linux-stable/include/uapi/linux/perf_event.h
Arnaldo Carvalho de Melo 97c79a38cd perf core: Per event callchain limit
Additionally to being able to control the system wide maximum depth via
/proc/sys/kernel/perf_event_max_stack, now we are able to ask for
different depths per event, using perf_event_attr.sample_max_stack for
that.

This uses an u16 hole at the end of perf_event_attr, that, when
perf_event_attr.sample_type has the PERF_SAMPLE_CALLCHAIN, if
sample_max_stack is zero, means use perf_event_max_stack, otherwise
it'll be bounds checked under callchain_mutex.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2016-05-30 12:41:44 -03:00

983 lines
28 KiB
C

/*
* Performance events:
*
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
* Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
*
* Data type definitions, declarations, prototypes.
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#ifndef _UAPI_LINUX_PERF_EVENT_H
#define _UAPI_LINUX_PERF_EVENT_H
#include <linux/types.h>
#include <linux/ioctl.h>
#include <asm/byteorder.h>
/*
* User-space ABI bits:
*/
/*
* attr.type
*/
enum perf_type_id {
PERF_TYPE_HARDWARE = 0,
PERF_TYPE_SOFTWARE = 1,
PERF_TYPE_TRACEPOINT = 2,
PERF_TYPE_HW_CACHE = 3,
PERF_TYPE_RAW = 4,
PERF_TYPE_BREAKPOINT = 5,
PERF_TYPE_MAX, /* non-ABI */
};
/*
* Generalized performance event event_id types, used by the
* attr.event_id parameter of the sys_perf_event_open()
* syscall:
*/
enum perf_hw_id {
/*
* Common hardware events, generalized by the kernel:
*/
PERF_COUNT_HW_CPU_CYCLES = 0,
PERF_COUNT_HW_INSTRUCTIONS = 1,
PERF_COUNT_HW_CACHE_REFERENCES = 2,
PERF_COUNT_HW_CACHE_MISSES = 3,
PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
PERF_COUNT_HW_BRANCH_MISSES = 5,
PERF_COUNT_HW_BUS_CYCLES = 6,
PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
PERF_COUNT_HW_REF_CPU_CYCLES = 9,
PERF_COUNT_HW_MAX, /* non-ABI */
};
/*
* Generalized hardware cache events:
*
* { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
* { read, write, prefetch } x
* { accesses, misses }
*/
enum perf_hw_cache_id {
PERF_COUNT_HW_CACHE_L1D = 0,
PERF_COUNT_HW_CACHE_L1I = 1,
PERF_COUNT_HW_CACHE_LL = 2,
PERF_COUNT_HW_CACHE_DTLB = 3,
PERF_COUNT_HW_CACHE_ITLB = 4,
PERF_COUNT_HW_CACHE_BPU = 5,
PERF_COUNT_HW_CACHE_NODE = 6,
PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
};
enum perf_hw_cache_op_id {
PERF_COUNT_HW_CACHE_OP_READ = 0,
PERF_COUNT_HW_CACHE_OP_WRITE = 1,
PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
};
enum perf_hw_cache_op_result_id {
PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
};
/*
* Special "software" events provided by the kernel, even if the hardware
* does not support performance events. These events measure various
* physical and sw events of the kernel (and allow the profiling of them as
* well):
*/
enum perf_sw_ids {
PERF_COUNT_SW_CPU_CLOCK = 0,
PERF_COUNT_SW_TASK_CLOCK = 1,
PERF_COUNT_SW_PAGE_FAULTS = 2,
PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
PERF_COUNT_SW_CPU_MIGRATIONS = 4,
PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
PERF_COUNT_SW_EMULATION_FAULTS = 8,
PERF_COUNT_SW_DUMMY = 9,
PERF_COUNT_SW_BPF_OUTPUT = 10,
PERF_COUNT_SW_MAX, /* non-ABI */
};
/*
* Bits that can be set in attr.sample_type to request information
* in the overflow packets.
