linux-stable/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Felix Kuehling 67adb569dd drm/amdgpu: Fix silent amdgpu_bo_move failures
Under memory pressure, buffer moves between RAM to VRAM  can
fail when there is no GTT space available. In those cases
amdgpu_bo_move falls back to ttm_bo_move_memcpy, which seems to
succeed, although it doesn't really support non-contiguous or
invisible VRAM. This manifests as VM faults with corrupted page
table entries in KFD eviction stress tests.

Print some helpful messages when lack of GTT space is causing buffer
moves to fail. Check that source and destination memory regions are
supported by ttm_bo_move_memcpy before taking that fallback.

Signed-off-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-07-17 13:34:30 -05:00

2505 lines
64 KiB
C

/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <linux/dma-mapping.h>
#include <linux/iommu.h>
#include <linux/hmm.h>
#include <linux/pagemap.h>
#include <linux/sched/task.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/swiotlb.h>
#include <drm/ttm/ttm_bo_api.h>
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/ttm/ttm_module.h>
#include <drm/ttm/ttm_page_alloc.h>
#include <drm/drm_debugfs.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_object.h"
#include "amdgpu_trace.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_sdma.h"
#include "bif/bif_4_1_d.h"
static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem, unsigned num_pages,
uint64_t offset, unsigned window,
struct amdgpu_ring *ring,
uint64_t *addr);
static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
{
return 0;
}
/**
* amdgpu_init_mem_type - Initialize a memory manager for a specific type of
* memory request.
*
* @bdev: The TTM BO device object (contains a reference to amdgpu_device)
* @type: The type of memory requested
* @man: The memory type manager for each domain
*
* This is called by ttm_bo_init_mm() when a buffer object is being
* initialized.
*/
static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
struct ttm_mem_type_manager *man)
{
struct amdgpu_device *adev;
adev = amdgpu_ttm_adev(bdev);
switch (type) {
case TTM_PL_SYSTEM:
/* System memory */
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
break;
case TTM_PL_TT:
/* GTT memory */
man->func = &amdgpu_gtt_mgr_func;
man->gpu_offset = adev->gmc.gart_start;
man->available_caching = TTM_PL_MASK_CACHING;
man->default_caching = TTM_PL_FLAG_CACHED;
man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
break;
case TTM_PL_VRAM:
/* "On-card" video ram */
man->func = &amdgpu_vram_mgr_func;
man->gpu_offset = adev->gmc.vram_start;
man->flags = TTM_MEMTYPE_FLAG_FIXED |
TTM_MEMTYPE_FLAG_MAPPABLE;
man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
man->default_caching = TTM_PL_FLAG_WC;
break;
case AMDGPU_PL_GDS:
case AMDGPU_PL_GWS:
case AMDGPU_PL_OA:
/* On-chip GDS memory*/
man->func = &ttm_bo_manager_func;
man->gpu_offset = 0;
man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
man->available_caching = TTM_PL_FLAG_UNCACHED;
man->default_caching = TTM_PL_FLAG_UNCACHED;
break;
default:
DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
return -EINVAL;
}
return 0;
}
/**
* amdgpu_evict_flags - Compute placement flags
*
* @bo: The buffer object to evict
* @placement: Possible destination(s) for evicted BO
*
* Fill in placement data when ttm_bo_evict() is called
*/
static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_bo *abo;
static const struct ttm_place placements = {
.fpfn = 0,
.lpfn = 0,
.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
};
/* Don't handle scatter gather BOs */
if (bo->type == ttm_bo_type_sg) {
placement->num_placement = 0;
placement->num_busy_placement = 0;
return;
}
/* Object isn't an AMDGPU object so ignore */
if (!amdgpu_bo_is_amdgpu_bo(bo)) {
placement->placement = &placements;
placement->busy_placement = &placements;
placement->num_placement = 1;
placement->num_busy_placement = 1;
return;
}
abo = ttm_to_amdgpu_bo(bo);
switch (bo->mem.mem_type) {
case AMDGPU_PL_GDS:
case AMDGPU_PL_GWS:
case AMDGPU_PL_OA:
placement->num_placement = 0;
placement->num_busy_placement = 0;
return;
case TTM_PL_VRAM:
if (!adev->mman.buffer_funcs_enabled) {
/* Move to system memory */
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
!(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
amdgpu_bo_in_cpu_visible_vram(abo)) {
/* Try evicting to the CPU inaccessible part of VRAM
* first, but only set GTT as busy placement, so this
* BO will be evicted to GTT rather than causing other
* BOs to be evicted from VRAM
*/
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT);
abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
abo->placements[0].lpfn = 0;
abo->placement.busy_placement = &abo->placements[1];
abo->placement.num_busy_placement = 1;
} else {
/* Move to GTT memory */
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
}
break;
case TTM_PL_TT:
default:
amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
break;
}
*placement = abo->placement;
}
/**
* amdgpu_verify_access - Verify access for a mmap call
*
* @bo: The buffer object to map
* @filp: The file pointer from the process performing the mmap
*
* This is called by ttm_bo_mmap() to verify whether a process
* has the right to mmap a BO to their process space.
*/
static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
/*
* Don't verify access for KFD BOs. They don't have a GEM
* object associated with them.
*/
if (abo->kfd_bo)
return 0;
if (amdgpu_ttm_tt_get_usermm(bo->ttm))
return -EPERM;
return drm_vma_node_verify_access(&abo->gem_base.vma_node,
filp->private_data);
}
/**
* amdgpu_move_null - Register memory for a buffer object
*
* @bo: The bo to assign the memory to
* @new_mem: The memory to be assigned.
*
* Assign the memory from new_mem to the memory of the buffer object bo.
*/
static void amdgpu_move_null(struct ttm_buffer_object *bo,
struct ttm_mem_reg *new_mem)
{
struct ttm_mem_reg *old_mem = &bo->mem;
BUG_ON(old_mem->mm_node != NULL);
*old_mem = *new_mem;
new_mem->mm_node = NULL;
}
/**
* amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
*
* @bo: The bo to assign the memory to.
* @mm_node: Memory manager node for drm allocator.
* @mem: The region where the bo resides.
*
*/
static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
struct drm_mm_node *mm_node,
struct ttm_mem_reg *mem)
{
uint64_t addr = 0;
if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
addr = mm_node->start << PAGE_SHIFT;
addr += bo->bdev->man[mem->mem_type].gpu_offset;
}
return addr;
}
/**
* amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
* @offset. It also modifies the offset to be within the drm_mm_node returned
*
* @mem: The region where the bo resides.
* @offset: The offset that drm_mm_node is used for finding.
