linux-stable/drivers/gpu/drm/radeon/kv_dpm.c
tom will a8efd58815 drm/radeon: fix array out of bounds
When the initial value of i is greater than zero,
it may cause endless loop, resulting in array out
of bounds, fix it.

Signed-off-by: tom will <os@iscas.ac.cn>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2016-05-16 10:25:13 -04:00

2898 lines
79 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "radeon.h"
#include "cikd.h"
#include "r600_dpm.h"
#include "kv_dpm.h"
#include "radeon_asic.h"
#include <linux/seq_file.h>
#define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
#define KV_MINIMUM_ENGINE_CLOCK 800
#define SMC_RAM_END 0x40000
static int kv_enable_nb_dpm(struct radeon_device *rdev,
bool enable);
static void kv_init_graphics_levels(struct radeon_device *rdev);
static int kv_calculate_ds_divider(struct radeon_device *rdev);
static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
static int kv_calculate_dpm_settings(struct radeon_device *rdev);
static void kv_enable_new_levels(struct radeon_device *rdev);
static void kv_program_nbps_index_settings(struct radeon_device *rdev,
struct radeon_ps *new_rps);
static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
static int kv_set_enabled_levels(struct radeon_device *rdev);
static int kv_force_dpm_highest(struct radeon_device *rdev);
static int kv_force_dpm_lowest(struct radeon_device *rdev);
static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps);
static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp);
static int kv_init_fps_limits(struct radeon_device *rdev);
void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_update_cg(struct radeon_device *rdev,
u32 block, bool enable);
static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 1, 4, 1 },
{ 2, 5, 1 },
{ 3, 4, 2 },
{ 4, 1, 1 },
{ 5, 5, 2 },
{ 6, 6, 1 },
{ 7, 9, 2 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
{
{ 0, 4, 1 },
{ 1, 4, 1 },
{ 2, 5, 1 },
{ 3, 4, 1 },
{ 4, 1, 1 },
{ 5, 5, 1 },
{ 6, 6, 1 },
{ 7, 9, 1 },
{ 8, 4, 1 },
{ 9, 2, 1 },
{ 10, 3, 1 },
{ 11, 6, 1 },
{ 12, 8, 2 },
{ 13, 1, 1 },
{ 14, 2, 1 },
{ 15, 3, 1 },
{ 16, 1, 1 },
{ 17, 4, 1 },
{ 18, 3, 1 },
{ 19, 1, 1 },
{ 20, 8, 1 },
{ 21, 5, 1 },
{ 22, 1, 1 },
{ 23, 1, 1 },
{ 24, 4, 1 },
{ 27, 6, 1 },
{ 28, 1, 1 },
{ 0xffffffff }
};
static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
{
{ 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
{
{ 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
{
{ 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
{
{ 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
{
{ 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
{
{ 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
};
static const struct kv_pt_config_reg didt_config_kv[] =
{
{ 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
{ 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
{ 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
{ 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
{ 0xFFFFFFFF }
};
static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
{
struct kv_ps *ps = rps->ps_priv;
return ps;
}
static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
{
struct kv_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
#if 0
static void kv_program_local_cac_table(struct radeon_device *rdev,
const struct kv_lcac_config_values *local_cac_table,
const struct kv_lcac_config_reg *local_cac_reg)
{
u32 i, count, data;
const struct kv_lcac_config_values *values = local_cac_table;
while (values->block_id != 0xffffffff) {
count = values->signal_id;
for (i = 0; i < count; i++) {
data = ((values->block_id << local_cac_reg->block_shift) &
local_cac_reg->block_mask);
data |= ((i << local_cac_reg->signal_shift) &
local_cac_reg->signal_mask);
data |= ((values->t << local_cac_reg->t_shift) &
local_cac_reg->t_mask);
data |= ((1 << local_cac_reg->enable_shift) &
local_cac_reg->enable_mask);
WREG32_SMC(local_cac_reg->cntl, data);
}
values++;
}
}
#endif
static int kv_program_pt_config_registers(struct radeon_device *rdev,
const struct kv_pt_config_reg *cac_config_regs)
{
const struct kv_pt_config_reg *config_regs = cac_config_regs;
u32 data;
u32 cache = 0;
if (config_regs == NULL)
return -EINVAL;
while (config_regs->offset != 0xFFFFFFFF) {
if (config_regs->type == KV_CONFIGREG_CACHE) {
cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
} else {
switch (config_regs->type) {
case KV_CONFIGREG_SMC_IND:
data = RREG32_SMC(config_regs->offset);
break;
case KV_CONFIGREG_DIDT_IND:
data = RREG32_DIDT(config_regs->offset);
break;
default:
data = RREG32(config_regs->offset << 2);
break;
}
data &= ~config_regs->mask;
data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
data |= cache;
cache = 0;
switch (config_regs->type) {
case KV_CONFIGREG_SMC_IND:
WREG32_SMC(config_regs->offset, data);
break;
case KV_CONFIGREG_DIDT_IND:
WREG32_DIDT(config_regs->offset, data);
break;
default:
WREG32(config_regs->offset << 2, data);
break;
}
}
config_regs++;
}
return 0;
}
static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 data;
if (pi->caps_sq_ramping) {
data = RREG32_DIDT(DIDT_SQ_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_SQ_CTRL0, data);
}
if (pi->caps_db_ramping) {
data = RREG32_DIDT(DIDT_DB_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_DB_CTRL0, data);
}
if (pi->caps_td_ramping) {
data = RREG32_DIDT(DIDT_TD_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TD_CTRL0, data);
}
if (pi->caps_tcp_ramping) {
data = RREG32_DIDT(DIDT_TCP_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TCP_CTRL0, data);
}
}
static int kv_enable_didt(struct radeon_device *rdev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
if (pi->caps_sq_ramping ||
pi->caps_db_ramping ||
pi->caps_td_ramping ||
pi->caps_tcp_ramping) {
cik_enter_rlc_safe_mode(rdev);
if (enable) {
ret = kv_program_pt_config_registers(rdev, didt_config_kv);
if (ret) {
cik_exit_rlc_safe_mode(rdev);
return ret;
}
}
kv_do_enable_didt(rdev, enable);
cik_exit_rlc_safe_mode(rdev);
}
return 0;
}
#if 0
static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->caps_cac) {
WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
}
}
#endif
static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret = 0;
if (pi->caps_cac) {
if (enable) {
ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
if (ret)
pi->cac_enabled = false;
else
pi->cac_enabled = true;
} else if (pi->cac_enabled) {
kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
