mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
0c4d5ba1b9
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the IA32_QM_CTR MSR while the first-generation MBM implementation uses statically defined 24 bit counters. The MBM CPUID enumeration properties have been expanded to include the MBM counter width, encoded as an offset from 24 bits. While eight bits are available for the counter width offset IA32_QM_CTR MSR only supports 62 bit counters. Add a sanity check, with warning printed when encountered, to ensure counters cannot exceed the 62 bit limit. Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/69d52abd5b14794d3a0f05ba7c755ed1f4c0d5ed.1588715690.git.reinette.chatre@intel.com
656 lines
16 KiB
C
656 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Resource Director Technology(RDT)
|
|
* - Monitoring code
|
|
*
|
|
* Copyright (C) 2017 Intel Corporation
|
|
*
|
|
* Author:
|
|
* Vikas Shivappa <vikas.shivappa@intel.com>
|
|
*
|
|
* This replaces the cqm.c based on perf but we reuse a lot of
|
|
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
|
|
*
|
|
* More information about RDT be found in the Intel (R) x86 Architecture
|
|
* Software Developer Manual June 2016, volume 3, section 17.17.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include "internal.h"
|
|
|
|
struct rmid_entry {
|
|
u32 rmid;
|
|
int busy;
|
|
struct list_head list;
|
|
};
|
|
|
|
/**
|
|
* @rmid_free_lru A least recently used list of free RMIDs
|
|
* These RMIDs are guaranteed to have an occupancy less than the
|
|
* threshold occupancy
|
|
*/
|
|
static LIST_HEAD(rmid_free_lru);
|
|
|
|
/**
|
|
* @rmid_limbo_count count of currently unused but (potentially)
|
|
* dirty RMIDs.
|
|
* This counts RMIDs that no one is currently using but that
|
|
* may have a occupancy value > intel_cqm_threshold. User can change
|
|
* the threshold occupancy value.
|
|
*/
|
|
static unsigned int rmid_limbo_count;
|
|
|
|
/**
|
|
* @rmid_entry - The entry in the limbo and free lists.
|
|
*/
|
|
static struct rmid_entry *rmid_ptrs;
|
|
|
|
/*
|
|
* Global boolean for rdt_monitor which is true if any
|
|
* resource monitoring is enabled.
|
|
*/
|
|
bool rdt_mon_capable;
|
|
|
|
/*
|
|
* Global to indicate which monitoring events are enabled.
|
|
*/
|
|
unsigned int rdt_mon_features;
|
|
|
|
/*
|
|
* This is the threshold cache occupancy at which we will consider an
|
|
* RMID available for re-allocation.
|
|
*/
|
|
unsigned int resctrl_cqm_threshold;
|
|
|
|
static inline struct rmid_entry *__rmid_entry(u32 rmid)
|
|
{
|
|
struct rmid_entry *entry;
|
|
|
|
entry = &rmid_ptrs[rmid];
|
|
WARN_ON(entry->rmid != rmid);
|
|
|
|
return entry;
|
|
}
|
|
|
|
static u64 __rmid_read(u32 rmid, u32 eventid)
|
|
{
|
|
u64 val;
|
|
|
|
/*
|
|
* As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
|
|
* with a valid event code for supported resource type and the bits
|
|
* IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
|
|
* IA32_QM_CTR.data (bits 61:0) reports the monitored data.
|
|
* IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
|
|
* are error bits.
|
|
*/
|
|
wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
|
|
rdmsrl(MSR_IA32_QM_CTR, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static bool rmid_dirty(struct rmid_entry *entry)
|
|
{
|
|
u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
|
|
|
|
return val >= resctrl_cqm_threshold;
|
|
}
|
|
|
|
/*
|
|
* Check the RMIDs that are marked as busy for this domain. If the
|
|
* reported LLC occupancy is below the threshold clear the busy bit and
|
|
* decrement the count. If the busy count gets to zero on an RMID, we
|
|
* free the RMID
|
|
*/
|
|
void __check_limbo(struct rdt_domain *d, bool force_free)
|
|
{
|
|
struct rmid_entry *entry;
|
|
struct rdt_resource *r;
|
|
u32 crmid = 1, nrmid;
|
|
|
|
r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
|
|
/*
|
|
* Skip RMID 0 and start from RMID 1 and check all the RMIDs that
|
|
* are marked as busy for occupancy < threshold. If the occupancy
|
|
* is less than the threshold decrement the busy counter of the
|
|
* RMID and move it to the free list when the counter reaches 0.