*
*/
static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
unsigned long *offset)
{
struct drm_mm_node *mm_node = mem->mm_node;
while (*offset >= (mm_node->size << PAGE_SHIFT)) {
*offset -= (mm_node->size << PAGE_SHIFT);
++mm_node;
}
return mm_node;
}
/**
* amdgpu_copy_ttm_mem_to_mem - Helper function for copy
*
* The function copies @size bytes from {src->mem + src->offset} to
* {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
* move and different for a BO to BO copy.
*
* @f: Returns the last fence if multiple jobs are submitted.
*/
int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
struct amdgpu_copy_mem *src,
struct amdgpu_copy_mem *dst,
uint64_t size,
struct reservation_object *resv,
struct dma_fence **f)
{
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct drm_mm_node *src_mm, *dst_mm;
uint64_t src_node_start, dst_node_start, src_node_size,
dst_node_size, src_page_offset, dst_page_offset;
struct dma_fence *fence = NULL;
int r = 0;
const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
AMDGPU_GPU_PAGE_SIZE);
if (!adev->mman.buffer_funcs_enabled) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
src->offset;
src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
src_page_offset = src_node_start & (PAGE_SIZE - 1);
dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
dst->offset;
dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
mutex_lock(&adev->mman.gtt_window_lock);
while (size) {
unsigned long cur_size;
uint64_t from = src_node_start, to = dst_node_start;
struct dma_fence *next;
/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
* begins at an offset, then adjust the size accordingly
*/
cur_size = min3(min(src_node_size, dst_node_size), size,
GTT_MAX_BYTES);
if (cur_size + src_page_offset > GTT_MAX_BYTES ||
cur_size + dst_page_offset > GTT_MAX_BYTES)
cur_size -= max(src_page_offset, dst_page_offset);
/* Map only what needs to be accessed. Map src to window 0 and
* dst to window 1
*/
if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
r = amdgpu_map_buffer(src->bo, src->mem,
PFN_UP(cur_size + src_page_offset),
src_node_start, 0, ring,
&from);
if (r)
goto error;
/* Adjust the offset because amdgpu_map_buffer returns
* start of mapped page
*/
from += src_page_offset;
}
if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
r = amdgpu_map_buffer(dst->bo, dst->mem,
PFN_UP(cur_size + dst_page_offset),
dst_node_start, 1, ring,
&to);
if (r)
goto error;
to += dst_page_offset;
}
r = amdgpu_copy_buffer(ring, from, to, cur_size,
resv, &next, false, true);
if (r)
goto error;
dma_fence_put(fence);
fence = next;
size -= cur_size;
if (!size)
break;
src_node_size -= cur_size;
if (!src_node_size) {
src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
src->mem);
src_node_size = (src_mm->size << PAGE_SHIFT);
src_page_offset = 0;
} else {
src_node_start += cur_size;
src_page_offset = src_node_start & (PAGE_SIZE - 1);
}
dst_node_size -= cur_size;
if (!dst_node_size) {
dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
dst->mem);
dst_node_size = (dst_mm->size << PAGE_SHIFT);
dst_page_offset = 0;
} else {
dst_node_start += cur_size;
dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
}
}
error:
mutex_unlock(&adev->mman.gtt_window_lock);
if (f)
*f = dma_fence_get(fence);
dma_fence_put(fence);
return r;
}
/**
* amdgpu_move_blit - Copy an entire buffer to another buffer
*
* This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
* help move buffers to and from VRAM.
*/
static int amdgpu_move_blit(struct ttm_buffer_object *bo,
bool evict, bool no_wait_gpu,
struct ttm_mem_reg *new_mem,
struct ttm_mem_reg *old_mem)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct amdgpu_copy_mem src, dst;
struct dma_fence *fence = NULL;
int r;
src.bo = bo;
dst.bo = bo;
src.mem = old_mem;
dst.mem = new_mem;
src.offset = 0;
dst.offset = 0;
r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
new_mem->num_pages << PAGE_SHIFT,
bo->resv, &fence);
if (r)
goto error;
/* Always block for VM page tables before committing the new location */
if (bo->type == ttm_bo_type_kernel)
r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
else
r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
dma_fence_put(fence);
return r;
error:
if (fence)
dma_fence_wait(fence, false);
dma_fence_put(fence);
return r;
}
/**
* amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
*
* Called by amdgpu_bo_move().
*/
static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
struct ttm_place placements;
struct ttm_placement placement;
int r;
adev = amdgpu_ttm_adev(bo->bdev);
/* create space/pages for new_mem in GTT space */
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements.fpfn = 0;
placements.lpfn = 0;
placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
if (unlikely(r)) {
pr_err("Failed to find GTT space for blit from VRAM\n");
return r;
}
/* set caching flags */
r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
if (unlikely(r)) {
goto out_cleanup;
}
/* Bind the memory to the GTT space */
r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
if (unlikely(r)) {
goto out_cleanup;
}
/* blit VRAM to GTT */
r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
/* move BO (in tmp_mem) to new_mem */
r = ttm_bo_move_ttm(bo, ctx, new_mem);
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
/**
* amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
*
* Called by amdgpu_bo_move().
