linux-stable/fs/crypto/crypto.c
Josef Bacik 3e7807d5a7 fscrypt: rename fscrypt_info => fscrypt_inode_info
We are going to track per-extent information, so it'll be necessary to
distinguish between inode infos and extent infos.  Rename fscrypt_info
to fscrypt_inode_info, adjusting any lines that now exceed 80
characters.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ebiggers: rebased onto fscrypt tree, renamed fscrypt_get_info(),
 adjusted two comments, and fixed some lines over 80 characters]
Link: https://lore.kernel.org/r/20231005025757.33521-1-ebiggers@kernel.org
Reviewed-by: Neal Gompa <neal@gompa.dev>
Signed-off-by: Eric Biggers <ebiggers@google.com>
2023-10-08 20:44:26 -07:00

430 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* This contains encryption functions for per-file encryption.
*
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2015, Motorola Mobility
*
* Written by Michael Halcrow, 2014.
*
* Filename encryption additions
* Uday Savagaonkar, 2014
* Encryption policy handling additions
* Ildar Muslukhov, 2014
* Add fscrypt_pullback_bio_page()
* Jaegeuk Kim, 2015.
*
* This has not yet undergone a rigorous security audit.
*
* The usage of AES-XTS should conform to recommendations in NIST
* Special Publication 800-38E and IEEE P1619/D16.
*/
#include <linux/pagemap.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/ratelimit.h>
#include <crypto/skcipher.h>
#include "fscrypt_private.h"
static unsigned int num_prealloc_crypto_pages = 32;
module_param(num_prealloc_crypto_pages, uint, 0444);
MODULE_PARM_DESC(num_prealloc_crypto_pages,
"Number of crypto pages to preallocate");
static mempool_t *fscrypt_bounce_page_pool = NULL;
static struct workqueue_struct *fscrypt_read_workqueue;
static DEFINE_MUTEX(fscrypt_init_mutex);
struct kmem_cache *fscrypt_inode_info_cachep;
void fscrypt_enqueue_decrypt_work(struct work_struct *work)
{
queue_work(fscrypt_read_workqueue, work);
}
EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
{
if (WARN_ON_ONCE(!fscrypt_bounce_page_pool)) {
/*
* Oops, the filesystem called a function that uses the bounce
* page pool, but it didn't set needs_bounce_pages.
*/
return NULL;
}
return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
}
/**
* fscrypt_free_bounce_page() - free a ciphertext bounce page
* @bounce_page: the bounce page to free, or NULL
*
* Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
* or by fscrypt_alloc_bounce_page() directly.
*/
void fscrypt_free_bounce_page(struct page *bounce_page)
{
if (!bounce_page)
return;
set_page_private(bounce_page, (unsigned long)NULL);
ClearPagePrivate(bounce_page);
mempool_free(bounce_page, fscrypt_bounce_page_pool);
}
EXPORT_SYMBOL(fscrypt_free_bounce_page);
/*
* Generate the IV for the given data unit index within the given file.
* For filenames encryption, index == 0.
*
* Keep this in sync with fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks()
* needs to know about any IV generation methods where the low bits of IV don't
* simply contain the data unit index (e.g., IV_INO_LBLK_32).