|
|
*/
|
|
for (;;) {
|
|
nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
|
|
if (nrmid >= r->num_rmid)
|
|
break;
|
|
|
|
entry = __rmid_entry(nrmid);
|
|
if (force_free || !rmid_dirty(entry)) {
|
|
clear_bit(entry->rmid, d->rmid_busy_llc);
|
|
if (!--entry->busy) {
|
|
rmid_limbo_count--;
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
}
|
|
crmid = nrmid + 1;
|
|
}
|
|
}
|
|
|
|
bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
|
|
{
|
|
return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
|
|
}
|
|
|
|
/*
|
|
* As of now the RMIDs allocation is global.
|
|
* However we keep track of which packages the RMIDs
|
|
* are used to optimize the limbo list management.
|
|
*/
|
|
int alloc_rmid(void)
|
|
{
|
|
struct rmid_entry *entry;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
if (list_empty(&rmid_free_lru))
|
|
return rmid_limbo_count ? -EBUSY : -ENOSPC;
|
|
|
|
entry = list_first_entry(&rmid_free_lru,
|
|
struct rmid_entry, list);
|
|
list_del(&entry->list);
|
|
|
|
return entry->rmid;
|
|
}
|
|
|
|
static void add_rmid_to_limbo(struct rmid_entry *entry)
|
|
{
|
|
struct rdt_resource *r;
|
|
struct rdt_domain *d;
|
|
int cpu;
|
|
u64 val;
|
|
|
|
r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
|
|
entry->busy = 0;
|
|
cpu = get_cpu();
|
|
list_for_each_entry(d, &r->domains, list) {
|
|
if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
|
|
val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
|
|
if (val <= resctrl_cqm_threshold)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* For the first limbo RMID in the domain,
|
|
* setup up the limbo worker.
|
|
*/
|
|
if (!has_busy_rmid(r, d))
|
|
cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
|
|
set_bit(entry->rmid, d->rmid_busy_llc);
|
|
entry->busy++;
|
|
}
|
|
put_cpu();
|
|
|
|
if (entry->busy)
|
|
rmid_limbo_count++;
|
|
else
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
|
|
void free_rmid(u32 rmid)
|
|
{
|
|
struct rmid_entry *entry;
|
|
|
|
if (!rmid)
|
|
return;
|
|
|
|
lockdep_assert_held(&rdtgroup_mutex);
|
|
|
|
entry = __rmid_entry(rmid);
|
|
|
|
if (is_llc_occupancy_enabled())
|
|
add_rmid_to_limbo(entry);
|
|
else
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
|
|
static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
|
|
{
|
|
u64 shift = 64 - width, chunks;
|
|
|
|
chunks = (cur_msr << shift) - (prev_msr << shift);
|
|
return chunks >>= shift;
|
|
}
|
|
|
|
static int __mon_event_count(u32 rmid, struct rmid_read *rr)
|
|
{
|
|
struct mbm_state *m;
|
|
u64 chunks, tval;
|
|
|
|
tval = __rmid_read(rmid, rr->evtid);
|
|
if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
|
|
rr->val = tval;
|
|
return -EINVAL;
|
|
}
|
|
switch (rr->evtid) {
|
|
case QOS_L3_OCCUP_EVENT_ID:
|
|
rr->val += tval;
|
|
return 0;
|
|
case QOS_L3_MBM_TOTAL_EVENT_ID:
|
|
m = &rr->d->mbm_total[rmid];
|
|
break;
|
|
case QOS_L3_MBM_LOCAL_EVENT_ID:
|
|
m = &rr->d->mbm_local[rmid];
|
|
break;
|
|
default:
|
|
/*
|
|
* Code would never reach here because
|
|
* an invalid event id would fail the __rmid_read.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rr->first) {
|
|
memset(m, 0, sizeof(struct mbm_state));
|
|
m->prev_bw_msr = m->prev_msr = tval;
|
|
return 0;
|
|
}
|
|
|
|
chunks = mbm_overflow_count(m->prev_msr, tval, rr->r->mbm_width);
|
|
m->chunks += chunks;
|
|
m->prev_msr = tval;
|
|
|
|
rr->val += m->chunks;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Supporting function to calculate the memory bandwidth
|
|
* and delta bandwidth in MBps.