*/
static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct ttm_mem_reg *old_mem = &bo->mem;
struct ttm_mem_reg tmp_mem;
struct ttm_placement placement;
struct ttm_place placements;
int r;
adev = amdgpu_ttm_adev(bo->bdev);
/* make space in GTT for old_mem buffer */
tmp_mem = *new_mem;
tmp_mem.mm_node = NULL;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements.fpfn = 0;
placements.lpfn = 0;
placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
if (unlikely(r)) {
pr_err("Failed to find GTT space for blit to VRAM\n");
return r;
}
/* move/bind old memory to GTT space */
r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
if (unlikely(r)) {
goto out_cleanup;
}
/* copy to VRAM */
r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
if (unlikely(r)) {
goto out_cleanup;
}
out_cleanup:
ttm_bo_mem_put(bo, &tmp_mem);
return r;
}
/**
* amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
*
* Called by amdgpu_bo_move()
*/
static bool amdgpu_mem_visible(struct amdgpu_device *adev,
struct ttm_mem_reg *mem)
{
struct drm_mm_node *nodes = mem->mm_node;
if (mem->mem_type == TTM_PL_SYSTEM ||
mem->mem_type == TTM_PL_TT)
return true;
if (mem->mem_type != TTM_PL_VRAM)
return false;
/* ttm_mem_reg_ioremap only supports contiguous memory */
if (nodes->size != mem->num_pages)
return false;
return ((nodes->start + nodes->size) << PAGE_SHIFT)
<= adev->gmc.visible_vram_size;
}
/**
* amdgpu_bo_move - Move a buffer object to a new memory location
*
* Called by ttm_bo_handle_move_mem()
*/
static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_mem_reg *new_mem)
{
struct amdgpu_device *adev;
struct amdgpu_bo *abo;
struct ttm_mem_reg *old_mem = &bo->mem;
int r;
/* Can't move a pinned BO */
abo = ttm_to_amdgpu_bo(bo);
if (WARN_ON_ONCE(abo->pin_count > 0))
return -EINVAL;
adev = amdgpu_ttm_adev(bo->bdev);
if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
amdgpu_move_null(bo, new_mem);
return 0;
}
if ((old_mem->mem_type == TTM_PL_TT &&
new_mem->mem_type == TTM_PL_SYSTEM) ||
(old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_TT)) {
/* bind is enough */
amdgpu_move_null(bo, new_mem);
return 0;
}
if (old_mem->mem_type == AMDGPU_PL_GDS ||
old_mem->mem_type == AMDGPU_PL_GWS ||
old_mem->mem_type == AMDGPU_PL_OA ||
new_mem->mem_type == AMDGPU_PL_GDS ||
new_mem->mem_type == AMDGPU_PL_GWS ||
new_mem->mem_type == AMDGPU_PL_OA) {
/* Nothing to save here */
amdgpu_move_null(bo, new_mem);
return 0;
}
if (!adev->mman.buffer_funcs_enabled) {
r = -ENODEV;
goto memcpy;
}
if (old_mem->mem_type == TTM_PL_VRAM &&
new_mem->mem_type == TTM_PL_SYSTEM) {
r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
new_mem->mem_type == TTM_PL_VRAM) {
r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
} else {
r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
new_mem, old_mem);
}
if (r) {
memcpy:
/* Check that all memory is CPU accessible */
if (!amdgpu_mem_visible(adev, old_mem) ||
!amdgpu_mem_visible(adev, new_mem)) {
pr_err("Move buffer fallback to memcpy unavailable\n");
return r;
}
r = ttm_bo_move_memcpy(bo, ctx, new_mem);
if (r)
return r;
}
if (bo->type == ttm_bo_type_device &&
new_mem->mem_type == TTM_PL_VRAM &&
old_mem->mem_type != TTM_PL_VRAM) {
/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
* accesses the BO after it's moved.
*/
abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
}
/* update statistics */
atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
return 0;
}
/**
* amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
*
* Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
*/
static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
struct drm_mm_node *mm_node = mem->mm_node;
mem->bus.addr = NULL;
mem->bus.offset = 0;
mem->bus.size = mem->num_pages << PAGE_SHIFT;
mem->bus.base = 0;
mem->bus.is_iomem = false;
if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
return -EINVAL;
switch (mem->mem_type) {
case TTM_PL_SYSTEM:
/* system memory */
return 0;
case TTM_PL_TT:
break;
case TTM_PL_VRAM:
mem->bus.offset = mem->start << PAGE_SHIFT;
/* check if it's visible */
if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
return -EINVAL;
/* Only physically contiguous buffers apply. In a contiguous
* buffer, size of the first mm_node would match the number of
* pages in ttm_mem_reg.
*/
if (adev->mman.aper_base_kaddr &&
(mm_node->size == mem->num_pages))
mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
mem->bus.offset;
mem->bus.base = adev->gmc.aper_base;
mem->bus.is_iomem = true;
break;
default:
return -EINVAL;
}
return 0;
}
static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
{
}
static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
unsigned long page_offset)
{
struct drm_mm_node *mm;
unsigned long offset = (page_offset << PAGE_SHIFT);
mm = amdgpu_find_mm_node(&bo->mem, &offset);
return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
(offset >> PAGE_SHIFT);
}
/*
* TTM backend functions.
*/
struct amdgpu_ttm_tt {
struct ttm_dma_tt ttm;
u64 offset;
uint64_t userptr;
struct task_struct *usertask;
uint32_t userflags;
#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
struct hmm_range *range;
#endif
};
/**
* amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
* memory and start HMM tracking CPU page table update
*
* Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
* once afterwards to stop HMM tracking
*/
#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
#define MAX_RETRY_HMM_RANGE_FAULT 16
int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
{
struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
struct ttm_tt *ttm = bo->tbo.ttm;
struct amdgpu_ttm_tt *gtt = (void *)ttm;
struct mm_struct *mm = gtt->usertask->mm;
unsigned long start = gtt->userptr;
struct vm_area_struct *vma;
struct hmm_range *range;
unsigned long i;
uint64_t *pfns;
int retry = 0;
int r = 0;
if (!mm) /* Happens during process shutdown */
return -ESRCH;
if (unlikely(!mirror)) {
DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
r = -EFAULT;
goto out;
}
vma = find_vma(mm, start);
if (unlikely(!vma || start < vma->vm_start)) {
r = -EFAULT;
goto out;
}
if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
vma->vm_file)) {
r = -EPERM;
goto out;
}
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (unlikely(!range)) {
r = -ENOMEM;
goto out;
}
pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
if (unlikely(!pfns)) {
r = -ENOMEM;
goto out_free_ranges;
}
amdgpu_hmm_init_range(range);
range->default_flags = range->flags[HMM_PFN_VALID];
range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
0 : range->flags[HMM_PFN_WRITE];
range->pfn_flags_mask = 0;
range->pfns = pfns;
hmm_range_register(range, mm, start,
start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
retry:
/*
* Just wait for range to be valid, safe to ignore return value as we
* will use the return value of hmm_range_fault() below under the
* mmap_sem to ascertain the validity of the range.
*/
hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
down_read(&mm->mmap_sem);
r = hmm_range_fault(range, true);
if (unlikely(r < 0)) {
if (likely(r == -EAGAIN)) {
/*
* return -EAGAIN, mmap_sem is dropped
*/
if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
goto retry;
else
pr_err("Retry hmm fault too many times\n");
}
goto out_up_read;
}
up_read(&mm->mmap_sem);
for (i = 0; i < ttm->num_pages; i++) {
pages[i] = hmm_device_entry_to_page(range, pfns[i]);
if (unlikely(!pages[i])) {
pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
i, pfns[i]);
r = -ENOMEM;
goto out_free_pfns;
}
}
gtt->range = range;
return 0;
out_up_read:
if (likely(r != -EAGAIN))
up_read(&mm->mmap_sem);
out_free_pfns:
hmm_range_unregister(range);
kvfree(pfns);
out_free_ranges:
kfree(range);
out:
return r;
}
/**
* amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
* Check if the pages backing this ttm range have been invalidated
*
* Returns: true if pages are still valid
*/
bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
bool r = false;
if (!gtt || !gtt->userptr)
return false;
DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
gtt->userptr, ttm->num_pages);
WARN_ONCE(!gtt->range || !gtt->range->pfns,
"No user pages to check\n");
if (gtt->range) {
r = hmm_range_valid(gtt->range);
hmm_range_unregister(gtt->range);
kvfree(gtt->range->pfns);
kfree(gtt->range);
gtt->range = NULL;
}
return r;
}
#endif
/**
* amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
*
* Called by amdgpu_cs_list_validate(). This creates the page list
* that backs user memory and will ultimately be mapped into the device
* address space.