*/
void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
const struct fscrypt_inode_info *ci)
{
u8 flags = fscrypt_policy_flags(&ci->ci_policy);
memset(iv, 0, ci->ci_mode->ivsize);
if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
WARN_ON_ONCE(index > U32_MAX);
WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
index |= (u64)ci->ci_inode->i_ino << 32;
} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
WARN_ON_ONCE(index > U32_MAX);
index = (u32)(ci->ci_hashed_ino + index);
} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
}
iv->index = cpu_to_le64(index);
}
/* Encrypt or decrypt a single "data unit" of file contents. */
int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
fscrypt_direction_t rw, u64 index,
struct page *src_page, struct page *dest_page,
unsigned int len, unsigned int offs,
gfp_t gfp_flags)
{
union fscrypt_iv iv;
struct skcipher_request *req = NULL;
DECLARE_CRYPTO_WAIT(wait);
struct scatterlist dst, src;
struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
int res = 0;
if (WARN_ON_ONCE(len <= 0))
return -EINVAL;
if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
return -EINVAL;
fscrypt_generate_iv(&iv, index, ci);
req = skcipher_request_alloc(tfm, gfp_flags);
if (!req)
return -ENOMEM;
skcipher_request_set_callback(
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &wait);
sg_init_table(&dst, 1);
sg_set_page(&dst, dest_page, len, offs);
sg_init_table(&src, 1);
sg_set_page(&src, src_page, len, offs);
skcipher_request_set_crypt(req, &src, &dst, len, &iv);
if (rw == FS_DECRYPT)
res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
else
res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
skcipher_request_free(req);
if (res) {
fscrypt_err(ci->ci_inode,
"%scryption failed for data unit %llu: %d",
(rw == FS_DECRYPT ? "De" : "En"), index, res);
return res;
}
return 0;
}
/**
* fscrypt_encrypt_pagecache_blocks() - Encrypt data from a pagecache page
* @page: the locked pagecache page containing the data to encrypt
* @len: size of the data to encrypt, in bytes
* @offs: offset within @page of the data to encrypt, in bytes
* @gfp_flags: memory allocation flags; see details below
*
* This allocates a new bounce page and encrypts the given data into it. The
* length and offset of the data must be aligned to the file's crypto data unit
* size. Alignment to the filesystem block size fulfills this requirement, as
* the filesystem block size is always a multiple of the data unit size.
*
* In the bounce page, the ciphertext data will be located at the same offset at
* which the plaintext data was located in the source page. Any other parts of
* the bounce page will be left uninitialized.
*
* This is for use by the filesystem's ->writepages() method.
*
* The bounce page allocation is mempool-backed, so it will always succeed when
* @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS. However,
* only the first page of each bio can be allocated this way. To prevent
* deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
*
* Return: the new encrypted bounce page on success; an ERR_PTR() on failure
*/
struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
unsigned int len,
unsigned int offs,
gfp_t gfp_flags)
{
const struct inode *inode = page->mapping->host;
const struct fscrypt_inode_info *ci = inode->i_crypt_info;
const unsigned int du_bits = ci->ci_data_unit_bits;
const unsigned int du_size = 1U << du_bits;
struct page *ciphertext_page;
u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) +
(offs >> du_bits);
unsigned int i;
int err;
if (WARN_ON_ONCE(!PageLocked(page)))
return ERR_PTR(-EINVAL);
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
return ERR_PTR(-EINVAL);
ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
if (!ciphertext_page)
return ERR_PTR(-ENOMEM);
for (i = offs; i < offs + len; i += du_size, index++) {
err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, index,
page, ciphertext_page,
du_size, i, gfp_flags);
if (err) {
fscrypt_free_bounce_page(ciphertext_page);
return ERR_PTR(err);
}
}
SetPagePrivate(ciphertext_page);
set_page_private(ciphertext_page, (unsigned long)page);
return ciphertext_page;
}
EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
/**
* fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
* @inode: The inode to which this block belongs
* @page: The page containing the block to encrypt
* @len: Size of block to encrypt. This must be a multiple of
* FSCRYPT_CONTENTS_ALIGNMENT.
* @offs: Byte offset within @page at which the block to encrypt begins
* @lblk_num: Filesystem logical block number of the block, i.e. the 0-based
* number of the block within the file
* @gfp_flags: Memory allocation flags
*
* Encrypt a possibly-compressed filesystem block that is located in an
* arbitrary page, not necessarily in the original pagecache page. The @inode
* and @lblk_num must be specified, as they can't be determined from @page.
*
* This is not compatible with fscrypt_operations::supports_subblock_data_units.
*
* Return: 0 on success; -errno on failure
*/
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num, gfp_t gfp_flags)
{
if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
return -EOPNOTSUPP;
return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_ENCRYPT,
lblk_num, page, page, len, offs,
gfp_flags);
}
EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
/**
* fscrypt_decrypt_pagecache_blocks() - Decrypt data from a pagecache folio
* @folio: the pagecache folio containing the data to decrypt
* @len: size of the data to decrypt, in bytes
* @offs: offset within @folio of the data to decrypt, in bytes
*
* Decrypt data that has just been read from an encrypted file. The data must
* be located in a pagecache folio that is still locked and not yet uptodate.
* The length and offset of the data must be aligned to the file's crypto data
* unit size. Alignment to the filesystem block size fulfills this requirement,
* as the filesystem block size is always a multiple of the data unit size.
