, FPGAs, multifunction
* chips, dedicated GPIO expanders, and so on.
*
* Each chip controls a number of signals, identified in method calls
* by "offset" values in the range 0..(@ngpio - 1). When those signals
* are referenced through calls like gpio_get_value(gpio), the offset
* is calculated by subtracting @base from the gpio number.
*/
struct gpio_chip {
const char *label;
struct gpio_device *gpiodev;
struct device *parent;
struct module *owner;
int (*request)(struct gpio_chip *chip,
unsigned offset);
void (*free)(struct gpio_chip *chip,
unsigned offset);
int (*get_direction)(struct gpio_chip *chip,
unsigned offset);
int (*direction_input)(struct gpio_chip *chip,
unsigned offset);
int (*direction_output)(struct gpio_chip *chip,
unsigned offset, int value);
int (*get)(struct gpio_chip *chip,
unsigned offset);
void (*set)(struct gpio_chip *chip,
unsigned offset, int value);
void (*set_multiple)(struct gpio_chip *chip,
unsigned long *mask,
unsigned long *bits);
int (*set_config)(struct gpio_chip *chip,
unsigned offset,
unsigned long config);
int (*to_irq)(struct gpio_chip *chip,
unsigned offset);
void (*dbg_show)(struct seq_file *s,
struct gpio_chip *chip);
int base;
u16 ngpio;
const char *const *names;
bool can_sleep;
#if IS_ENABLED(CONFIG_GPIO_GENERIC)
unsigned long (*read_reg)(void __iomem *reg);
void (*write_reg)(void __iomem *reg, unsigned long data);
unsigned long (*pin2mask)(struct gpio_chip *gc, unsigned int pin);
void __iomem *reg_dat;
void __iomem *reg_set;
void __iomem *reg_clr;
void __iomem *reg_dir;
int bgpio_bits;
spinlock_t bgpio_lock;
unsigned long bgpio_data;
unsigned long bgpio_dir;
#endif
#ifdef CONFIG_GPIOLIB_IRQCHIP
/*
* With CONFIG_GPIOLIB_IRQCHIP we get an irqchip inside the gpiolib
* to handle IRQs for most practical cases.
*/
struct irq_chip *irqchip;
struct irq_domain *irqdomain;
unsigned int irq_base;
irq_flow_handler_t irq_handler;
unsigned int irq_default_type;
unsigned int irq_chained_parent;
bool irq_nested;
bool irq_need_valid_mask;
unsigned long *irq_valid_mask;
struct lock_class_key *lock_key;
#endif
#if defined(CONFIG_OF_GPIO)
/*
* If CONFIG_OF is enabled, then all GPIO controllers described in the
* device tree automatically may have an OF translation
*/
/**
* @of_node:
*
* Pointer to a device tree node representing this GPIO controller.
*/
struct device_node *of_node;
/**
* @of_gpio_n_cells:
*
* Number of cells used to form the GPIO specifier.
*/
unsigned int of_gpio_n_cells;
/**
* @of_xlate:
*
* Callback to translate a device tree GPIO specifier into a chip-
* relative GPIO number and flags.
*/
int (*of_xlate)(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec, u32 *flags);
#endif
};
extern const char *gpiochip_is_requested(struct gpio_chip *chip,
unsigned offset);
/* add/remove chips */
extern int gpiochip_add_data(struct gpio_chip *chip, void *data);
static inline int gpiochip_add(struct gpio_chip *chip)
{
return gpiochip_add_data(chip, NULL);
}
extern void gpiochip_remove(struct gpio_chip *chip);
extern int devm_gpiochip_add_data(struct device *dev, struct gpio_chip *chip,
void *data);
extern void devm_gpiochip_remove(struct device *dev, struct gpio_chip *chip);
extern struct gpio_chip *gpiochip_find(void *data,
int (*match)(struct gpio_chip *chip, void *data));
/* lock/unlock as IRQ */
int gpiochip_lock_as_irq(struct gpio_chip *chip, unsigned int offset);
void gpiochip_unlock_as_irq(struct gpio_chip *chip, unsigned int offset);
bool gpiochip_line_is_irq(struct gpio_chip *chip, unsigned int offset);
/* Line status inquiry for drivers */
bool gpiochip_line_is_open_drain(struct gpio_chip *chip, unsigned int offset);
bool gpiochip_line_is_open_source(struct gpio_chip *chip, unsigned int offset);
/* Sleep persistence inquiry for drivers */
bool gpiochip_line_is_persistent(struct gpio_chip *chip, unsigned int offset);
/* get driver data */
void *gpiochip_get_data(struct gpio_chip *chip);
struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc);
struct bgpio_pdata {
const char *label;
int base;
int ngpio;
};
#if IS_ENABLED(CONFIG_GPIO_GENERIC)
int bgpio_init(struct gpio_chip *gc, struct device *dev,
unsigned long sz, void __iomem *dat, void __iomem *set,
void __iomem *clr, void __iomem *dirout, void __iomem *dirin,
unsigned long flags);
#define BGPIOF_BIG_ENDIAN BIT(0)
#define BGPIOF_UNREADABLE_REG_SET BIT(1) /* reg_set is unreadable */
#define BGPIOF_UNREADABLE_REG_DIR BIT(2) /* reg_dir is unreadable */
#define BGPIOF_BIG_ENDIAN_BYTE_ORDER BIT(3)
#define BGPIOF_READ_OUTPUT_REG_SET BIT(4) /* reg_set stores output value */
#define BGPIOF_NO_OUTPUT BIT(5) /* only input */
#endif
#ifdef CONFIG_GPIOLIB_IRQCHIP
void gpiochip_set_chained_irqchip(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int parent_irq,
irq_flow_handler_t parent_handler);
void gpiochip_set_nested_irqchip(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int parent_irq);
int gpiochip_irqchip_add_key(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int first_irq,
irq_flow_handler_t handler,
unsigned int type,
bool nested,
struct lock_class_key *lock_key);
#ifdef CONFIG_LOCKDEP
/*
* Lockdep requires that each irqchip instance be created with a
* unique key so as to avoid unnecessary warnings. This upfront
* boilerplate static inlines provides such a key for each
* unique instance.