*/
enum perf_event_sample_format {
PERF_SAMPLE_IP = 1U << 0,
PERF_SAMPLE_TID = 1U << 1,
PERF_SAMPLE_TIME = 1U << 2,
PERF_SAMPLE_ADDR = 1U << 3,
PERF_SAMPLE_READ = 1U << 4,
PERF_SAMPLE_CALLCHAIN = 1U << 5,
PERF_SAMPLE_ID = 1U << 6,
PERF_SAMPLE_CPU = 1U << 7,
PERF_SAMPLE_PERIOD = 1U << 8,
PERF_SAMPLE_STREAM_ID = 1U << 9,
PERF_SAMPLE_RAW = 1U << 10,
PERF_SAMPLE_BRANCH_STACK = 1U << 11,
PERF_SAMPLE_REGS_USER = 1U << 12,
PERF_SAMPLE_STACK_USER = 1U << 13,
PERF_SAMPLE_WEIGHT = 1U << 14,
PERF_SAMPLE_DATA_SRC = 1U << 15,
PERF_SAMPLE_IDENTIFIER = 1U << 16,
PERF_SAMPLE_TRANSACTION = 1U << 17,
PERF_SAMPLE_REGS_INTR = 1U << 18,
PERF_SAMPLE_MAX = 1U << 19, /* non-ABI */
};
/*
* values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
*
* If the user does not pass priv level information via branch_sample_type,
* the kernel uses the event's priv level. Branch and event priv levels do
* not have to match. Branch priv level is checked for permissions.
*
* The branch types can be combined, however BRANCH_ANY covers all types
* of branches and therefore it supersedes all the other types.
*/
enum perf_branch_sample_type_shift {
PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
};
enum perf_branch_sample_type {
PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
};
#define PERF_SAMPLE_BRANCH_PLM_ALL \
(PERF_SAMPLE_BRANCH_USER|\
PERF_SAMPLE_BRANCH_KERNEL|\
PERF_SAMPLE_BRANCH_HV)
/*
* Values to determine ABI of the registers dump.
*/
enum perf_sample_regs_abi {
PERF_SAMPLE_REGS_ABI_NONE = 0,
PERF_SAMPLE_REGS_ABI_32 = 1,
PERF_SAMPLE_REGS_ABI_64 = 2,
};
/*
* Values for the memory transaction event qualifier, mostly for
* abort events. Multiple bits can be set.
*/
enum {
PERF_TXN_ELISION = (1 << 0), /* From elision */
PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
PERF_TXN_RETRY = (1 << 4), /* Retry possible */
PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
PERF_TXN_MAX = (1 << 8), /* non-ABI */
/* bits 32..63 are reserved for the abort code */
PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
PERF_TXN_ABORT_SHIFT = 32,
};
/*
* The format of the data returned by read() on a perf event fd,
* as specified by attr.read_format:
*
* struct read_format {
* { u64 value;
* { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
* { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
* { u64 id; } && PERF_FORMAT_ID
* } && !PERF_FORMAT_GROUP
*
* { u64 nr;
* { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
* { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
* { u64 value;
* { u64 id; } && PERF_FORMAT_ID
* } cntr[nr];
* } && PERF_FORMAT_GROUP
* };
*/
enum perf_event_read_format {
PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
PERF_FORMAT_ID = 1U << 2,
PERF_FORMAT_GROUP = 1U << 3,
PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
};
#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
/* add: sample_stack_user */
#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
/*
* Hardware event_id to monitor via a performance monitoring event:
*
* @sample_max_stack: Max number of frame pointers in a callchain,
* should be < /proc/sys/kernel/perf_event_max_stack
*/
struct perf_event_attr {
/*
* Major type: hardware/software/tracepoint/etc.
*/
__u32 type;
/*
* Size of the attr structure, for fwd/bwd compat.
*/
__u32 size;
/*
* Type specific configuration information.