pi->cac_enabled = false;
}
}
return ret;
}
static int kv_process_firmware_header(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 tmp;
int ret;
ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, DpmTable),
&tmp, pi->sram_end);
if (ret == 0)
pi->dpm_table_start = tmp;
ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, SoftRegisters),
&tmp, pi->sram_end);
if (ret == 0)
pi->soft_regs_start = tmp;
return ret;
}
static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
pi->graphics_voltage_change_enable = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
&pi->graphics_voltage_change_enable,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_set_dpm_interval(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
pi->graphics_interval = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
&pi->graphics_interval,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_set_dpm_boot_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
&pi->graphics_boot_level,
sizeof(u8), pi->sram_end);
return ret;
}
static void kv_program_vc(struct radeon_device *rdev)
{
WREG32_SMC(CG_FTV_0, 0x3FFFC100);
}
static void kv_clear_vc(struct radeon_device *rdev)
{
WREG32_SMC(CG_FTV_0, 0);
}
static int kv_set_divider_value(struct radeon_device *rdev,
u32 index, u32 sclk)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct atom_clock_dividers dividers;
int ret;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
sclk, false, &dividers);
if (ret)
return ret;
pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
return 0;
}
static u32 kv_convert_vid2_to_vid7(struct radeon_device *rdev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_2bit)
{
struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 i;
if (vddc_sclk_table && vddc_sclk_table->count) {
if (vid_2bit < vddc_sclk_table->count)
return vddc_sclk_table->entries[vid_2bit].v;
else
return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
} else {
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
return vid_mapping_table->entries[i].vid_7bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
}
}
static u32 kv_convert_vid7_to_vid2(struct radeon_device *rdev,
struct sumo_vid_mapping_table *vid_mapping_table,
u32 vid_7bit)
{
struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 i;
if (vddc_sclk_table && vddc_sclk_table->count) {
for (i = 0; i < vddc_sclk_table->count; i++) {
if (vddc_sclk_table->entries[i].v == vid_7bit)
return i;
}
return vddc_sclk_table->count - 1;
} else {
for (i = 0; i < vid_mapping_table->num_entries; i++) {
if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
return vid_mapping_table->entries[i].vid_2bit;
}
return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
}
}
static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
u16 voltage)
{
return 6200 - (voltage * 25);
}
static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
u32 vid_2bit)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 vid_8bit = kv_convert_vid2_to_vid7(rdev,
&pi->sys_info.vid_mapping_table,
vid_2bit);
return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
}
static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
pi->graphics_level[index].MinVddNb =
cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
return 0;
}
static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->graphics_level[index].AT = cpu_to_be16((u16)at);
return 0;
}
static void kv_dpm_power_level_enable(struct radeon_device *rdev,
u32 index, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
}
static void kv_start_dpm(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= GLOBAL_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
kv_smc_dpm_enable(rdev, true);
}
static void kv_stop_dpm(struct radeon_device *rdev)
{
kv_smc_dpm_enable(rdev, false);
}
static void kv_start_am(struct radeon_device *rdev)
{
u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}
static void kv_reset_am(struct radeon_device *rdev)
{
u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
}
static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
{
return kv_notify_message_to_smu(rdev, freeze ?
PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
}
static int kv_force_lowest_valid(struct radeon_device *rdev)
{
return kv_force_dpm_lowest(rdev);
}
static int kv_unforce_levels(struct radeon_device *rdev)
{
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
else
return kv_set_enabled_levels(rdev);
}
static int kv_update_sclk_t(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 low_sclk_interrupt_t = 0;
int ret = 0;
if (pi->caps_sclk_throttle_low_notification) {
low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
(u8 *)&low_sclk_interrupt_t,
sizeof(u32), pi->sram_end);
}
return ret;
}
static int kv_program_bootup_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].clk == pi->boot_pl.sclk)
break;
}
pi->graphics_boot_level = (u8)i;
kv_dpm_power_level_enable(rdev, i, true);
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
if (table->num_max_dpm_entries == 0)
return -EINVAL;
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
break;
}
pi->graphics_boot_level = (u8)i;
kv_dpm_power_level_enable(rdev, i, true);
}
return 0;
}
static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
pi->graphics_therm_throttle_enable = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
&pi->graphics_therm_throttle_enable,
sizeof(u8), pi->sram_end);
return ret;
}
static int kv_upload_dpm_settings(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
(u8 *)&pi->graphics_level,
sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
pi->sram_end);
if (ret)
return ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
&pi->graphics_dpm_level_count,
sizeof(u8), pi->sram_end);
return ret;
}
static u32 kv_get_clock_difference(u32 a, u32 b)
{
return (a >= b) ? a - b : b - a;
}
static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 value;
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(clk, 40000) < 200)
value = 3;
else if (kv_get_clock_difference(clk, 30000) < 200)
value = 2;
else if (kv_get_clock_difference(clk, 20000) < 200)
value = 7;
else if (kv_get_clock_difference(clk, 15000) < 200)
value = 6;
else if (kv_get_clock_difference(clk, 10000) < 200)
value = 8;
else
value = 0;
} else {
value = 0;
}
return value;
}
static int kv_populate_uvd_table(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_uvd_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->uvd_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t < table->entries[i].v))