|
|
*/
|
|
static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
|
|
{
|
|
struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
struct mbm_state *m = &rr->d->mbm_local[rmid];
|
|
u64 tval, cur_bw, chunks;
|
|
|
|
tval = __rmid_read(rmid, rr->evtid);
|
|
if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
|
|
return;
|
|
|
|
chunks = mbm_overflow_count(m->prev_bw_msr, tval, rr->r->mbm_width);
|
|
m->chunks_bw += chunks;
|
|
m->chunks = m->chunks_bw;
|
|
cur_bw = (chunks * r->mon_scale) >> 20;
|
|
|
|
if (m->delta_comp)
|
|
m->delta_bw = abs(cur_bw - m->prev_bw);
|
|
m->delta_comp = false;
|
|
m->prev_bw = cur_bw;
|
|
m->prev_bw_msr = tval;
|
|
}
|
|
|
|
/*
|
|
* This is called via IPI to read the CQM/MBM counters
|
|
* on a domain.
|
|
*/
|
|
void mon_event_count(void *info)
|
|
{
|
|
struct rdtgroup *rdtgrp, *entry;
|
|
struct rmid_read *rr = info;
|
|
struct list_head *head;
|
|
|
|
rdtgrp = rr->rgrp;
|
|
|
|
if (__mon_event_count(rdtgrp->mon.rmid, rr))
|
|
return;
|
|
|
|
/*
|
|
* For Ctrl groups read data from child monitor groups.
|
|
*/
|
|
head = &rdtgrp->mon.crdtgrp_list;
|
|
|
|
if (rdtgrp->type == RDTCTRL_GROUP) {
|
|
list_for_each_entry(entry, head, mon.crdtgrp_list) {
|
|
if (__mon_event_count(entry->mon.rmid, rr))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Feedback loop for MBA software controller (mba_sc)
|
|
*
|
|
* mba_sc is a feedback loop where we periodically read MBM counters and
|
|
* adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
|
|
* that:
|
|
*
|
|
* current bandwdith(cur_bw) < user specified bandwidth(user_bw)
|
|
*
|
|
* This uses the MBM counters to measure the bandwidth and MBA throttle
|
|
* MSRs to control the bandwidth for a particular rdtgrp. It builds on the
|
|
* fact that resctrl rdtgroups have both monitoring and control.
|
|
*
|
|
* The frequency of the checks is 1s and we just tag along the MBM overflow
|
|
* timer. Having 1s interval makes the calculation of bandwidth simpler.
|
|
*
|
|
* Although MBA's goal is to restrict the bandwidth to a maximum, there may
|
|
* be a need to increase the bandwidth to avoid uncecessarily restricting
|
|
* the L2 <-> L3 traffic.
|
|
*
|
|
* Since MBA controls the L2 external bandwidth where as MBM measures the
|
|
* L3 external bandwidth the following sequence could lead to such a
|
|
* situation.
|
|
*
|
|
* Consider an rdtgroup which had high L3 <-> memory traffic in initial
|
|
* phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
|
|
* after some time rdtgroup has mostly L2 <-> L3 traffic.
|
|
*
|
|
* In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
|
|
* throttle MSRs already have low percentage values. To avoid
|
|
* unnecessarily restricting such rdtgroups, we also increase the bandwidth.
|
|
*/
|
|
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
|
|
{
|
|
u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
|
|
struct mbm_state *pmbm_data, *cmbm_data;
|
|
u32 cur_bw, delta_bw, user_bw;
|
|
struct rdt_resource *r_mba;
|
|
struct rdt_domain *dom_mba;
|
|
struct list_head *head;
|
|
struct rdtgroup *entry;
|
|
|
|
if (!is_mbm_local_enabled())
|
|
return;
|
|
|
|
r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
|
|
closid = rgrp->closid;
|
|
rmid = rgrp->mon.rmid;
|
|
pmbm_data = &dom_mbm->mbm_local[rmid];
|
|
|
|
dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
|
|
if (!dom_mba) {
|
|
pr_warn_once("Failure to get domain for MBA update\n");
|
|
return;
|
|
}
|
|
|
|
cur_bw = pmbm_data->prev_bw;
|
|
user_bw = dom_mba->mbps_val[closid];
|
|
delta_bw = pmbm_data->delta_bw;
|
|
cur_msr_val = dom_mba->ctrl_val[closid];
|
|
|
|
/*
|
|
* For Ctrl groups read data from child monitor groups.