*/
__u64 config;
union {
__u64 sample_period;
__u64 sample_freq;
};
__u64 sample_type;
__u64 read_format;
__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don't count user */
exclude_kernel : 1, /* ditto kernel */
exclude_hv : 1, /* ditto hypervisor */
exclude_idle : 1, /* don't count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
/*
* precise_ip:
*
* 0 - SAMPLE_IP can have arbitrary skid
* 1 - SAMPLE_IP must have constant skid
* 2 - SAMPLE_IP requested to have 0 skid
* 3 - SAMPLE_IP must have 0 skid
*
* See also PERF_RECORD_MISC_EXACT_IP
*/
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non-exec mmap data */
sample_id_all : 1, /* sample_type all events */
exclude_host : 1, /* don't count in host */
exclude_guest : 1, /* don't count in guest */
exclude_callchain_kernel : 1, /* exclude kernel callchains */
exclude_callchain_user : 1, /* exclude user callchains */
mmap2 : 1, /* include mmap with inode data */
comm_exec : 1, /* flag comm events that are due to an exec */
use_clockid : 1, /* use @clockid for time fields */
context_switch : 1, /* context switch data */
write_backward : 1, /* Write ring buffer from end to beginning */
__reserved_1 : 36;
union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */
};
__u32 bp_type;
union {
__u64 bp_addr;
__u64 config1; /* extension of config */
};
union {
__u64 bp_len;
__u64 config2; /* extension of config1 */
};
__u64 branch_sample_type; /* enum perf_branch_sample_type */
/*
* Defines set of user regs to dump on samples.
* See asm/perf_regs.h for details.
*/
__u64 sample_regs_user;
/*
* Defines size of the user stack to dump on samples.
*/
__u32 sample_stack_user;
__s32 clockid;
/*
* Defines set of regs to dump for each sample
* state captured on:
* - precise = 0: PMU interrupt
* - precise > 0: sampled instruction
*
* See asm/perf_regs.h for details.
*/
__u64 sample_regs_intr;
/*
* Wakeup watermark for AUX area
*/
__u32 aux_watermark;
__u16 sample_max_stack;
__u16 __reserved_2; /* align to __u64 */
};
#define perf_flags(attr) (*(&(attr)->read_format + 1))
/*
* Ioctls that can be done on a perf event fd:
*/
#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
#define PERF_EVENT_IOC_RESET _IO ('$', 3)
#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
enum perf_event_ioc_flags {
PERF_IOC_FLAG_GROUP = 1U << 0,
};
/*
* Structure of the page that can be mapped via mmap
*/
struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
/*
* Bits needed to read the hw events in user-space.
*
* u32 seq, time_mult, time_shift, index, width;
* u64 count, enabled, running;
* u64 cyc, time_offset;
* s64 pmc = 0;
*
* do {
* seq = pc->lock;
* barrier()
*
* enabled = pc->time_enabled;
* running = pc->time_running;
*
* if (pc->cap_usr_time && enabled != running) {
* cyc = rdtsc();
* time_offset = pc->time_offset;
* time_mult = pc->time_mult;
* time_shift = pc->time_shift;
* }
*
* index = pc->index;
* count = pc->offset;
* if (pc->cap_user_rdpmc && index) {
* width = pc->pmc_width;
* pmc = rdpmc(index - 1);
* }
*
* barrier();
* } while (pc->lock != seq);
*
* NOTE: for obvious reason this only works on self-monitoring
* processes.
*/
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware event identifier */
__s64 offset; /* add to hardware event value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on cpu */
union {
__u64 capabilities;
struct {
__u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
cap_user_time : 1, /* The time_* fields are used */
cap_user_time_zero : 1, /* The time_zero field is used */
cap_____res : 59;
};
};
/*
* If cap_user_rdpmc this field provides the bit-width of the value
* read using the rdpmc() or equivalent instruction. This can be used
* to sign extend the result like:
*
* pmc <<= 64 - width;
* pmc >>= 64 - width; // signed shift right
* count += pmc;
*/
__u16 pmc_width;
/*
* If cap_usr_time the below fields can be used to compute the time
* delta since time_enabled (in ns) using rdtsc or similar.