*/
void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
{
unsigned long i;
for (i = 0; i < ttm->num_pages; ++i)
ttm->pages[i] = pages ? pages[i] : NULL;
}
/**
* amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
*
* Called by amdgpu_ttm_backend_bind()
**/
static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned nents;
int r;
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
/* Allocate an SG array and squash pages into it */
r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
ttm->num_pages << PAGE_SHIFT,
GFP_KERNEL);
if (r)
goto release_sg;
/* Map SG to device */
r = -ENOMEM;
nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
if (nents != ttm->sg->nents)
goto release_sg;
/* convert SG to linear array of pages and dma addresses */
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
gtt->ttm.dma_address, ttm->num_pages);
return 0;
release_sg:
kfree(ttm->sg);
return r;
}
/**
* amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
*/
static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
enum dma_data_direction direction = write ?
DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
/* double check that we don't free the table twice */
if (!ttm->sg->sgl)
return;
/* unmap the pages mapped to the device */
dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
sg_free_table(ttm->sg);
#if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
if (gtt->range &&
ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
gtt->range->pfns[0]))
WARN_ONCE(1, "Missing get_user_page_done\n");
#endif
}
int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
struct ttm_buffer_object *tbo,
uint64_t flags)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
struct ttm_tt *ttm = tbo->ttm;
struct amdgpu_ttm_tt *gtt = (void *)ttm;
int r;
if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
uint64_t page_idx = 1;
r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
ttm->pages, gtt->ttm.dma_address, flags);
if (r)
goto gart_bind_fail;
/* Patch mtype of the second part BO */
flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
r = amdgpu_gart_bind(adev,
gtt->offset + (page_idx << PAGE_SHIFT),
ttm->num_pages - page_idx,
&ttm->pages[page_idx],
&(gtt->ttm.dma_address[page_idx]), flags);
} else {
r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
ttm->pages, gtt->ttm.dma_address, flags);
}
gart_bind_fail:
if (r)
DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
ttm->num_pages, gtt->offset);
return r;
}
/**
* amdgpu_ttm_backend_bind - Bind GTT memory
*
* Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
* This handles binding GTT memory to the device address space.
*/
static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
struct ttm_mem_reg *bo_mem)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void*)ttm;
uint64_t flags;
int r = 0;
if (gtt->userptr) {
r = amdgpu_ttm_tt_pin_userptr(ttm);
if (r) {
DRM_ERROR("failed to pin userptr\n");
return r;
}
}
if (!ttm->num_pages) {
WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
ttm->num_pages, bo_mem, ttm);
}
if (bo_mem->mem_type == AMDGPU_PL_GDS ||
bo_mem->mem_type == AMDGPU_PL_GWS ||
bo_mem->mem_type == AMDGPU_PL_OA)
return -EINVAL;
if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
gtt->offset = AMDGPU_BO_INVALID_OFFSET;
return 0;
}
/* compute PTE flags relevant to this BO memory */
flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
/* bind pages into GART page tables */
gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
ttm->pages, gtt->ttm.dma_address, flags);
if (r)
DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
ttm->num_pages, gtt->offset);
return r;
}
/**
* amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
*/
int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
struct ttm_mem_reg tmp;
struct ttm_placement placement;
struct ttm_place placements;
uint64_t addr, flags;
int r;
if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
return 0;
addr = amdgpu_gmc_agp_addr(bo);
if (addr != AMDGPU_BO_INVALID_OFFSET) {
bo->mem.start = addr >> PAGE_SHIFT;
} else {
/* allocate GART space */
tmp = bo->mem;
tmp.mm_node = NULL;
placement.num_placement = 1;
placement.placement = &placements;
placement.num_busy_placement = 1;
placement.busy_placement = &placements;
placements.fpfn = 0;
placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
TTM_PL_FLAG_TT;
r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
if (unlikely(r))
return r;
/* compute PTE flags for this buffer object */
flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
/* Bind pages */
gtt->offset = (u64)tmp.start << PAGE_SHIFT;
r = amdgpu_ttm_gart_bind(adev, bo, flags);
if (unlikely(r)) {
ttm_bo_mem_put(bo, &tmp);
return r;
}
ttm_bo_mem_put(bo, &bo->mem);
bo->mem = tmp;
}
bo->offset = (bo->mem.start << PAGE_SHIFT) +
bo->bdev->man[bo->mem.mem_type].gpu_offset;
return 0;
}
/**
* amdgpu_ttm_recover_gart - Rebind GTT pages
*
* Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
* rebind GTT pages during a GPU reset.
*/
int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
uint64_t flags;
int r;
if (!tbo->ttm)
return 0;
flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
r = amdgpu_ttm_gart_bind(adev, tbo, flags);
return r;
}
/**
* amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
*
* Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
* ttm_tt_destroy().
*/
static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
int r;
/* if the pages have userptr pinning then clear that first */
if (gtt->userptr)
amdgpu_ttm_tt_unpin_userptr(ttm);
if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
return 0;
/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
if (r)
DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
gtt->ttm.ttm.num_pages, gtt->offset);
return r;
}
static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt->usertask)
put_task_struct(gtt->usertask);
ttm_dma_tt_fini(&gtt->ttm);
kfree(gtt);
}
static struct ttm_backend_func amdgpu_backend_func = {
.bind = &amdgpu_ttm_backend_bind,
.unbind = &amdgpu_ttm_backend_unbind,
.destroy = &amdgpu_ttm_backend_destroy,
};
/**
* amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
*
* @bo: The buffer object to create a GTT ttm_tt object around
*
* Called by ttm_tt_create().
*/
static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
uint32_t page_flags)
{
struct amdgpu_device *adev;
struct amdgpu_ttm_tt *gtt;
adev = amdgpu_ttm_adev(bo->bdev);
gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
if (gtt == NULL) {
return NULL;
}
gtt->ttm.ttm.func = &amdgpu_backend_func;
/* allocate space for the uninitialized page entries */
if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
kfree(gtt);
return NULL;
}
return &gtt->ttm.ttm;
}
/**
* amdgpu_ttm_tt_populate - Map GTT pages visible to the device
*
* Map the pages of a ttm_tt object to an address space visible
* to the underlying device.