|
|
*/
|
|
head = &rgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(entry, head, mon.crdtgrp_list) {
|
|
cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
|
|
cur_bw += cmbm_data->prev_bw;
|
|
delta_bw += cmbm_data->delta_bw;
|
|
}
|
|
|
|
/*
|
|
* Scale up/down the bandwidth linearly for the ctrl group. The
|
|
* bandwidth step is the bandwidth granularity specified by the
|
|
* hardware.
|
|
*
|
|
* The delta_bw is used when increasing the bandwidth so that we
|
|
* dont alternately increase and decrease the control values
|
|
* continuously.
|
|
*
|
|
* For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
|
|
* bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
|
|
* switching between 90 and 110 continuously if we only check
|
|
* cur_bw < user_bw.
|
|
*/
|
|
if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
|
|
new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
|
|
} else if (cur_msr_val < MAX_MBA_BW &&
|
|
(user_bw > (cur_bw + delta_bw))) {
|
|
new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
cur_msr = r_mba->msr_base + closid;
|
|
wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
|
|
dom_mba->ctrl_val[closid] = new_msr_val;
|
|
|
|
/*
|
|
* Delta values are updated dynamically package wise for each
|
|
* rdtgrp everytime the throttle MSR changes value.
|
|
*
|
|
* This is because (1)the increase in bandwidth is not perfectly
|
|
* linear and only "approximately" linear even when the hardware
|
|
* says it is linear.(2)Also since MBA is a core specific
|
|
* mechanism, the delta values vary based on number of cores used
|
|
* by the rdtgrp.
|
|
*/
|
|
pmbm_data->delta_comp = true;
|
|
list_for_each_entry(entry, head, mon.crdtgrp_list) {
|
|
cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
|
|
cmbm_data->delta_comp = true;
|
|
}
|
|
}
|
|
|
|
static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
|
|
{
|
|
struct rmid_read rr;
|
|
|
|
rr.first = false;
|
|
rr.r = r;
|
|
rr.d = d;
|
|
|
|
/*
|
|
* This is protected from concurrent reads from user
|
|
* as both the user and we hold the global mutex.
|
|
*/
|
|
if (is_mbm_total_enabled()) {
|
|
rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
|
|
__mon_event_count(rmid, &rr);
|
|
}
|
|
if (is_mbm_local_enabled()) {
|
|
rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
|
|
|
|
/*
|
|
* Call the MBA software controller only for the
|
|
* control groups and when user has enabled
|
|
* the software controller explicitly.
|
|
*/
|
|
if (!is_mba_sc(NULL))
|
|
__mon_event_count(rmid, &rr);
|
|
else
|
|
mbm_bw_count(rmid, &rr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handler to scan the limbo list and move the RMIDs
|
|
* to free list whose occupancy < threshold_occupancy.
|
|
*/
|
|
void cqm_handle_limbo(struct work_struct *work)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
|
|
int cpu = smp_processor_id();
|
|
struct rdt_resource *r;
|
|
struct rdt_domain *d;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
d = get_domain_from_cpu(cpu, r);
|
|
|
|
if (!d) {
|
|
pr_warn_once("Failure to get domain for limbo worker\n");
|
|
goto out_unlock;
|
|
}
|
|
|
|
__check_limbo(d, false);
|
|
|
|
if (has_busy_rmid(r, d))
|
|
schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
}
|
|
|
|
void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(delay_ms);
|
|
int cpu;
|
|
|
|
cpu = cpumask_any(&dom->cpu_mask);
|
|
dom->cqm_work_cpu = cpu;
|
|
|
|
schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
|
|
}
|
|
|
|
void mbm_handle_overflow(struct work_struct *work)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
|
|
struct rdtgroup *prgrp, *crgrp;
|
|
int cpu = smp_processor_id();
|
|
struct list_head *head;
|
|
struct rdt_resource *r;
|
|
struct rdt_domain *d;
|
|
|
|
mutex_lock(&rdtgroup_mutex);
|
|
|
|