*
* u64 quot, rem;
* u64 delta;
*
* quot = (cyc >> time_shift);
* rem = cyc & (((u64)1 << time_shift) - 1);
* delta = time_offset + quot * time_mult +
* ((rem * time_mult) >> time_shift);
*
* Where time_offset,time_mult,time_shift and cyc are read in the
* seqcount loop described above. This delta can then be added to
* enabled and possible running (if index), improving the scaling:
*
* enabled += delta;
* if (index)
* running += delta;
*
* quot = count / running;
* rem = count % running;
* count = quot * enabled + (rem * enabled) / running;
*/
__u16 time_shift;
__u32 time_mult;
__u64 time_offset;
/*
* If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
* from sample timestamps.
*
* time = timestamp - time_zero;
* quot = time / time_mult;
* rem = time % time_mult;
* cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
*
* And vice versa:
*
* quot = cyc >> time_shift;
* rem = cyc & (((u64)1 << time_shift) - 1);
* timestamp = time_zero + quot * time_mult +
* ((rem * time_mult) >> time_shift);
*/
__u64 time_zero;
__u32 size; /* Header size up to __reserved[] fields. */
/*
* Hole for extension of the self monitor capabilities
*/
__u8 __reserved[118*8+4]; /* align to 1k. */
/*
* Control data for the mmap() data buffer.
*
* User-space reading the @data_head value should issue an smp_rmb(),
* after reading this value.
*
* When the mapping is PROT_WRITE the @data_tail value should be
* written by userspace to reflect the last read data, after issueing
* an smp_mb() to separate the data read from the ->data_tail store.
* In this case the kernel will not over-write unread data.
*
* See perf_output_put_handle() for the data ordering.
*
* data_{offset,size} indicate the location and size of the perf record
* buffer within the mmapped area.
*/
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
__u64 data_offset; /* where the buffer starts */
__u64 data_size; /* data buffer size */
/*
* AUX area is defined by aux_{offset,size} fields that should be set
* by the userspace, so that
*
* aux_offset >= data_offset + data_size
*
* prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
*
* Ring buffer pointers aux_{head,tail} have the same semantics as
* data_{head,tail} and same ordering rules apply.
*/
__u64 aux_head;
__u64 aux_tail;
__u64 aux_offset;
__u64 aux_size;
};
#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
#define PERF_RECORD_MISC_KERNEL (1 << 0)
#define PERF_RECORD_MISC_USER (2 << 0)
#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
/*
* Indicates that /proc/PID/maps parsing are truncated by time out.
*/
#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
/*
* PERF_RECORD_MISC_MMAP_DATA and PERF_RECORD_MISC_COMM_EXEC are used on
* different events so can reuse the same bit position.
* Ditto PERF_RECORD_MISC_SWITCH_OUT.
*/
#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
/*
* Indicates that the content of PERF_SAMPLE_IP points to
* the actual instruction that triggered the event. See also
* perf_event_attr::precise_ip.
*/
#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
/*
* Reserve the last bit to indicate some extended misc field
*/
#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;
};
enum perf_event_type {
/*
* If perf_event_attr.sample_id_all is set then all event types will
* have the sample_type selected fields related to where/when
* (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
* IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
* just after the perf_event_header and the fields already present for
* the existing fields, i.e. at the end of the payload. That way a newer
* perf.data file will be supported by older perf tools, with these new
* optional fields being ignored.
*
* struct sample_id {
* { u32 pid, tid; } && PERF_SAMPLE_TID
* { u64 time; } && PERF_SAMPLE_TIME
* { u64 id; } && PERF_SAMPLE_ID
* { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
* { u32 cpu, res; } && PERF_SAMPLE_CPU
* { u64 id; } && PERF_SAMPLE_IDENTIFIER
* } && perf_event_attr::sample_id_all
*
* Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
* advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
* relative to header.size.