break;
pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
pi->uvd_level[i].VClkBypassCntl =
(u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
pi->uvd_level[i].DClkBypassCntl =
(u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].vclk, false, &dividers);
if (ret)
return ret;
pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].dclk, false, &dividers);
if (ret)
return ret;
pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
pi->uvd_level_count++;
}
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
(u8 *)&pi->uvd_level_count,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
pi->uvd_interval = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UVDInterval),
&pi->uvd_interval,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdLevel),
(u8 *)&pi->uvd_level,
sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
pi->sram_end);
return ret;
}
static int kv_populate_vce_table(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
u32 i;
struct radeon_vce_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
if (table == NULL || table->count == 0)
return 0;
pi->vce_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t < table->entries[i].v)
break;
pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
pi->vce_level[i].ClkBypassCntl =
(u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].evclk, false, &dividers);
if (ret)
return ret;
pi->vce_level[i].Divider = (u8)dividers.post_div;
pi->vce_level_count++;
}
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
(u8 *)&pi->vce_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->vce_interval = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VCEInterval),
(u8 *)&pi->vce_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceLevel),
(u8 *)&pi->vce_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
pi->sram_end);
return ret;
}
static int kv_populate_samu_table(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->samu_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t < table->entries[i].v)
break;
pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
pi->samu_level[i].ClkBypassCntl =
(u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].clk, false, &dividers);
if (ret)
return ret;
pi->samu_level[i].Divider = (u8)dividers.post_div;
pi->samu_level_count++;
}
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
(u8 *)&pi->samu_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->samu_interval = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
(u8 *)&pi->samu_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuLevel),
(u8 *)&pi->samu_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
pi->sram_end);
if (ret)
return ret;
return ret;
}
static int kv_populate_acp_table(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
struct atom_clock_dividers dividers;
int ret;
u32 i;
if (table == NULL || table->count == 0)
return 0;
pi->acp_level_count = 0;
for (i = 0; i < table->count; i++) {
pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
table->entries[i].clk, false, &dividers);
if (ret)
return ret;
pi->acp_level[i].Divider = (u8)dividers.post_div;
pi->acp_level_count++;
}
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
(u8 *)&pi->acp_level_count,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
pi->acp_interval = 1;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, ACPInterval),
(u8 *)&pi->acp_interval,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpLevel),
(u8 *)&pi->acp_level,
sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
pi->sram_end);
if (ret)
return ret;
return ret;
}
static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
pi->graphics_level[i].ClkBypassCntl = 3;
else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
pi->graphics_level[i].ClkBypassCntl = 2;
else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
pi->graphics_level[i].ClkBypassCntl = 7;
else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
pi->graphics_level[i].ClkBypassCntl = 6;
else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
pi->graphics_level[i].ClkBypassCntl = 8;
else
pi->graphics_level[i].ClkBypassCntl = 0;
} else {
pi->graphics_level[i].ClkBypassCntl = 0;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if (pi->caps_enable_dfs_bypass) {
if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
pi->graphics_level[i].ClkBypassCntl = 3;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
pi->graphics_level[i].ClkBypassCntl = 2;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
pi->graphics_level[i].ClkBypassCntl = 7;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
pi->graphics_level[i].ClkBypassCntl = 6;
else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
pi->graphics_level[i].ClkBypassCntl = 8;
else
pi->graphics_level[i].ClkBypassCntl = 0;
} else {
pi->graphics_level[i].ClkBypassCntl = 0;
}
}
}
}
static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
{
return kv_notify_message_to_smu(rdev, enable ?
PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
}
static void kv_reset_acp_boot_level(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->acp_boot_level = 0xff;
}
static void kv_update_current_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct kv_ps *new_ps = kv_get_ps(rps);
struct kv_power_info *pi = kv_get_pi(rdev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
static void kv_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct kv_ps *new_ps = kv_get_ps(rps);
struct kv_power_info *pi = kv_get_pi(rdev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
if (pi->bapm_enable) {
ret = kv_smc_bapm_enable(rdev, enable);
if (ret)
DRM_ERROR("kv_smc_bapm_enable failed\n");
}
}
static void kv_enable_thermal_int(struct radeon_device *rdev, bool enable)
{
u32 thermal_int;
thermal_int = RREG32_SMC(CG_THERMAL_INT_CTRL);
if (enable)
thermal_int |= THERM_INTH_MASK | THERM_INTL_MASK;
else
thermal_int &= ~(THERM_INTH_MASK | THERM_INTL_MASK);
WREG32_SMC(CG_THERMAL_INT_CTRL, thermal_int);
}
int kv_dpm_enable(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret;
ret = kv_process_firmware_header(rdev);
if (ret) {
DRM_ERROR("kv_process_firmware_header failed\n");
return ret;
}
kv_init_fps_limits(rdev);
kv_init_graphics_levels(rdev);
ret = kv_program_bootup_state(rdev);
if (ret) {
DRM_ERROR("kv_program_bootup_state failed\n");
return ret;
}
kv_calculate_dfs_bypass_settings(rdev);
