mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
52cfd503ad
* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (59 commits) ACPI / PM: Fix build problems for !CONFIG_ACPI related to NVS rework ACPI: fix resource check message ACPI / Battery: Update information on info notification and resume ACPI: Drop device flag wake_capable ACPI: Always check if _PRW is present before trying to evaluate it ACPI / PM: Check status of power resources under mutexes ACPI / PM: Rename acpi_power_off_device() ACPI / PM: Drop acpi_power_nocheck ACPI / PM: Drop acpi_bus_get_power() Platform / x86: Make fujitsu_laptop use acpi_bus_update_power() ACPI / Fan: Rework the handling of power resources ACPI / PM: Register power resource devices as soon as they are needed ACPI / PM: Register acpi_power_driver early ACPI / PM: Add function for updating device power state consistently ACPI / PM: Add function for device power state initialization ACPI / PM: Introduce __acpi_bus_get_power() ACPI / PM: Introduce function for refcounting device power resources ACPI / PM: Add functions for manipulating lists of power resources ACPI / PM: Prevent acpi_power_get_inferred_state() from making changes ACPICA: Update version to 20101209 ...
326 lines
12 KiB
C
326 lines
12 KiB
C
#ifndef _LINUX_SUSPEND_H
|
|
#define _LINUX_SUSPEND_H
|
|
|
|
#include <linux/swap.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/errno.h>
|
|
|
|
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_VT) && defined(CONFIG_VT_CONSOLE)
|
|
extern void pm_set_vt_switch(int);
|
|
extern int pm_prepare_console(void);
|
|
extern void pm_restore_console(void);
|
|
#else
|
|
static inline void pm_set_vt_switch(int do_switch)
|
|
{
|
|
}
|
|
|
|
static inline int pm_prepare_console(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void pm_restore_console(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
typedef int __bitwise suspend_state_t;
|
|
|
|
#define PM_SUSPEND_ON ((__force suspend_state_t) 0)
|
|
#define PM_SUSPEND_STANDBY ((__force suspend_state_t) 1)
|
|
#define PM_SUSPEND_MEM ((__force suspend_state_t) 3)
|
|
#define PM_SUSPEND_MAX ((__force suspend_state_t) 4)
|
|
|
|
/**
|
|
* struct platform_suspend_ops - Callbacks for managing platform dependent
|
|
* system sleep states.
|
|
*
|
|
* @valid: Callback to determine if given system sleep state is supported by
|
|
* the platform.
|
|
* Valid (ie. supported) states are advertised in /sys/power/state. Note
|
|
* that it still may be impossible to enter given system sleep state if the
|
|
* conditions aren't right.
|
|
* There is the %suspend_valid_only_mem function available that can be
|
|
* assigned to this if the platform only supports mem sleep.
|
|
*
|
|
* @begin: Initialise a transition to given system sleep state.
|
|
* @begin() is executed right prior to suspending devices. The information
|
|
* conveyed to the platform code by @begin() should be disregarded by it as
|
|
* soon as @end() is executed. If @begin() fails (ie. returns nonzero),
|
|
* @prepare(), @enter() and @finish() will not be called by the PM core.
|
|
* This callback is optional. However, if it is implemented, the argument
|
|
* passed to @enter() is redundant and should be ignored.
|
|
*
|
|
* @prepare: Prepare the platform for entering the system sleep state indicated
|
|
* by @begin().
|
|
* @prepare() is called right after devices have been suspended (ie. the
|
|
* appropriate .suspend() method has been executed for each device) and
|
|
* before device drivers' late suspend callbacks are executed. It returns
|
|
* 0 on success or a negative error code otherwise, in which case the
|
|
* system cannot enter the desired sleep state (@prepare_late(), @enter(),
|
|
* and @wake() will not be called in that case).
|
|
*
|
|
* @prepare_late: Finish preparing the platform for entering the system sleep
|
|
* state indicated by @begin().
|
|
* @prepare_late is called before disabling nonboot CPUs and after
|
|
* device drivers' late suspend callbacks have been executed. It returns
|
|
* 0 on success or a negative error code otherwise, in which case the
|
|
* system cannot enter the desired sleep state (@enter() will not be
|
|
* executed).
|
|
*
|
|
* @enter: Enter the system sleep state indicated by @begin() or represented by
|
|
* the argument if @begin() is not implemented.
|
|
* This callback is mandatory. It returns 0 on success or a negative
|
|
* error code otherwise, in which case the system cannot enter the desired
|
|
* sleep state.
|
|
*
|
|
* @wake: Called when the system has just left a sleep state, right after
|
|
* the nonboot CPUs have been enabled and before device drivers' early
|
|
* resume callbacks are executed.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @prepare_late(). If implemented, it is always called
|
|
* after @prepare_late and @enter(), even if one of them fails.
|
|
*
|
|
* @finish: Finish wake-up of the platform.