if (!static_branch_likely(&rdt_mon_enable_key))
|
|
goto out_unlock;
|
|
|
|
r = &rdt_resources_all[RDT_RESOURCE_L3];
|
|
|
|
d = get_domain_from_cpu(cpu, r);
|
|
if (!d)
|
|
goto out_unlock;
|
|
|
|
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
|
|
mbm_update(r, d, prgrp->mon.rmid);
|
|
|
|
head = &prgrp->mon.crdtgrp_list;
|
|
list_for_each_entry(crgrp, head, mon.crdtgrp_list)
|
|
mbm_update(r, d, crgrp->mon.rmid);
|
|
|
|
if (is_mba_sc(NULL))
|
|
update_mba_bw(prgrp, d);
|
|
}
|
|
|
|
schedule_delayed_work_on(cpu, &d->mbm_over, delay);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&rdtgroup_mutex);
|
|
}
|
|
|
|
void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
|
|
{
|
|
unsigned long delay = msecs_to_jiffies(delay_ms);
|
|
int cpu;
|
|
|
|
if (!static_branch_likely(&rdt_mon_enable_key))
|
|
return;
|
|
cpu = cpumask_any(&dom->cpu_mask);
|
|
dom->mbm_work_cpu = cpu;
|
|
schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
|
|
}
|
|
|
|
static int dom_data_init(struct rdt_resource *r)
|
|
{
|
|
struct rmid_entry *entry = NULL;
|
|
int i, nr_rmids;
|
|
|
|
nr_rmids = r->num_rmid;
|
|
rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
|
|
if (!rmid_ptrs)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < nr_rmids; i++) {
|
|
entry = &rmid_ptrs[i];
|
|
INIT_LIST_HEAD(&entry->list);
|
|
|
|
entry->rmid = i;
|
|
list_add_tail(&entry->list, &rmid_free_lru);
|
|
}
|
|
|
|
/*
|
|
* RMID 0 is special and is always allocated. It's used for all
|
|
* tasks that are not monitored.
|
|
*/
|
|
entry = __rmid_entry(0);
|
|
list_del(&entry->list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mon_evt llc_occupancy_event = {
|
|
.name = "llc_occupancy",
|
|
.evtid = QOS_L3_OCCUP_EVENT_ID,
|
|
};
|
|
|
|
static struct mon_evt mbm_total_event = {
|
|
.name = "mbm_total_bytes",
|
|
.evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
|
|
};
|
|
|
|
static struct mon_evt mbm_local_event = {
|
|
.name = "mbm_local_bytes",
|
|
.evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
|
|
};
|
|
|
|
/*
|
|
* Initialize the event list for the resource.
|
|
*
|
|
* Note that MBM events are also part of RDT_RESOURCE_L3 resource
|
|
* because as per the SDM the total and local memory bandwidth
|
|
* are enumerated as part of L3 monitoring.
|
|
*/
|
|
static void l3_mon_evt_init(struct rdt_resource *r)
|
|
{
|
|
INIT_LIST_HEAD(&r->evt_list);
|
|
|
|
if (is_llc_occupancy_enabled())
|
|
list_add_tail(&llc_occupancy_event.list, &r->evt_list);
|
|
if (is_mbm_total_enabled())
|
|
list_add_tail(&mbm_total_event.list, &r->evt_list);
|
|
if (is_mbm_local_enabled())
|
|
list_add_tail(&mbm_local_event.list, &r->evt_list);
|
|
}
|
|
|
|
int rdt_get_mon_l3_config(struct rdt_resource *r)
|
|
{
|
|
unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
|
|
unsigned int cl_size = boot_cpu_data.x86_cache_size;
|
|
int ret;
|
|
|
|
r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
|
|
r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
|
|
r->mbm_width = MBM_CNTR_WIDTH_BASE;
|
|
|
|
if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
|
|
r->mbm_width += mbm_offset;
|
|
else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
|
|
pr_warn("Ignoring impossible MBM counter offset\n");
|
|
|
|
/*
|
|
* A reasonable upper limit on the max threshold is the number
|
|
* of lines tagged per RMID if all RMIDs have the same number of
|
|
* lines tagged in the LLC.
|
|
*
|
|
* For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
|
|
*/
|
|
resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
|
|
|
|
/* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
|
|
resctrl_cqm_threshold /= r->mon_scale;
|
|
|
|
ret = dom_data_init(r);
|
|
if (ret)
|
|
return ret;
|
|
|
|
l3_mon_evt_init(r);
|
|
|
|
r->mon_capable = true;
|
|
r->mon_enabled = true;
|
|
|
|
return 0;
|
|
}
|