ret = kv_upload_dpm_settings(rdev);
if (ret) {
DRM_ERROR("kv_upload_dpm_settings failed\n");
return ret;
}
ret = kv_populate_uvd_table(rdev);
if (ret) {
DRM_ERROR("kv_populate_uvd_table failed\n");
return ret;
}
ret = kv_populate_vce_table(rdev);
if (ret) {
DRM_ERROR("kv_populate_vce_table failed\n");
return ret;
}
ret = kv_populate_samu_table(rdev);
if (ret) {
DRM_ERROR("kv_populate_samu_table failed\n");
return ret;
}
ret = kv_populate_acp_table(rdev);
if (ret) {
DRM_ERROR("kv_populate_acp_table failed\n");
return ret;
}
kv_program_vc(rdev);
#if 0
kv_initialize_hardware_cac_manager(rdev);
#endif
kv_start_am(rdev);
if (pi->enable_auto_thermal_throttling) {
ret = kv_enable_auto_thermal_throttling(rdev);
if (ret) {
DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
return ret;
}
}
ret = kv_enable_dpm_voltage_scaling(rdev);
if (ret) {
DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
return ret;
}
ret = kv_set_dpm_interval(rdev);
if (ret) {
DRM_ERROR("kv_set_dpm_interval failed\n");
return ret;
}
ret = kv_set_dpm_boot_state(rdev);
if (ret) {
DRM_ERROR("kv_set_dpm_boot_state failed\n");
return ret;
}
ret = kv_enable_ulv(rdev, true);
if (ret) {
DRM_ERROR("kv_enable_ulv failed\n");
return ret;
}
kv_start_dpm(rdev);
ret = kv_enable_didt(rdev, true);
if (ret) {
DRM_ERROR("kv_enable_didt failed\n");
return ret;
}
ret = kv_enable_smc_cac(rdev, true);
if (ret) {
DRM_ERROR("kv_enable_smc_cac failed\n");
return ret;
}
kv_reset_acp_boot_level(rdev);
ret = kv_smc_bapm_enable(rdev, false);
if (ret) {
DRM_ERROR("kv_smc_bapm_enable failed\n");
return ret;
}
kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
return ret;
}
int kv_dpm_late_enable(struct radeon_device *rdev)
{
int ret = 0;
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret) {
DRM_ERROR("kv_set_thermal_temperature_range failed\n");
return ret;
}
kv_enable_thermal_int(rdev, true);
}
/* powerdown unused blocks for now */
kv_dpm_powergate_acp(rdev, true);
kv_dpm_powergate_samu(rdev, true);
kv_dpm_powergate_vce(rdev, true);
kv_dpm_powergate_uvd(rdev, true);
return ret;
}
void kv_dpm_disable(struct radeon_device *rdev)
{
kv_smc_bapm_enable(rdev, false);
if (rdev->family == CHIP_MULLINS)
kv_enable_nb_dpm(rdev, false);
/* powerup blocks */
kv_dpm_powergate_acp(rdev, false);
kv_dpm_powergate_samu(rdev, false);
kv_dpm_powergate_vce(rdev, false);
kv_dpm_powergate_uvd(rdev, false);
kv_enable_smc_cac(rdev, false);
kv_enable_didt(rdev, false);
kv_clear_vc(rdev);
kv_stop_dpm(rdev);
kv_enable_ulv(rdev, false);
kv_reset_am(rdev);
kv_enable_thermal_int(rdev, false);
kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
}
#if 0
static int kv_write_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 value)
{
struct kv_power_info *pi = kv_get_pi(rdev);
return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
(u8 *)&value, sizeof(u16), pi->sram_end);
}
static int kv_read_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 *value)
{
struct kv_power_info *pi = kv_get_pi(rdev);
return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
#endif
static void kv_init_sclk_t(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->low_sclk_interrupt_t = 0;
}
static int kv_init_fps_limits(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret = 0;
if (pi->caps_fps) {
u16 tmp;
tmp = 45;
pi->fps_high_t = cpu_to_be16(tmp);
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, FpsHighT),
(u8 *)&pi->fps_high_t,
sizeof(u16), pi->sram_end);
tmp = 30;
pi->fps_low_t = cpu_to_be16(tmp);
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, FpsLowT),
(u8 *)&pi->fps_low_t,
sizeof(u16), pi->sram_end);
}
return ret;
}
static void kv_init_powergate_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->uvd_power_gated = false;
pi->vce_power_gated = false;
pi->samu_power_gated = false;
pi->acp_power_gated = false;
}
static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
{
return kv_notify_message_to_smu(rdev, enable ?
PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
}
static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
{
return kv_notify_message_to_smu(rdev, enable ?
PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
}
static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
{
return kv_notify_message_to_smu(rdev, enable ?
PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
}
static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
{
return kv_notify_message_to_smu(rdev, enable ?
PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
}
static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_uvd_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
int ret;
u32 mask;
if (!gate) {
if (table->count)
pi->uvd_boot_level = table->count - 1;
else
pi->uvd_boot_level = 0;
if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
mask = 1 << pi->uvd_boot_level;
} else {
mask = 0x1f;
}
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
(uint8_t *)&pi->uvd_boot_level,
sizeof(u8), pi->sram_end);
if (ret)
return ret;
kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_UVDDPM_SetEnabledMask,
mask);
}
return kv_enable_uvd_dpm(rdev, !gate);
}
static u8 kv_get_vce_boot_level(struct radeon_device *rdev, u32 evclk)
{
u8 i;
struct radeon_vce_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].evclk >= evclk)
break;
}
return i;
}
static int kv_update_vce_dpm(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_vce_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
int ret;
if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
kv_dpm_powergate_vce(rdev, false);
/* turn the clocks on when encoding */
cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, false);
if (pi->caps_stable_p_state)
pi->vce_boot_level = table->count - 1;
else
pi->vce_boot_level = kv_get_vce_boot_level(rdev, radeon_new_state->evclk);
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
(u8 *)&pi->vce_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(1 << pi->vce_boot_level));
kv_enable_vce_dpm(rdev, true);
} else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
kv_enable_vce_dpm(rdev, false);
/* turn the clocks off when not encoding */
cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, true);
kv_dpm_powergate_vce(rdev, true);
}
return 0;
}
static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
int ret;
if (!gate) {
if (pi->caps_stable_p_state)
pi->samu_boot_level = table->count - 1;
else
pi->samu_boot_level = 0;
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