*/
/*
* The MMAP events record the PROT_EXEC mappings so that we can
* correlate userspace IPs to code. They have the following structure:
*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* u64 addr;
* u64 len;
* u64 pgoff;
* char filename[];
* struct sample_id sample_id;
* };
*/
PERF_RECORD_MMAP = 1,
/*
* struct {
* struct perf_event_header header;
* u64 id;
* u64 lost;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_LOST = 2,
/*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* char comm[];
* struct sample_id sample_id;
* };
*/
PERF_RECORD_COMM = 3,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_EXIT = 4,
/*
* struct {
* struct perf_event_header header;
* u64 time;
* u64 id;
* u64 stream_id;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_THROTTLE = 5,
PERF_RECORD_UNTHROTTLE = 6,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_FORK = 7,
/*
* struct {
* struct perf_event_header header;
* u32 pid, tid;
*
* struct read_format values;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_READ = 8,
/*
* struct {
* struct perf_event_header header;
*
* #
* # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
* # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
* # is fixed relative to header.
* #
*
* { u64 id; } && PERF_SAMPLE_IDENTIFIER
* { u64 ip; } && PERF_SAMPLE_IP
* { u32 pid, tid; } && PERF_SAMPLE_TID
* { u64 time; } && PERF_SAMPLE_TIME
* { u64 addr; } && PERF_SAMPLE_ADDR
* { u64 id; } && PERF_SAMPLE_ID
* { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
* { u32 cpu, res; } && PERF_SAMPLE_CPU
* { u64 period; } && PERF_SAMPLE_PERIOD
*
* { struct read_format values; } && PERF_SAMPLE_READ
*
* { u64 nr,
* u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
*
* #
* # The RAW record below is opaque data wrt the ABI
* #
* # That is, the ABI doesn't make any promises wrt to
* # the stability of its content, it may vary depending
* # on event, hardware, kernel version and phase of
* # the moon.
* #
* # In other words, PERF_SAMPLE_RAW contents are not an ABI.
* #
*
* { u32 size;
* char data[size];}&& PERF_SAMPLE_RAW
*
* { u64 nr;
* { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
*
* { u64 abi; # enum perf_sample_regs_abi
* u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
*
* { u64 size;
* char data[size];
* u64 dyn_size; } && PERF_SAMPLE_STACK_USER
*
* { u64 weight; } && PERF_SAMPLE_WEIGHT
* { u64 data_src; } && PERF_SAMPLE_DATA_SRC
* { u64 transaction; } && PERF_SAMPLE_TRANSACTION
* { u64 abi; # enum perf_sample_regs_abi
* u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
* };
*/
PERF_RECORD_SAMPLE = 9,
/*
* The MMAP2 records are an augmented version of MMAP, they add
* maj, min, ino numbers to be used to uniquely identify each mapping
*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* u64 addr;
* u64 len;
* u64 pgoff;
* u32 maj;
* u32 min;
* u64 ino;
* u64 ino_generation;
* u32 prot, flags;
* char filename[];
* struct sample_id sample_id;
* };
*/
PERF_RECORD_MMAP2 = 10,
/*
* Records that new data landed in the AUX buffer part.
*
* struct {
* struct perf_event_header header;
*
* u64 aux_offset;
* u64 aux_size;
* u64 flags;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_AUX = 11,
/*
* Indicates that instruction trace has started
*
* struct {
* struct perf_event_header header;
* u32 pid;
* u32 tid;
* };
*/
PERF_RECORD_ITRACE_START = 12,
/*
* Records the dropped/lost sample number.
*
* struct {
* struct perf_event_header header;
*
* u64 lost;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_LOST_SAMPLES = 13,
/*
* Records a context switch in or out (flagged by
* PERF_RECORD_MISC_SWITCH_OUT). See also
* PERF_RECORD_SWITCH_CPU_WIDE.