|
|
* @finish is called right prior to calling device drivers' regular suspend
|
|
* callbacks.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @prepare(). If implemented, it is always called after
|
|
* @enter() and @wake(), even if any of them fails. It is executed after
|
|
* a failing @prepare.
|
|
*
|
|
* @end: Called by the PM core right after resuming devices, to indicate to
|
|
* the platform that the system has returned to the working state or
|
|
* the transition to the sleep state has been aborted.
|
|
* This callback is optional, but should be implemented by the platforms
|
|
* that implement @begin(). Accordingly, platforms implementing @begin()
|
|
* should also provide a @end() which cleans up transitions aborted before
|
|
* @enter().
|
|
*
|
|
* @recover: Recover the platform from a suspend failure.
|
|
* Called by the PM core if the suspending of devices fails.
|
|
* This callback is optional and should only be implemented by platforms
|
|
* which require special recovery actions in that situation.
|
|
*/
|
|
struct platform_suspend_ops {
|
|
int (*valid)(suspend_state_t state);
|
|
int (*begin)(suspend_state_t state);
|
|
int (*prepare)(void);
|
|
int (*prepare_late)(void);
|
|
int (*enter)(suspend_state_t state);
|
|
void (*wake)(void);
|
|
void (*finish)(void);
|
|
void (*end)(void);
|
|
void (*recover)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_SUSPEND
|
|
/**
|
|
* suspend_set_ops - set platform dependent suspend operations
|
|
* @ops: The new suspend operations to set.
|
|
*/
|
|
extern void suspend_set_ops(const struct platform_suspend_ops *ops);
|
|
extern int suspend_valid_only_mem(suspend_state_t state);
|
|
|
|
/**
|
|
* arch_suspend_disable_irqs - disable IRQs for suspend
|
|
*
|
|
* Disables IRQs (in the default case). This is a weak symbol in the common
|
|
* code and thus allows architectures to override it if more needs to be
|
|
* done. Not called for suspend to disk.
|
|
*/
|
|
extern void arch_suspend_disable_irqs(void);
|
|
|
|
/**
|
|
* arch_suspend_enable_irqs - enable IRQs after suspend
|
|
*
|
|
* Enables IRQs (in the default case). This is a weak symbol in the common
|
|
* code and thus allows architectures to override it if more needs to be
|
|
* done. Not called for suspend to disk.
|
|
*/
|
|
extern void arch_suspend_enable_irqs(void);
|
|
|
|
extern int pm_suspend(suspend_state_t state);
|
|
#else /* !CONFIG_SUSPEND */
|
|
#define suspend_valid_only_mem NULL
|
|
|
|
static inline void suspend_set_ops(const struct platform_suspend_ops *ops) {}
|
|
static inline int pm_suspend(suspend_state_t state) { return -ENOSYS; }
|
|
#endif /* !CONFIG_SUSPEND */
|
|
|
|
/* struct pbe is used for creating lists of pages that should be restored
|
|
* atomically during the resume from disk, because the page frames they have
|
|
* occupied before the suspend are in use.
|
|
*/
|
|
struct pbe {
|
|
void *address; /* address of the copy */
|
|
void *orig_address; /* original address of a page */
|
|
struct pbe *next;
|
|
};
|
|
|
|
/* mm/page_alloc.c */
|
|
extern void mark_free_pages(struct zone *zone);
|
|
|
|
/**
|
|
* struct platform_hibernation_ops - hibernation platform support
|
|
*
|
|
* The methods in this structure allow a platform to carry out special
|
|
* operations required by it during a hibernation transition.
|
|
*
|
|
* All the methods below, except for @recover(), must be implemented.
|
|
*
|
|
* @begin: Tell the platform driver that we're starting hibernation.
|
|
* Called right after shrinking memory and before freezing devices.
|
|
*
|
|
* @end: Called by the PM core right after resuming devices, to indicate to
|
|
* the platform that the system has returned to the working state.
|
|
*
|
|
* @pre_snapshot: Prepare the platform for creating the hibernation image.
|
|
* Called right after devices have been frozen and before the nonboot
|
|
* CPUs are disabled (runs with IRQs on).
|
|
*
|
|
* @finish: Restore the previous state of the platform after the hibernation
|
|
* image has been created *or* put the platform into the normal operation
|
|
* mode after the hibernation (the same method is executed in both cases).
|
|
* Called right after the nonboot CPUs have been enabled and before
|
|
* thawing devices (runs with IRQs on).
|
|
*
|
|
* @prepare: Prepare the platform for entering the low power state.
|
|
* Called right after the hibernation image has been saved and before
|
|
* devices are prepared for entering the low power state.
|
|
*
|
|
* @enter: Put the system into the low power state after the hibernation image
|
|
* has been saved to disk.
|
|
* Called after the nonboot CPUs have been disabled and all of the low
|
|
* level devices have been shut down (runs with IRQs off).
|
|
*
|
|
* @leave: Perform the first stage of the cleanup after the system sleep state
|
|
* indicated by @set_target() has been left.