*/
static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
struct ttm_operation_ctx *ctx)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
struct amdgpu_ttm_tt *gtt = (void *)ttm;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
if (gtt && gtt->userptr) {
ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
if (!ttm->sg)
return -ENOMEM;
ttm->page_flags |= TTM_PAGE_FLAG_SG;
ttm->state = tt_unbound;
return 0;
}
if (slave && ttm->sg) {
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
gtt->ttm.dma_address,
ttm->num_pages);
ttm->state = tt_unbound;
return 0;
}
#ifdef CONFIG_SWIOTLB
if (adev->need_swiotlb && swiotlb_nr_tbl()) {
return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
}
#endif
/* fall back to generic helper to populate the page array
* and map them to the device */
return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
}
/**
* amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
*
* Unmaps pages of a ttm_tt object from the device address space and
* unpopulates the page array backing it.
*/
static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
{
struct amdgpu_device *adev;
struct amdgpu_ttm_tt *gtt = (void *)ttm;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (gtt && gtt->userptr) {
amdgpu_ttm_tt_set_user_pages(ttm, NULL);
kfree(ttm->sg);
ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
return;
}
if (slave)
return;
adev = amdgpu_ttm_adev(ttm->bdev);
#ifdef CONFIG_SWIOTLB
if (adev->need_swiotlb && swiotlb_nr_tbl()) {
ttm_dma_unpopulate(&gtt->ttm, adev->dev);
return;
}
#endif
/* fall back to generic helper to unmap and unpopulate array */
ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
}
/**
* amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
* task
*
* @ttm: The ttm_tt object to bind this userptr object to
* @addr: The address in the current tasks VM space to use
* @flags: Requirements of userptr object.
*
* Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
* to current task
*/
int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
uint32_t flags)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return -EINVAL;
gtt->userptr = addr;
gtt->userflags = flags;
if (gtt->usertask)
put_task_struct(gtt->usertask);
gtt->usertask = current->group_leader;
get_task_struct(gtt->usertask);
return 0;
}
/**
* amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
*/
struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return NULL;
if (gtt->usertask == NULL)
return NULL;
return gtt->usertask->mm;
}
/**
* amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
* address range for the current task.
*
*/
bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
unsigned long end)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
unsigned long size;
if (gtt == NULL || !gtt->userptr)
return false;
/* Return false if no part of the ttm_tt object lies within
* the range
*/
size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
if (gtt->userptr > end || gtt->userptr + size <= start)
return false;
return true;
}
/**
* amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
*/
bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL || !gtt->userptr)
return false;
return true;
}
/**
* amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
*/
bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
{
struct amdgpu_ttm_tt *gtt = (void *)ttm;
if (gtt == NULL)
return false;
return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
}
/**
* amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
*
* @ttm: The ttm_tt object to compute the flags for
* @mem: The memory registry backing this ttm_tt object
*
* Figure out the flags to use for a VM PDE (Page Directory Entry).
*/
uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
{
uint64_t flags = 0;
if (mem && mem->mem_type != TTM_PL_SYSTEM)
flags |= AMDGPU_PTE_VALID;
if (mem && mem->mem_type == TTM_PL_TT) {
flags |= AMDGPU_PTE_SYSTEM;
if (ttm->caching_state == tt_cached)
flags |= AMDGPU_PTE_SNOOPED;
}
return flags;
}
/**
* amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
*
* @ttm: The ttm_tt object to compute the flags for
* @mem: The memory registry backing this ttm_tt object
* Figure out the flags to use for a VM PTE (Page Table Entry).
*/
uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
struct ttm_mem_reg *mem)
{
uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
flags |= adev->gart.gart_pte_flags;
flags |= AMDGPU_PTE_READABLE;
if (!amdgpu_ttm_tt_is_readonly(ttm))
flags |= AMDGPU_PTE_WRITEABLE;
return flags;
}
/**
* amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
* object.
*
* Return true if eviction is sensible. Called by ttm_mem_evict_first() on
* behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
* it can find space for a new object and by ttm_bo_force_list_clean() which is
* used to clean out a memory space.
*/
static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
unsigned long num_pages = bo->mem.num_pages;
struct drm_mm_node *node = bo->mem.mm_node;
struct reservation_object_list *flist;
struct dma_fence *f;
int i;
/* Don't evict VM page tables while they are busy, otherwise we can't
* cleanly handle page faults.
*/
if (bo->type == ttm_bo_type_kernel &&
!reservation_object_test_signaled_rcu(bo->resv, true))
return false;
/* If bo is a KFD BO, check if the bo belongs to the current process.
* If true, then return false as any KFD process needs all its BOs to
* be resident to run successfully
*/
flist = reservation_object_get_list(bo->resv);
if (flist) {
for (i = 0; i < flist->shared_count; ++i) {
f = rcu_dereference_protected(flist->shared[i],
reservation_object_held(bo->resv));
if (amdkfd_fence_check_mm(f, current->mm))
return false;
}
}
switch (bo->mem.mem_type) {
case TTM_PL_TT:
return true;
case TTM_PL_VRAM:
/* Check each drm MM node individually */
while (num_pages) {
if (place->fpfn < (node->start + node->size) &&
!(place->lpfn && place->lpfn <= node->start))
return true;
num_pages -= node->size;
++node;
}
return false;
default:
break;
}
return ttm_bo_eviction_valuable(bo, place);
}
/**
* amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
*
* @bo: The buffer object to read/write
* @offset: Offset into buffer object
* @buf: Secondary buffer to write/read from
* @len: Length in bytes of access
* @write: true if writing
*
* This is used to access VRAM that backs a buffer object via MMIO
* access for debugging purposes.