(u8 *)&pi->samu_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(1 << pi->samu_boot_level));
}
return kv_enable_samu_dpm(rdev, !gate);
}
static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
{
u8 i;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].clk >= 0) /* XXX */
break;
}
if (i >= table->count)
i = table->count - 1;
return i;
}
static void kv_update_acp_boot_level(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u8 acp_boot_level;
if (!pi->caps_stable_p_state) {
acp_boot_level = kv_get_acp_boot_level(rdev);
if (acp_boot_level != pi->acp_boot_level) {
pi->acp_boot_level = acp_boot_level;
kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
(1 << pi->acp_boot_level));
}
}
}
static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
int ret;
if (!gate) {
if (pi->caps_stable_p_state)
pi->acp_boot_level = table->count - 1;
else
pi->acp_boot_level = kv_get_acp_boot_level(rdev);
ret = kv_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
(u8 *)&pi->acp_boot_level,
sizeof(u8),
pi->sram_end);
if (ret)
return ret;
if (pi->caps_stable_p_state)
kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
(1 << pi->acp_boot_level));
}
return kv_enable_acp_dpm(rdev, !gate);
}
void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
if (gate) {
if (pi->caps_uvd_pg) {
uvd_v1_0_stop(rdev);
cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
}
kv_update_uvd_dpm(rdev, gate);
if (pi->caps_uvd_pg)
kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
} else {
if (pi->caps_uvd_pg) {
kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
uvd_v4_2_resume(rdev);
uvd_v1_0_start(rdev);
cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
}
kv_update_uvd_dpm(rdev, gate);
}
}
static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->vce_power_gated == gate)
return;
pi->vce_power_gated = gate;
if (gate) {
if (pi->caps_vce_pg) {
/* XXX do we need a vce_v1_0_stop() ? */
kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
}
} else {
if (pi->caps_vce_pg) {
kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
vce_v2_0_resume(rdev);
vce_v1_0_start(rdev);
}
}
}
static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->samu_power_gated == gate)
return;
pi->samu_power_gated = gate;
if (gate) {
kv_update_samu_dpm(rdev, true);
if (pi->caps_samu_pg)
kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
} else {
if (pi->caps_samu_pg)
kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
kv_update_samu_dpm(rdev, false);
}
}
static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->acp_power_gated == gate)
return;
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
return;
pi->acp_power_gated = gate;
if (gate) {
kv_update_acp_dpm(rdev, true);
if (pi->caps_acp_pg)
kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
} else {
if (pi->caps_acp_pg)
kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
kv_update_acp_dpm(rdev, false);
}
}
static void kv_set_valid_clock_range(struct radeon_device *rdev,
struct radeon_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
for (i = 0; i < pi->graphics_dpm_level_count; i++) {
if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
(i == (pi->graphics_dpm_level_count - 1))) {
pi->lowest_valid = i;
break;
}
}
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
break;
}
pi->highest_valid = i;
if (pi->lowest_valid > pi->highest_valid) {
if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
(table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
pi->highest_valid = pi->lowest_valid;
else
pi->lowest_valid = pi->highest_valid;
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
i == (int)(pi->graphics_dpm_level_count - 1)) {
pi->lowest_valid = i;
break;
}
}
for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
if (table->entries[i].sclk_frequency <=
new_ps->levels[new_ps->num_levels - 1].sclk)
break;
}
pi->highest_valid = i;
if (pi->lowest_valid > pi->highest_valid) {
if ((new_ps->levels[0].sclk -
table->entries[pi->highest_valid].sclk_frequency) >
(table->entries[pi->lowest_valid].sclk_frequency -
new_ps->levels[new_ps->num_levels -1].sclk))
pi->highest_valid = pi->lowest_valid;
else
pi->lowest_valid = pi->highest_valid;
}
}
}
static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
struct radeon_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(rdev);
int ret = 0;
u8 clk_bypass_cntl;
if (pi->caps_enable_dfs_bypass) {
clk_bypass_cntl = new_ps->need_dfs_bypass ?
pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
ret = kv_copy_bytes_to_smc(rdev,
(pi->dpm_table_start +
offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
(pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
&clk_bypass_cntl,
sizeof(u8), pi->sram_end);
}
return ret;
}
static int kv_enable_nb_dpm(struct radeon_device *rdev,
bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
int ret = 0;
if (enable) {
if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
if (ret == 0)
pi->nb_dpm_enabled = true;
}
} else {
if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Disable);
if (ret == 0)
pi->nb_dpm_enabled = false;
}
}
return ret;
}
int kv_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
int ret;
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
ret = kv_force_dpm_highest(rdev);
if (ret)
return ret;
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
ret = kv_force_dpm_lowest(rdev);
if (ret)
return ret;
} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
ret = kv_unforce_levels(rdev);
if (ret)
return ret;
}
rdev->pm.dpm.forced_level = level;
return 0;
}
int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
struct radeon_ps *new_ps = &requested_ps;
kv_update_requested_ps(rdev, new_ps);
kv_apply_state_adjust_rules(rdev,
&pi->requested_rps,
&pi->current_rps);
return 0;
}
int kv_dpm_set_power_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
struct radeon_ps *old_ps = &pi->current_rps;
int ret;
if (pi->bapm_enable) {
ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power);
if (ret) {
DRM_ERROR("kv_smc_bapm_enable failed\n");
return ret;
}
}
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
if (pi->enable_dpm) {
kv_set_valid_clock_range(rdev, new_ps);
kv_update_dfs_bypass_settings(rdev, new_ps);
ret = kv_calculate_ds_divider(rdev);
if (ret) {
DRM_ERROR("kv_calculate_ds_divider failed\n");
return ret;
}
kv_calculate_nbps_level_settings(rdev);
kv_calculate_dpm_settings(rdev);
kv_force_lowest_valid(rdev);
kv_enable_new_levels(rdev);