|
|
* Called right after the control has been passed from the boot kernel to
|
|
* the image kernel, before the nonboot CPUs are enabled and before devices
|
|
* are resumed. Executed with interrupts disabled.
|
|
*
|
|
* @pre_restore: Prepare system for the restoration from a hibernation image.
|
|
* Called right after devices have been frozen and before the nonboot
|
|
* CPUs are disabled (runs with IRQs on).
|
|
*
|
|
* @restore_cleanup: Clean up after a failing image restoration.
|
|
* Called right after the nonboot CPUs have been enabled and before
|
|
* thawing devices (runs with IRQs on).
|
|
*
|
|
* @recover: Recover the platform from a failure to suspend devices.
|
|
* Called by the PM core if the suspending of devices during hibernation
|
|
* fails. This callback is optional and should only be implemented by
|
|
* platforms which require special recovery actions in that situation.
|
|
*/
|
|
struct platform_hibernation_ops {
|
|
int (*begin)(void);
|
|
void (*end)(void);
|
|
int (*pre_snapshot)(void);
|
|
void (*finish)(void);
|
|
int (*prepare)(void);
|
|
int (*enter)(void);
|
|
void (*leave)(void);
|
|
int (*pre_restore)(void);
|
|
void (*restore_cleanup)(void);
|
|
void (*recover)(void);
|
|
};
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
/* kernel/power/snapshot.c */
|
|
extern void __register_nosave_region(unsigned long b, unsigned long e, int km);
|
|
static inline void __init register_nosave_region(unsigned long b, unsigned long e)
|
|
{
|
|
__register_nosave_region(b, e, 0);
|
|
}
|
|
static inline void __init register_nosave_region_late(unsigned long b, unsigned long e)
|
|
{
|
|
__register_nosave_region(b, e, 1);
|
|
}
|
|
extern int swsusp_page_is_forbidden(struct page *);
|
|
extern void swsusp_set_page_free(struct page *);
|
|
extern void swsusp_unset_page_free(struct page *);
|
|
extern unsigned long get_safe_page(gfp_t gfp_mask);
|
|
|
|
extern void hibernation_set_ops(const struct platform_hibernation_ops *ops);
|
|
extern int hibernate(void);
|
|
extern bool system_entering_hibernation(void);
|
|
#else /* CONFIG_HIBERNATION */
|
|
static inline int swsusp_page_is_forbidden(struct page *p) { return 0; }
|
|
static inline void swsusp_set_page_free(struct page *p) {}
|
|
static inline void swsusp_unset_page_free(struct page *p) {}
|
|
|
|
static inline void hibernation_set_ops(const struct platform_hibernation_ops *ops) {}
|
|
static inline int hibernate(void) { return -ENOSYS; }
|
|
static inline bool system_entering_hibernation(void) { return false; }
|
|
#endif /* CONFIG_HIBERNATION */
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
void save_processor_state(void);
|
|
void restore_processor_state(void);
|
|
|
|
/* kernel/power/main.c */
|
|
extern int register_pm_notifier(struct notifier_block *nb);
|
|
extern int unregister_pm_notifier(struct notifier_block *nb);
|
|
|
|
#define pm_notifier(fn, pri) { \
|
|
static struct notifier_block fn##_nb = \
|
|
{ .notifier_call = fn, .priority = pri }; \
|
|
register_pm_notifier(&fn##_nb); \
|
|
}
|
|
|
|
/* drivers/base/power/wakeup.c */
|
|
extern bool events_check_enabled;
|
|
|
|
extern bool pm_wakeup_pending(void);
|
|
extern bool pm_get_wakeup_count(unsigned int *count);
|
|
extern bool pm_save_wakeup_count(unsigned int count);
|
|
#else /* !CONFIG_PM_SLEEP */
|
|
|
|
static inline int register_pm_notifier(struct notifier_block *nb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int unregister_pm_notifier(struct notifier_block *nb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define pm_notifier(fn, pri) do { (void)(fn); } while (0)
|
|
|
|
static inline bool pm_wakeup_pending(void) { return false; }
|
|
#endif /* !CONFIG_PM_SLEEP */
|
|
|
|
extern struct mutex pm_mutex;
|
|
|
|
#ifndef CONFIG_HIBERNATION
|
|
static inline void register_nosave_region(unsigned long b, unsigned long e)
|
|
{
|
|
}
|
|
static inline void register_nosave_region_late(unsigned long b, unsigned long e)
|
|
{
|
|
}
|
|
|
|
static inline void lock_system_sleep(void) {}
|
|
static inline void unlock_system_sleep(void) {}
|
|
|
|
#else
|
|
|
|
/* Let some subsystems like memory hotadd exclude hibernation */
|
|
|
|
static inline void lock_system_sleep(void)
|
|
{
|
|
mutex_lock(&pm_mutex);
|
|
}
|
|
|
|
static inline void unlock_system_sleep(void)
|
|
{
|
|
mutex_unlock(&pm_mutex);
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_SUSPEND_H */
|