*/
static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
unsigned long offset,
void *buf, int len, int write)
{
struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
struct drm_mm_node *nodes;
uint32_t value = 0;
int ret = 0;
uint64_t pos;
unsigned long flags;
if (bo->mem.mem_type != TTM_PL_VRAM)
return -EIO;
nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
pos = (nodes->start << PAGE_SHIFT) + offset;
while (len && pos < adev->gmc.mc_vram_size) {
uint64_t aligned_pos = pos & ~(uint64_t)3;
uint32_t bytes = 4 - (pos & 3);
uint32_t shift = (pos & 3) * 8;
uint32_t mask = 0xffffffff << shift;
if (len < bytes) {
mask &= 0xffffffff >> (bytes - len) * 8;
bytes = len;
}
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
if (!write || mask != 0xffffffff)
value = RREG32_NO_KIQ(mmMM_DATA);
if (write) {
value &= ~mask;
value |= (*(uint32_t *)buf << shift) & mask;
WREG32_NO_KIQ(mmMM_DATA, value);
}
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
if (!write) {
value = (value & mask) >> shift;
memcpy(buf, &value, bytes);
}
ret += bytes;
buf = (uint8_t *)buf + bytes;
pos += bytes;
len -= bytes;
if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
++nodes;
pos = (nodes->start << PAGE_SHIFT);
}
}
return ret;
}
static struct ttm_bo_driver amdgpu_bo_driver = {
.ttm_tt_create = &amdgpu_ttm_tt_create,
.ttm_tt_populate = &amdgpu_ttm_tt_populate,
.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
.invalidate_caches = &amdgpu_invalidate_caches,
.init_mem_type = &amdgpu_init_mem_type,
.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
.evict_flags = &amdgpu_evict_flags,
.move = &amdgpu_bo_move,
.verify_access = &amdgpu_verify_access,
.move_notify = &amdgpu_bo_move_notify,
.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
.io_mem_free = &amdgpu_ttm_io_mem_free,
.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
.access_memory = &amdgpu_ttm_access_memory,
.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
};
/*
* Firmware Reservation functions
*/
/**
* amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
*
* @adev: amdgpu_device pointer
*
* free fw reserved vram if it has been reserved.
*/
static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
{
amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
NULL, &adev->fw_vram_usage.va);
}
/**
* amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
*
* @adev: amdgpu_device pointer
*
* create bo vram reservation from fw.
*/
static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
{
struct ttm_operation_ctx ctx = { false, false };
struct amdgpu_bo_param bp;
int r = 0;
int i;
u64 vram_size = adev->gmc.visible_vram_size;
u64 offset = adev->fw_vram_usage.start_offset;
u64 size = adev->fw_vram_usage.size;
struct amdgpu_bo *bo;
memset(&bp, 0, sizeof(bp));
bp.size = adev->fw_vram_usage.size;
bp.byte_align = PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
bp.type = ttm_bo_type_kernel;
bp.resv = NULL;
adev->fw_vram_usage.va = NULL;
adev->fw_vram_usage.reserved_bo = NULL;
if (adev->fw_vram_usage.size > 0 &&
adev->fw_vram_usage.size <= vram_size) {
r = amdgpu_bo_create(adev, &bp,
&adev->fw_vram_usage.reserved_bo);
if (r)
goto error_create;
r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
if (r)
goto error_reserve;
/* remove the original mem node and create a new one at the
* request position
*/
bo = adev->fw_vram_usage.reserved_bo;
offset = ALIGN(offset, PAGE_SIZE);
for (i = 0; i < bo->placement.num_placement; ++i) {
bo->placements[i].fpfn = offset >> PAGE_SHIFT;
bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
}
ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
&bo->tbo.mem, &ctx);
if (r)
goto error_pin;
r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
AMDGPU_GEM_DOMAIN_VRAM,
adev->fw_vram_usage.start_offset,
(adev->fw_vram_usage.start_offset +
adev->fw_vram_usage.size));
if (r)
goto error_pin;
r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
&adev->fw_vram_usage.va);
if (r)
goto error_kmap;
amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
}
return r;
error_kmap:
amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
error_pin:
amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
error_reserve:
amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
error_create:
adev->fw_vram_usage.va = NULL;
adev->fw_vram_usage.reserved_bo = NULL;
return r;
}
/**
* amdgpu_ttm_init - Init the memory management (ttm) as well as various
* gtt/vram related fields.
*
* This initializes all of the memory space pools that the TTM layer
* will need such as the GTT space (system memory mapped to the device),
* VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
* can be mapped per VMID.
*/
int amdgpu_ttm_init(struct amdgpu_device *adev)
{
uint64_t gtt_size;
int r;
u64 vis_vram_limit;
mutex_init(&adev->mman.gtt_window_lock);
/* No others user of address space so set it to 0 */
r = ttm_bo_device_init(&adev->mman.bdev,
&amdgpu_bo_driver,
adev->ddev->anon_inode->i_mapping,
adev->need_dma32);
if (r) {
DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
return r;
}
adev->mman.initialized = true;
/* We opt to avoid OOM on system pages allocations */
adev->mman.bdev.no_retry = true;
/* Initialize VRAM pool with all of VRAM divided into pages */
r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
adev->gmc.real_vram_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing VRAM heap.\n");
return r;
}
/* Reduce size of CPU-visible VRAM if requested */
vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
if (amdgpu_vis_vram_limit > 0 &&
vis_vram_limit <= adev->gmc.visible_vram_size)
adev->gmc.visible_vram_size = vis_vram_limit;
/* Change the size here instead of the init above so only lpfn is affected */
amdgpu_ttm_set_buffer_funcs_status(adev, false);
#ifdef CONFIG_64BIT
adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
adev->gmc.visible_vram_size);
#endif
/*
*The reserved vram for firmware must be pinned to the specified
*place on the VRAM, so reserve it early.
*/
r = amdgpu_ttm_fw_reserve_vram_init(adev);
if (r) {
return r;
}
/* allocate memory as required for VGA
* This is used for VGA emulation and pre-OS scanout buffers to
* avoid display artifacts while transitioning between pre-OS
* and driver. */
r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM,
&adev->stolen_vga_memory,
NULL, NULL);
if (r)
return r;
DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
(unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
/* Compute GTT size, either bsaed on 3/4th the size of RAM size
* or whatever the user passed on module init */
if (amdgpu_gtt_size == -1) {
struct sysinfo si;
si_meminfo(&si);
gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
adev->gmc.mc_vram_size),
((uint64_t)si.totalram * si.mem_unit * 3/4));
}
else
gtt_size = (uint64_t)amdgpu_gtt_size << 20;
/* Initialize GTT memory pool */
r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
if (r) {
DRM_ERROR("Failed initializing GTT heap.\n");
return r;
}
DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
(unsigned)(gtt_size / (1024 * 1024)));
/* Initialize various on-chip memory pools */
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
adev->gds.gds_size);
if (r) {
DRM_ERROR("Failed initializing GDS heap.\n");
return r;
}
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
adev->gds.gws_size);
if (r) {
DRM_ERROR("Failed initializing gws heap.\n");
return r;
}
r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
adev->gds.oa_size);
if (r) {
DRM_ERROR("Failed initializing oa heap.\n");
return r;
}
/* Register debugfs entries for amdgpu_ttm */
r = amdgpu_ttm_debugfs_init(adev);
if (r) {
DRM_ERROR("Failed to init debugfs\n");
return r;
}
return 0;
}
/**
* amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
*/
void amdgpu_ttm_late_init(struct amdgpu_device *adev)
{
/* return the VGA stolen memory (if any) back to VRAM */
amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
}
/**
* amdgpu_ttm_fini - De-initialize the TTM memory pools
*/
void amdgpu_ttm_fini(struct amdgpu_device *adev)
{
if (!adev->mman.initialized)
return;
amdgpu_ttm_debugfs_fini(adev);
amdgpu_ttm_fw_reserve_vram_fini(adev);
if (adev->mman.aper_base_kaddr)
iounmap(adev->mman.aper_base_kaddr);
adev->mman.aper_base_kaddr = NULL;
ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
ttm_bo_device_release(&adev->mman.bdev);
adev->mman.initialized = false;
DRM_INFO("amdgpu: ttm finalized\n");
}
/**
* amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
*
* @adev: amdgpu_device pointer
* @enable: true when we can use buffer functions.