kv_upload_dpm_settings(rdev);
kv_program_nbps_index_settings(rdev, new_ps);
kv_unforce_levels(rdev);
kv_set_enabled_levels(rdev);
kv_force_lowest_valid(rdev);
kv_unforce_levels(rdev);
ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
if (ret) {
DRM_ERROR("kv_update_vce_dpm failed\n");
return ret;
}
kv_update_sclk_t(rdev);
if (rdev->family == CHIP_MULLINS)
kv_enable_nb_dpm(rdev, true);
}
} else {
if (pi->enable_dpm) {
kv_set_valid_clock_range(rdev, new_ps);
kv_update_dfs_bypass_settings(rdev, new_ps);
ret = kv_calculate_ds_divider(rdev);
if (ret) {
DRM_ERROR("kv_calculate_ds_divider failed\n");
return ret;
}
kv_calculate_nbps_level_settings(rdev);
kv_calculate_dpm_settings(rdev);
kv_freeze_sclk_dpm(rdev, true);
kv_upload_dpm_settings(rdev);
kv_program_nbps_index_settings(rdev, new_ps);
kv_freeze_sclk_dpm(rdev, false);
kv_set_enabled_levels(rdev);
ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
if (ret) {
DRM_ERROR("kv_update_vce_dpm failed\n");
return ret;
}
kv_update_acp_boot_level(rdev);
kv_update_sclk_t(rdev);
kv_enable_nb_dpm(rdev, true);
}
}
return 0;
}
void kv_dpm_post_set_power_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
kv_update_current_ps(rdev, new_ps);
}
void kv_dpm_setup_asic(struct radeon_device *rdev)
{
sumo_take_smu_control(rdev, true);
kv_init_powergate_state(rdev);
kv_init_sclk_t(rdev);
}
#if 0
void kv_dpm_reset_asic(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
kv_force_lowest_valid(rdev);
kv_init_graphics_levels(rdev);
kv_program_bootup_state(rdev);
kv_upload_dpm_settings(rdev);
kv_force_lowest_valid(rdev);
kv_unforce_levels(rdev);
} else {
kv_init_graphics_levels(rdev);
kv_program_bootup_state(rdev);
kv_freeze_sclk_dpm(rdev, true);
kv_upload_dpm_settings(rdev);
kv_freeze_sclk_dpm(rdev, false);
kv_set_enabled_level(rdev, pi->graphics_boot_level);
}
}
#endif
//XXX use sumo_dpm_display_configuration_changed
static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
struct radeon_clock_and_voltage_limits *table)
{
struct kv_power_info *pi = kv_get_pi(rdev);
if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
table->sclk =
pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
table->vddc =
kv_convert_2bit_index_to_voltage(rdev,
pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
}
table->mclk = pi->sys_info.nbp_memory_clock[0];
}
static void kv_patch_voltage_values(struct radeon_device *rdev)
{
int i;
struct radeon_uvd_clock_voltage_dependency_table *uvd_table =
&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
struct radeon_vce_clock_voltage_dependency_table *vce_table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
struct radeon_clock_voltage_dependency_table *samu_table =
&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
struct radeon_clock_voltage_dependency_table *acp_table =
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
if (uvd_table->count) {
for (i = 0; i < uvd_table->count; i++)
uvd_table->entries[i].v =
kv_convert_8bit_index_to_voltage(rdev,
uvd_table->entries[i].v);
}
if (vce_table->count) {
for (i = 0; i < vce_table->count; i++)
vce_table->entries[i].v =
kv_convert_8bit_index_to_voltage(rdev,
vce_table->entries[i].v);
}
if (samu_table->count) {
for (i = 0; i < samu_table->count; i++)
samu_table->entries[i].v =
kv_convert_8bit_index_to_voltage(rdev,
samu_table->entries[i].v);
}
if (acp_table->count) {
for (i = 0; i < acp_table->count; i++)
acp_table->entries[i].v =
kv_convert_8bit_index_to_voltage(rdev,
acp_table->entries[i].v);
}
}
static void kv_construct_boot_state(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
pi->boot_pl.ds_divider_index = 0;
pi->boot_pl.ss_divider_index = 0;
pi->boot_pl.allow_gnb_slow = 1;
pi->boot_pl.force_nbp_state = 0;
pi->boot_pl.display_wm = 0;
pi->boot_pl.vce_wm = 0;
}
static int kv_force_dpm_highest(struct radeon_device *rdev)
{
int ret;
u32 enable_mask, i;
ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
if (ret)
return ret;
for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
if (enable_mask & (1 << i))
break;
}
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
else
return kv_set_enabled_level(rdev, i);
}
static int kv_force_dpm_lowest(struct radeon_device *rdev)
{
int ret;
u32 enable_mask, i;
ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
if (ret)
return ret;
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
if (enable_mask & (1 << i))
break;
}
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
else
return kv_set_enabled_level(rdev, i);
}
static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
u32 sclk, u32 min_sclk_in_sr)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
u32 temp;
u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
if (sclk < min)
return 0;
if (!pi->caps_sclk_ds)
return 0;
for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
temp = sclk / sumo_get_sleep_divider_from_id(i);
if (temp >= min)
break;
}
return (u8)i;
}
static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
int i;
if (table && table->count) {
for (i = table->count - 1; i >= 0; i--) {
if (pi->high_voltage_t &&
(kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
pi->high_voltage_t)) {
*limit = i;
return 0;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
if (pi->high_voltage_t &&
(kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
pi->high_voltage_t)) {
*limit = i;
return 0;
}
}
}
*limit = 0;
return 0;
}
static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *new_rps,
struct radeon_ps *old_rps)
{
struct kv_ps *ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(rdev);
u32 min_sclk = 10000; /* ??? */
u32 sclk, mclk = 0;
int i, limit;
bool force_high;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 stable_p_state_sclk = 0;
struct radeon_clock_and_voltage_limits *max_limits =
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
if (new_rps->vce_active) {
new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk;
new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk;
} else {
new_rps->evclk = 0;
new_rps->ecclk = 0;
}
mclk = max_limits->mclk;
sclk = min_sclk;
if (pi->caps_stable_p_state) {
stable_p_state_sclk = (max_limits->sclk * 75) / 100;
for (i = table->count - 1; i >= 0; i--) {
if (stable_p_state_sclk >= table->entries[i].clk) {
stable_p_state_sclk = table->entries[i].clk;
break;
}
}
if (i > 0)
stable_p_state_sclk = table->entries[0].clk;
sclk = stable_p_state_sclk;
}
if (new_rps->vce_active) {
if (sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk)
sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk;
}
ps->need_dfs_bypass = true;
for (i = 0; i < ps->num_levels; i++) {
if (ps->levels[i].sclk < sclk)
ps->levels[i].sclk = sclk;
}
if (table && table->count) {
for (i = 0; i < ps->num_levels; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
kv_get_high_voltage_limit(rdev, &limit);
ps->levels[i].sclk = table->entries[limit].clk;
}
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
for (i = 0; i < ps->num_levels; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
kv_get_high_voltage_limit(rdev, &limit);
ps->levels[i].sclk = table->entries[limit].sclk_frequency;
}
}
}
if (pi->caps_stable_p_state) {
for (i = 0; i < ps->num_levels; i++) {
ps->levels[i].sclk = stable_p_state_sclk;
}
}
pi->video_start = new_rps->dclk || new_rps->vclk ||
new_rps->evclk || new_rps->ecclk;
if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
ps->dpm0_pg_nb_ps_lo = 0x1;
ps->dpm0_pg_nb_ps_hi = 0x0;
ps->dpmx_nb_ps_lo = 0x1;
ps->dpmx_nb_ps_hi = 0x0;
} else {
ps->dpm0_pg_nb_ps_lo = 0x3;
ps->dpm0_pg_nb_ps_hi = 0x0;
ps->dpmx_nb_ps_lo = 0x3;
ps->dpmx_nb_ps_hi = 0x0;
if (pi->sys_info.nb_dpm_enable) {
force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
pi->disable_nb_ps3_in_battery;
ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
ps->dpm0_pg_nb_ps_hi = 0x2;
ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
ps->dpmx_nb_ps_hi = 0x2;
}
}
}
static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
u32 index, bool enable)
{
struct kv_power_info *pi = kv_get_pi(rdev);
pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
}
static int kv_calculate_ds_divider(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 sclk_in_sr = 10000; /* ??? */
u32 i;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].DeepSleepDivId =
kv_get_sleep_divider_id_from_clock(rdev,
be32_to_cpu(pi->graphics_level[i].SclkFrequency),
sclk_in_sr);
}
return 0;
}
static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
bool force_high;
struct radeon_clock_and_voltage_limits *max_limits =
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
u32 mclk = max_limits->mclk;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].GnbSlow = 1;
pi->graphics_level[i].ForceNbPs1 = 0;
pi->graphics_level[i].UpH = 0;
}
if (!pi->sys_info.nb_dpm_enable)
return 0;
force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
(rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
if (force_high) {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
pi->graphics_level[i].GnbSlow = 0;
} else {
if (pi->battery_state)
pi->graphics_level[0].ForceNbPs1 = 1;
pi->graphics_level[1].GnbSlow = 0;
pi->graphics_level[2].GnbSlow = 0;
pi->graphics_level[3].GnbSlow = 0;
pi->graphics_level[4].GnbSlow = 0;
}
} else {
for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
pi->graphics_level[i].GnbSlow = 1;
pi->graphics_level[i].ForceNbPs1 = 0;
pi->graphics_level[i].UpH = 0;
}
if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
pi->graphics_level[pi->lowest_valid].UpH = 0x28;
pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
if (pi->lowest_valid != pi->highest_valid)
pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
}
}
return 0;
}
static int kv_calculate_dpm_settings(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
if (pi->lowest_valid > pi->highest_valid)
return -EINVAL;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
return 0;
}
static void kv_init_graphics_levels(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
struct radeon_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
if (table && table->count) {
u32 vid_2bit;
pi->graphics_dpm_level_count = 0;
for (i = 0; i < table->count; i++) {
if (pi->high_voltage_t &&
(pi->high_voltage_t <
kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
break;
kv_set_divider_value(rdev, i, table->entries[i].clk);
vid_2bit = kv_convert_vid7_to_vid2(rdev,
&pi->sys_info.vid_mapping_table,
table->entries[i].v);
kv_set_vid(rdev, i, vid_2bit);
kv_set_at(rdev, i, pi->at[i]);
kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
pi->graphics_dpm_level_count++;
}
} else {
struct sumo_sclk_voltage_mapping_table *table =
&pi->sys_info.sclk_voltage_mapping_table;
pi->graphics_dpm_level_count = 0;
for (i = 0; i < table->num_max_dpm_entries; i++) {
if (pi->high_voltage_t &&
pi->high_voltage_t <
kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
break;
kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
kv_set_vid(rdev, i, table->entries[i].vid_2bit);
kv_set_at(rdev, i, pi->at[i]);
kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
pi->graphics_dpm_level_count++;
}
}
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
kv_dpm_power_level_enable(rdev, i, false);
}
static void kv_enable_new_levels(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i;
for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
if (i >= pi->lowest_valid && i <= pi->highest_valid)
kv_dpm_power_level_enable(rdev, i, true);
}
}
static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
{
u32 new_mask = (1 << level);
return kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
new_mask);
}
static int kv_set_enabled_levels(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 i, new_mask = 0;
for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
new_mask |= (1 << i);
return kv_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
new_mask);
}
static void kv_program_nbps_index_settings(struct radeon_device *rdev,
struct radeon_ps *new_rps)
{
struct kv_ps *new_ps = kv_get_ps(new_rps);
struct kv_power_info *pi = kv_get_pi(rdev);
u32 nbdpmconfig1;
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
return;
if (pi->sys_info.nb_dpm_enable) {
nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
}
}
static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
u32 tmp;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
DIG_THERM_INTL(49 + (low_temp / 1000)));
WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
rdev->pm.dpm.thermal.min_temp = low_temp;
rdev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
union igp_info {
struct _ATOM_INTEGRATED_SYSTEM_INFO info;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
};
static int kv_parse_sys_info_table(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
union igp_info *igp_info;
u8 frev, crev;
u16 data_offset;
int i;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
igp_info = (union igp_info *)(mode_info->atom_context->bios +