*
* Return: 0 on success; -errno on failure
*/
int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
size_t offs)
{
const struct inode *inode = folio->mapping->host;
const struct fscrypt_inode_info *ci = inode->i_crypt_info;
const unsigned int du_bits = ci->ci_data_unit_bits;
const unsigned int du_size = 1U << du_bits;
u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) +
(offs >> du_bits);
size_t i;
int err;
if (WARN_ON_ONCE(!folio_test_locked(folio)))
return -EINVAL;
if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
return -EINVAL;
for (i = offs; i < offs + len; i += du_size, index++) {
struct page *page = folio_page(folio, i >> PAGE_SHIFT);
err = fscrypt_crypt_data_unit(ci, FS_DECRYPT, index, page,
page, du_size, i & ~PAGE_MASK,
GFP_NOFS);
if (err)
return err;
}
return 0;
}
EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
/**
* fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
* @inode: The inode to which this block belongs
* @page: The page containing the block to decrypt
* @len: Size of block to decrypt. This must be a multiple of
* FSCRYPT_CONTENTS_ALIGNMENT.
* @offs: Byte offset within @page at which the block to decrypt begins
* @lblk_num: Filesystem logical block number of the block, i.e. the 0-based
* number of the block within the file
*
* Decrypt a possibly-compressed filesystem block that is located in an
* arbitrary page, not necessarily in the original pagecache page. The @inode
* and @lblk_num must be specified, as they can't be determined from @page.
*
* This is not compatible with fscrypt_operations::supports_subblock_data_units.
*
* Return: 0 on success; -errno on failure
*/
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num)
{
if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
return -EOPNOTSUPP;
return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_DECRYPT,
lblk_num, page, page, len, offs,
GFP_NOFS);
}
EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
/**
* fscrypt_initialize() - allocate major buffers for fs encryption.
* @sb: the filesystem superblock
*
* We only call this when we start accessing encrypted files, since it
* results in memory getting allocated that wouldn't otherwise be used.
*
* Return: 0 on success; -errno on failure
*/
int fscrypt_initialize(struct super_block *sb)
{
int err = 0;
mempool_t *pool;
/* pairs with smp_store_release() below */
if (likely(smp_load_acquire(&fscrypt_bounce_page_pool)))
return 0;
/* No need to allocate a bounce page pool if this FS won't use it. */
if (!sb->s_cop->needs_bounce_pages)
return 0;
mutex_lock(&fscrypt_init_mutex);
if (fscrypt_bounce_page_pool)
goto out_unlock;
err = -ENOMEM;
pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0);
if (!pool)
goto out_unlock;
/* pairs with smp_load_acquire() above */
smp_store_release(&fscrypt_bounce_page_pool, pool);
err = 0;
out_unlock:
mutex_unlock(&fscrypt_init_mutex);
return err;
}
void fscrypt_msg(const struct inode *inode, const char *level,
const char *fmt, ...)
{
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
struct va_format vaf;
va_list args;
if (!__ratelimit(&rs))
return;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (inode && inode->i_ino)
printk("%sfscrypt (%s, inode %lu): %pV\n",
level, inode->i_sb->s_id, inode->i_ino, &vaf);
else if (inode)
printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
else
printk("%sfscrypt: %pV\n", level, &vaf);
va_end(args);
}
/**
* fscrypt_init() - Set up for fs encryption.
*
* Return: 0 on success; -errno on failure
*/
static int __init fscrypt_init(void)
{
int err = -ENOMEM;
/*
* Use an unbound workqueue to allow bios to be decrypted in parallel
* even when they happen to complete on the same CPU. This sacrifices
* locality, but it's worthwhile since decryption is CPU-intensive.
*
* Also use a high-priority workqueue to prioritize decryption work,
* which blocks reads from completing, over regular application tasks.
*/
fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
WQ_UNBOUND | WQ_HIGHPRI,
num_online_cpus());
if (!fscrypt_read_workqueue)
goto fail;
fscrypt_inode_info_cachep = KMEM_CACHE(fscrypt_inode_info,
SLAB_RECLAIM_ACCOUNT);
if (!fscrypt_inode_info_cachep)
goto fail_free_queue;
err = fscrypt_init_keyring();
if (err)
goto fail_free_inode_info;
return 0;
fail_free_inode_info:
kmem_cache_destroy(fscrypt_inode_info_cachep);
fail_free_queue:
destroy_workqueue(fscrypt_read_workqueue);
fail:
return err;
}
late_initcall(fscrypt_init)