*
* Enable/disable use of buffer functions during suspend/resume. This should
* only be called at bootup or when userspace isn't running.
*/
void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
{
struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
uint64_t size;
int r;
if (!adev->mman.initialized || adev->in_gpu_reset ||
adev->mman.buffer_funcs_enabled == enable)
return;
if (enable) {
struct amdgpu_ring *ring;
struct drm_sched_rq *rq;
ring = adev->mman.buffer_funcs_ring;
rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
if (r) {
DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
r);
return;
}
} else {
drm_sched_entity_destroy(&adev->mman.entity);
dma_fence_put(man->move);
man->move = NULL;
}
/* this just adjusts TTM size idea, which sets lpfn to the correct value */
if (enable)
size = adev->gmc.real_vram_size;
else
size = adev->gmc.visible_vram_size;
man->size = size >> PAGE_SHIFT;
adev->mman.buffer_funcs_enabled = enable;
}
int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct drm_file *file_priv = filp->private_data;
struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
if (adev == NULL)
return -EINVAL;
return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
}
static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
struct ttm_mem_reg *mem, unsigned num_pages,
uint64_t offset, unsigned window,
struct amdgpu_ring *ring,
uint64_t *addr)
{
struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
struct amdgpu_device *adev = ring->adev;
struct ttm_tt *ttm = bo->ttm;
struct amdgpu_job *job;
unsigned num_dw, num_bytes;
dma_addr_t *dma_address;
struct dma_fence *fence;
uint64_t src_addr, dst_addr;
uint64_t flags;
int r;
BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
*addr = adev->gmc.gart_start;
*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
AMDGPU_GPU_PAGE_SIZE;
num_dw = adev->mman.buffer_funcs->copy_num_dw;
while (num_dw & 0x7)
num_dw++;
num_bytes = num_pages * 8;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
if (r)
return r;
src_addr = num_dw * 4;
src_addr += job->ibs[0].gpu_addr;
dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
dst_addr, num_bytes);
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
&job->ibs[0].ptr[num_dw]);
if (r)
goto error_free;
r = amdgpu_job_submit(job, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
if (r)
goto error_free;
dma_fence_put(fence);
return r;
error_free:
amdgpu_job_free(job);
return r;
}
int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
uint64_t dst_offset, uint32_t byte_count,
struct reservation_object *resv,
struct dma_fence **fence, bool direct_submit,
bool vm_needs_flush)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_job *job;
uint32_t max_bytes;
unsigned num_loops, num_dw;
unsigned i;
int r;
if (direct_submit && !ring->sched.ready) {
DRM_ERROR("Trying to move memory with ring turned off.\n");
return -EINVAL;
}
max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
num_loops = DIV_ROUND_UP(byte_count, max_bytes);
num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
/* for IB padding */
while (num_dw & 0x7)
num_dw++;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
if (r)
return r;
if (vm_needs_flush) {
job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
job->vm_needs_flush = true;
}
if (resv) {
r = amdgpu_sync_resv(adev, &job->sync, resv,
AMDGPU_FENCE_OWNER_UNDEFINED,
false);
if (r) {
DRM_ERROR("sync failed (%d).\n", r);
goto error_free;
}
}
for (i = 0; i < num_loops; i++) {
uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
dst_offset, cur_size_in_bytes);
src_offset += cur_size_in_bytes;
dst_offset += cur_size_in_bytes;
byte_count -= cur_size_in_bytes;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
if (direct_submit)
r = amdgpu_job_submit_direct(job, ring, fence);
else
r = amdgpu_job_submit(job, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, fence);
if (r)
goto error_free;
return r;
error_free:
amdgpu_job_free(job);
DRM_ERROR("Error scheduling IBs (%d)\n", r);
return r;
}
int amdgpu_fill_buffer(struct amdgpu_bo *bo,
uint32_t src_data,
struct reservation_object *resv,
struct dma_fence **fence)
{
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
struct drm_mm_node *mm_node;
unsigned long num_pages;
unsigned int num_loops, num_dw;
struct amdgpu_job *job;
int r;
if (!adev->mman.buffer_funcs_enabled) {
DRM_ERROR("Trying to clear memory with ring turned off.\n");
return -EINVAL;
}
if (bo->tbo.mem.mem_type == TTM_PL_TT) {
r = amdgpu_ttm_alloc_gart(&bo->tbo);
if (r)
return r;
}
num_pages = bo->tbo.num_pages;
mm_node = bo->tbo.mem.mm_node;
num_loops = 0;
while (num_pages) {
uint64_t byte_count = mm_node->size << PAGE_SHIFT;
num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
num_pages -= mm_node->size;
++mm_node;
}
num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
/* for IB padding */
num_dw += 64;
r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
if (r)
return r;
if (resv) {
r = amdgpu_sync_resv(adev, &job->sync, resv,
AMDGPU_FENCE_OWNER_UNDEFINED, false);
if (r) {
DRM_ERROR("sync failed (%d).\n", r);
goto error_free;
}
}
num_pages = bo->tbo.num_pages;
mm_node = bo->tbo.mem.mm_node;
while (num_pages) {
uint64_t byte_count = mm_node->size << PAGE_SHIFT;
uint64_t dst_addr;
dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
while (byte_count) {
uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
max_bytes);
amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
dst_addr, cur_size_in_bytes);
dst_addr += cur_size_in_bytes;
byte_count -= cur_size_in_bytes;
}
num_pages -= mm_node->size;
++mm_node;
}
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > num_dw);
r = amdgpu_job_submit(job, &adev->mman.entity,
AMDGPU_FENCE_OWNER_UNDEFINED, fence);
if (r)
goto error_free;
return 0;
error_free:
amdgpu_job_free(job);
return r;
}
#if defined(CONFIG_DEBUG_FS)
static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
unsigned ttm_pl = (uintptr_t)node->info_ent->data;
struct drm_device *dev = node->minor->dev;
struct amdgpu_device *adev = dev->dev_private;
struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
struct drm_printer p = drm_seq_file_printer(m);
man->func->debug(man, &p);
return 0;
}
static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
#ifdef CONFIG_SWIOTLB
{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
#endif
};
/**
* amdgpu_ttm_vram_read - Linear read access to VRAM
*
* Accesses VRAM via MMIO for debugging purposes.