*
* struct {
* struct perf_event_header header;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_SWITCH = 14,
/*
* CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
* next_prev_tid that are the next (switching out) or previous
* (switching in) pid/tid.
*
* struct {
* struct perf_event_header header;
* u32 next_prev_pid;
* u32 next_prev_tid;
* struct sample_id sample_id;
* };
*/
PERF_RECORD_SWITCH_CPU_WIDE = 15,
PERF_RECORD_MAX, /* non-ABI */
};
#define PERF_MAX_STACK_DEPTH 127
#define PERF_MAX_CONTEXTS_PER_STACK 8
enum perf_callchain_context {
PERF_CONTEXT_HV = (__u64)-32,
PERF_CONTEXT_KERNEL = (__u64)-128,
PERF_CONTEXT_USER = (__u64)-512,
PERF_CONTEXT_GUEST = (__u64)-2048,
PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
PERF_CONTEXT_GUEST_USER = (__u64)-2560,
PERF_CONTEXT_MAX = (__u64)-4095,
};
/**
* PERF_RECORD_AUX::flags bits
*/
#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
#define PERF_FLAG_FD_OUTPUT (1UL << 1)
#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
union perf_mem_data_src {
__u64 val;
struct {
__u64 mem_op:5, /* type of opcode */
mem_lvl:14, /* memory hierarchy level */
mem_snoop:5, /* snoop mode */
mem_lock:2, /* lock instr */
mem_dtlb:7, /* tlb access */
mem_rsvd:31;
};
};
/* type of opcode (load/store/prefetch,code) */
#define PERF_MEM_OP_NA 0x01 /* not available */
#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
#define PERF_MEM_OP_STORE 0x04 /* store instruction */
#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
#define PERF_MEM_OP_SHIFT 0
/* memory hierarchy (memory level, hit or miss) */
#define PERF_MEM_LVL_NA 0x01 /* not available */
#define PERF_MEM_LVL_HIT 0x02 /* hit level */
#define PERF_MEM_LVL_MISS 0x04 /* miss level */
#define PERF_MEM_LVL_L1 0x08 /* L1 */
#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
#define PERF_MEM_LVL_L2 0x20 /* L2 */
#define PERF_MEM_LVL_L3 0x40 /* L3 */
#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
#define PERF_MEM_LVL_SHIFT 5
/* snoop mode */
#define PERF_MEM_SNOOP_NA 0x01 /* not available */
#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
#define PERF_MEM_SNOOP_SHIFT 19
/* locked instruction */
#define PERF_MEM_LOCK_NA 0x01 /* not available */
#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
#define PERF_MEM_LOCK_SHIFT 24
/* TLB access */
#define PERF_MEM_TLB_NA 0x01 /* not available */
#define PERF_MEM_TLB_HIT 0x02 /* hit level */
#define PERF_MEM_TLB_MISS 0x04 /* miss level */
#define PERF_MEM_TLB_L1 0x08 /* L1 */
#define PERF_MEM_TLB_L2 0x10 /* L2 */
#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
#define PERF_MEM_TLB_SHIFT 26
#define PERF_MEM_S(a, s) \
(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
/*
* single taken branch record layout:
*
* from: source instruction (may not always be a branch insn)
* to: branch target
* mispred: branch target was mispredicted
* predicted: branch target was predicted
*
* support for mispred, predicted is optional. In case it
* is not supported mispred = predicted = 0.
*
* in_tx: running in a hardware transaction
* abort: aborting a hardware transaction
* cycles: cycles from last branch (or 0 if not supported)
*/
struct perf_branch_entry {
__u64 from;
__u64 to;
__u64 mispred:1, /* target mispredicted */
predicted:1,/* target predicted */
in_tx:1, /* in transaction */
abort:1, /* transaction abort */
cycles:16, /* cycle count to last branch */
reserved:44;
};
#endif /* _UAPI_LINUX_PERF_EVENT_H */