*/
static inline int gpiochip_irqchip_add(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int first_irq,
irq_flow_handler_t handler,
unsigned int type)
{
static struct lock_class_key key;
return gpiochip_irqchip_add_key(gpiochip, irqchip, first_irq,
handler, type, false, &key);
}
static inline int gpiochip_irqchip_add_nested(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int first_irq,
irq_flow_handler_t handler,
unsigned int type)
{
static struct lock_class_key key;
return gpiochip_irqchip_add_key(gpiochip, irqchip, first_irq,
handler, type, true, &key);
}
#else
static inline int gpiochip_irqchip_add(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int first_irq,
irq_flow_handler_t handler,
unsigned int type)
{
return gpiochip_irqchip_add_key(gpiochip, irqchip, first_irq,
handler, type, false, NULL);
}
static inline int gpiochip_irqchip_add_nested(struct gpio_chip *gpiochip,
struct irq_chip *irqchip,
unsigned int first_irq,
irq_flow_handler_t handler,
unsigned int type)
{
return gpiochip_irqchip_add_key(gpiochip, irqchip, first_irq,
handler, type, true, NULL);
}
#endif /* CONFIG_LOCKDEP */
#endif /* CONFIG_GPIOLIB_IRQCHIP */
int gpiochip_generic_request(struct gpio_chip *chip, unsigned offset);
void gpiochip_generic_free(struct gpio_chip *chip, unsigned offset);
int gpiochip_generic_config(struct gpio_chip *chip, unsigned offset,
unsigned long config);
#ifdef CONFIG_PINCTRL
/**
* struct gpio_pin_range - pin range controlled by a gpio chip
* @node: list for maintaining set of pin ranges, used internally
* @pctldev: pinctrl device which handles corresponding pins
* @range: actual range of pins controlled by a gpio controller
*/
struct gpio_pin_range {
struct list_head node;
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range range;
};
int gpiochip_add_pin_range(struct gpio_chip *chip, const char *pinctl_name,
unsigned int gpio_offset, unsigned int pin_offset,
unsigned int npins);
int gpiochip_add_pingroup_range(struct gpio_chip *chip,
struct pinctrl_dev *pctldev,
unsigned int gpio_offset, const char *pin_group);
void gpiochip_remove_pin_ranges(struct gpio_chip *chip);
#else
static inline int
gpiochip_add_pin_range(struct gpio_chip *chip, const char *pinctl_name,
unsigned int gpio_offset, unsigned int pin_offset,
unsigned int npins)
{
return 0;
}
static inline int
gpiochip_add_pingroup_range(struct gpio_chip *chip,
struct pinctrl_dev *pctldev,
unsigned int gpio_offset, const char *pin_group)
{
return 0;
}
static inline void
gpiochip_remove_pin_ranges(struct gpio_chip *chip)
{
}
#endif /* CONFIG_PINCTRL */
struct gpio_desc *gpiochip_request_own_desc(struct gpio_chip *chip, u16 hwnum,
const char *label);
void gpiochip_free_own_desc(struct gpio_desc *desc);
#else /* CONFIG_GPIOLIB */
static inline struct gpio_chip *gpiod_to_chip(const struct gpio_desc *desc)
{
/* GPIO can never have been requested */
WARN_ON(1);
return ERR_PTR(-ENODEV);
}
#endif /* CONFIG_GPIOLIB */
#endif