*/
static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (*pos >= adev->gmc.mc_vram_size)
return -ENXIO;
while (size) {
unsigned long flags;
uint32_t value;
if (*pos >= adev->gmc.mc_vram_size)
return result;
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
value = RREG32_NO_KIQ(mmMM_DATA);
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
r = put_user(value, (uint32_t *)buf);
if (r)
return r;
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
/**
* amdgpu_ttm_vram_write - Linear write access to VRAM
*
* Accesses VRAM via MMIO for debugging purposes.
*/
static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
if (size & 0x3 || *pos & 0x3)
return -EINVAL;
if (*pos >= adev->gmc.mc_vram_size)
return -ENXIO;
while (size) {
unsigned long flags;
uint32_t value;
if (*pos >= adev->gmc.mc_vram_size)
return result;
r = get_user(value, (uint32_t *)buf);
if (r)
return r;
spin_lock_irqsave(&adev->mmio_idx_lock, flags);
WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
WREG32_NO_KIQ(mmMM_DATA, value);
spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
result += 4;
buf += 4;
*pos += 4;
size -= 4;
}
return result;
}
static const struct file_operations amdgpu_ttm_vram_fops = {
.owner = THIS_MODULE,
.read = amdgpu_ttm_vram_read,
.write = amdgpu_ttm_vram_write,
.llseek = default_llseek,
};
#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
/**
* amdgpu_ttm_gtt_read - Linear read access to GTT memory
*/
static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
ssize_t result = 0;
int r;
while (size) {
loff_t p = *pos / PAGE_SIZE;
unsigned off = *pos & ~PAGE_MASK;
size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
struct page *page;
void *ptr;
if (p >= adev->gart.num_cpu_pages)
return result;
page = adev->gart.pages[p];
if (page) {
ptr = kmap(page);
ptr += off;
r = copy_to_user(buf, ptr, cur_size);
kunmap(adev->gart.pages[p]);
} else
r = clear_user(buf, cur_size);
if (r)
return -EFAULT;
result += cur_size;
buf += cur_size;
*pos += cur_size;
size -= cur_size;
}
return result;
}
static const struct file_operations amdgpu_ttm_gtt_fops = {
.owner = THIS_MODULE,
.read = amdgpu_ttm_gtt_read,
.llseek = default_llseek
};
#endif
/**
* amdgpu_iomem_read - Virtual read access to GPU mapped memory
*
* This function is used to read memory that has been mapped to the
* GPU and the known addresses are not physical addresses but instead
* bus addresses (e.g., what you'd put in an IB or ring buffer).
*/
static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
struct iommu_domain *dom;
ssize_t result = 0;
int r;
/* retrieve the IOMMU domain if any for this device */
dom = iommu_get_domain_for_dev(adev->dev);
while (size) {
phys_addr_t addr = *pos & PAGE_MASK;
loff_t off = *pos & ~PAGE_MASK;
size_t bytes = PAGE_SIZE - off;
unsigned long pfn;
struct page *p;
void *ptr;
bytes = bytes < size ? bytes : size;
/* Translate the bus address to a physical address. If
* the domain is NULL it means there is no IOMMU active
* and the address translation is the identity
*/
addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
pfn = addr >> PAGE_SHIFT;
if (!pfn_valid(pfn))
return -EPERM;
p = pfn_to_page(pfn);
if (p->mapping != adev->mman.bdev.dev_mapping)
return -EPERM;
ptr = kmap(p);
r = copy_to_user(buf, ptr + off, bytes);
kunmap(p);
if (r)
return -EFAULT;
size -= bytes;
*pos += bytes;
result += bytes;
}
return result;
}
/**
* amdgpu_iomem_write - Virtual write access to GPU mapped memory
*
* This function is used to write memory that has been mapped to the
* GPU and the known addresses are not physical addresses but instead
* bus addresses (e.g., what you'd put in an IB or ring buffer).
*/
static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
struct iommu_domain *dom;
ssize_t result = 0;
int r;
dom = iommu_get_domain_for_dev(adev->dev);
while (size) {
phys_addr_t addr = *pos & PAGE_MASK;
loff_t off = *pos & ~PAGE_MASK;
size_t bytes = PAGE_SIZE - off;
unsigned long pfn;
struct page *p;
void *ptr;
bytes = bytes < size ? bytes : size;
addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
pfn = addr >> PAGE_SHIFT;
if (!pfn_valid(pfn))
return -EPERM;
p = pfn_to_page(pfn);
if (p->mapping != adev->mman.bdev.dev_mapping)
return -EPERM;
ptr = kmap(p);
r = copy_from_user(ptr + off, buf, bytes);
kunmap(p);
if (r)
return -EFAULT;
size -= bytes;
*pos += bytes;
result += bytes;
}
return result;
}
static const struct file_operations amdgpu_ttm_iomem_fops = {
.owner = THIS_MODULE,
.read = amdgpu_iomem_read,
.write = amdgpu_iomem_write,
.llseek = default_llseek
};
static const struct {
char *name;
const struct file_operations *fops;
int domain;
} ttm_debugfs_entries[] = {
{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
#ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
#endif
{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
};
#endif
static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
unsigned count;
struct drm_minor *minor = adev->ddev->primary;
struct dentry *ent, *root = minor->debugfs_root;
for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
ent = debugfs_create_file(
ttm_debugfs_entries[count].name,
S_IFREG | S_IRUGO, root,
adev,
ttm_debugfs_entries[count].fops);
if (IS_ERR(ent))
return PTR_ERR(ent);
if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
i_size_write(ent->d_inode, adev->gmc.gart_size);
adev->mman.debugfs_entries[count] = ent;
}
count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
#ifdef CONFIG_SWIOTLB
if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
--count;
#endif
return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
#else
return 0;
#endif
}
static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
unsigned i;
for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
debugfs_remove(adev->mman.debugfs_entries[i]);
#endif
}