data_offset);
if (crev != 8) {
DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
return -EINVAL;
}
pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
pi->sys_info.bootup_nb_voltage_index =
le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
if (igp_info->info_8.ucHtcTmpLmt == 0)
pi->sys_info.htc_tmp_lmt = 203;
else
pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
if (igp_info->info_8.ucHtcHystLmt == 0)
pi->sys_info.htc_hyst_lmt = 5;
else
pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
}
if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
pi->sys_info.nb_dpm_enable = true;
else
pi->sys_info.nb_dpm_enable = false;
for (i = 0; i < KV_NUM_NBPSTATES; i++) {
pi->sys_info.nbp_memory_clock[i] =
le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
pi->sys_info.nbp_n_clock[i] =
le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
}
if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
pi->caps_enable_dfs_bypass = true;
sumo_construct_sclk_voltage_mapping_table(rdev,
&pi->sys_info.sclk_voltage_mapping_table,
igp_info->info_8.sAvail_SCLK);
sumo_construct_vid_mapping_table(rdev,
&pi->sys_info.vid_mapping_table,
igp_info->info_8.sAvail_SCLK);
kv_construct_max_power_limits_table(rdev,
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
}
return 0;
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void kv_patch_boot_state(struct radeon_device *rdev,
struct kv_ps *ps)
{
struct kv_power_info *pi = kv_get_pi(rdev);
ps->num_levels = 1;
ps->levels[0] = pi->boot_pl;
}
static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
struct kv_ps *ps = kv_get_ps(rps);
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
rdev->pm.dpm.boot_ps = rps;
kv_patch_boot_state(rdev, ps);
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct kv_ps *ps = kv_get_ps(rps);
struct kv_pl *pl = &ps->levels[index];
u32 sclk;
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
pl->sclk = sclk;
pl->vddc_index = clock_info->sumo.vddcIndex;
ps->num_levels = index + 1;
if (pi->caps_sclk_ds) {
pl->ds_divider_index = 5;
pl->ss_divider_index = 5;
}
}
static int kv_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct kv_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
if (!rdev->pm.power_state[i].clock_info)
return -EINVAL;
ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
kv_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], k,
clock_info);
k++;
}
kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
rdev->pm.dpm.num_ps = state_array->ucNumEntries;
/* fill in the vce power states */
for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) {
u32 sclk;
clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx;
clock_info = (union pplib_clock_info *)
&clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
sclk |= clock_info->sumo.ucEngineClockHigh << 16;
rdev->pm.dpm.vce_states[i].sclk = sclk;
rdev->pm.dpm.vce_states[i].mclk = 0;
}
return 0;
}
int kv_dpm_init(struct radeon_device *rdev)
{
struct kv_power_info *pi;
int ret, i;
pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
ret = r600_get_platform_caps(rdev);
if (ret)
return ret;
ret = r600_parse_extended_power_table(rdev);
if (ret)
return ret;
for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
pi->at[i] = TRINITY_AT_DFLT;
pi->sram_end = SMC_RAM_END;
/* Enabling nb dpm on an asrock system prevents dpm from working */
if (rdev->pdev->subsystem_vendor == 0x1849)
pi->enable_nb_dpm = false;
else
pi->enable_nb_dpm = true;
pi->caps_power_containment = true;
pi->caps_cac = true;
pi->enable_didt = false;
if (pi->enable_didt) {
pi->caps_sq_ramping = true;
pi->caps_db_ramping = true;
pi->caps_td_ramping = true;
pi->caps_tcp_ramping = true;
}
pi->caps_sclk_ds = true;
pi->enable_auto_thermal_throttling = true;
pi->disable_nb_ps3_in_battery = false;
if (radeon_bapm == -1) {
/* only enable bapm on KB, ML by default */
if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
pi->bapm_enable = true;
else
pi->bapm_enable = false;
} else if (radeon_bapm == 0) {
pi->bapm_enable = false;
} else {
pi->bapm_enable = true;
}
pi->voltage_drop_t = 0;
pi->caps_sclk_throttle_low_notification = false;
pi->caps_fps = false; /* true? */
pi->caps_uvd_pg = true;
pi->caps_uvd_dpm = true;
pi->caps_vce_pg = false; /* XXX true */
pi->caps_samu_pg = false;
pi->caps_acp_pg = false;
pi->caps_stable_p_state = false;
ret = kv_parse_sys_info_table(rdev);
if (ret)
return ret;
kv_patch_voltage_values(rdev);
kv_construct_boot_state(rdev);
ret = kv_parse_power_table(rdev);
if (ret)
return ret;
pi->enable_dpm = true;
return 0;
}
void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 current_index =
(RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
CURR_SCLK_INDEX_SHIFT;
u32 sclk, tmp;
u16 vddc;
if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
seq_printf(m, "invalid dpm profile %d\n", current_index);
} else {
sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
seq_printf(m, "power level %d sclk: %u vddc: %u\n",
current_index, sclk, vddc);
}
}
u32 kv_dpm_get_current_sclk(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
u32 current_index =
(RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
CURR_SCLK_INDEX_SHIFT;
u32 sclk;
if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
return 0;
} else {
sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
return sclk;
}
}
u32 kv_dpm_get_current_mclk(struct radeon_device *rdev)
{
struct kv_power_info *pi = kv_get_pi(rdev);
return pi->sys_info.bootup_uma_clk;
}
void kv_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
int i;
struct kv_ps *ps = kv_get_ps(rps);
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->num_levels; i++) {
struct kv_pl *pl = &ps->levels[i];
printk("\t\tpower level %d sclk: %u vddc: %u\n",
i, pl->sclk,
kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
}
r600_dpm_print_ps_status(rdev, rps);
}
void kv_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
r600_free_extended_power_table(rdev);
}
void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
{
}
u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct kv_power_info *pi = kv_get_pi(rdev);
struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
if (low)
return requested_state->levels[0].sclk;
else
return requested_state->levels[requested_state->num_levels - 1].sclk;
}
u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct kv_power_info *pi = kv_get_pi(rdev);
return pi->sys_info.bootup_uma_clk;
}