linux-stable/arch/x86/kvm/svm/nested.c
Maxim Levitsky 2fcf4876ad KVM: nSVM: implement on demand allocation of the nested state
This way we don't waste memory on VMs which don't use nesting
virtualization even when the host enabled it for them.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20201001112954.6258-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-10-21 17:48:48 -04:00

1217 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Kernel-based Virtual Machine driver for Linux
*
* AMD SVM support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
#define pr_fmt(fmt) "SVM: " fmt
#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <asm/msr-index.h>
#include <asm/debugreg.h>
#include "kvm_emulate.h"
#include "trace.h"
#include "mmu.h"
#include "x86.h"
#include "cpuid.h"
#include "lapic.h"
#include "svm.h"
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
/*
* TODO: track the cause of the nested page fault, and
* correctly fill in the high bits of exit_info_1.
*/
svm->vmcb->control.exit_code = SVM_EXIT_NPF;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = (1ULL << 32);
svm->vmcb->control.exit_info_2 = fault->address;
}
svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
svm->vmcb->control.exit_info_1 |= fault->error_code;
nested_svm_vmexit(svm);
}
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
{
struct vcpu_svm *svm = to_svm(vcpu);
u64 cr3 = svm->nested.ctl.nested_cr3;
u64 pdpte;
int ret;
ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
offset_in_page(cr3) + index * 8, 8);
if (ret)
return 0;
return pdpte;
}
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
return svm->nested.ctl.nested_cr3;
}
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *hsave = svm->nested.hsave;
WARN_ON(mmu_is_nested(vcpu));
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
kvm_init_shadow_npt_mmu(vcpu, X86_CR0_PG, hsave->save.cr4, hsave->save.efer,
svm->nested.ctl.nested_cr3);
vcpu->arch.mmu->get_guest_pgd = nested_svm_get_tdp_cr3;
vcpu->arch.mmu->get_pdptr = nested_svm_get_tdp_pdptr;
vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
void recalc_intercepts(struct vcpu_svm *svm)
{
struct vmcb_control_area *c, *h, *g;
unsigned int i;
vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
if (!is_guest_mode(&svm->vcpu))
return;
c = &svm->vmcb->control;
h = &svm->nested.hsave->control;
g = &svm->nested.ctl;
for (i = 0; i < MAX_INTERCEPT; i++)
c->intercepts[i] = h->intercepts[i];
if (g->int_ctl & V_INTR_MASKING_MASK) {
/* We only want the cr8 intercept bits of L1 */
vmcb_clr_intercept(c, INTERCEPT_CR8_READ);
vmcb_clr_intercept(c, INTERCEPT_CR8_WRITE);
/*
* Once running L2 with HF_VINTR_MASK, EFLAGS.IF does not
* affect any interrupt we may want to inject; therefore,
* interrupt window vmexits are irrelevant to L0.
*/
vmcb_clr_intercept(c, INTERCEPT_VINTR);
}
/* We don't want to see VMMCALLs from a nested guest */
vmcb_clr_intercept(c, INTERCEPT_VMMCALL);
for (i = 0; i < MAX_INTERCEPT; i++)
c->intercepts[i] |= g->intercepts[i];
}
static void copy_vmcb_control_area(struct vmcb_control_area *dst,
struct vmcb_control_area *from)
{
unsigned int i;
for (i = 0; i < MAX_INTERCEPT; i++)
dst->intercepts[i] = from->intercepts[i];
dst->iopm_base_pa = from->iopm_base_pa;
dst->msrpm_base_pa = from->msrpm_base_pa;
dst->tsc_offset = from->tsc_offset;
/* asid not copied, it is handled manually for svm->vmcb. */
dst->tlb_ctl = from->tlb_ctl;
dst->int_ctl = from->int_ctl;
dst->int_vector = from->int_vector;
dst->int_state = from->int_state;
dst->exit_code = from->exit_code;
dst->exit_code_hi = from->exit_code_hi;
dst->exit_info_1 = from->exit_info_1;
dst->exit_info_2 = from->exit_info_2;
dst->exit_int_info = from->exit_int_info;
dst->exit_int_info_err = from->exit_int_info_err;
dst->nested_ctl = from->nested_ctl;
dst->event_inj = from->event_inj;
dst->event_inj_err = from->event_inj_err;
dst->nested_cr3 = from->nested_cr3;
dst->virt_ext = from->virt_ext;
dst->pause_filter_count = from->pause_filter_count;
dst->pause_filter_thresh = from->pause_filter_thresh;
}
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
{
/*
* This function merges the msr permission bitmaps of kvm and the
* nested vmcb. It is optimized in that it only merges the parts where
* the kvm msr permission bitmap may contain zero bits
*/
int i;
if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
return true;
for (i = 0; i < MSRPM_OFFSETS; i++) {
u32 value, p;
u64 offset;
if (msrpm_offsets[i] == 0xffffffff)
break;
p = msrpm_offsets[i];
offset = svm->nested.ctl.msrpm_base_pa + (p * 4);
if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
return false;
svm->nested.msrpm[p] = svm->msrpm[p] | value;
}
svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
return true;
}
static bool svm_get_nested_state_pages(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
if (!nested_svm_vmrun_msrpm(svm)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return false;
}
return true;
}
static bool nested_vmcb_check_controls(struct vmcb_control_area *control)
{
if ((vmcb_is_intercept(control, INTERCEPT_VMRUN)) == 0)
return false;
if (control->asid == 0)
return false;
if ((control->nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
!npt_enabled)
return false;
return true;
}
static bool nested_vmcb_checks(struct vcpu_svm *svm, struct vmcb *vmcb12)
{
bool vmcb12_lma;
if ((vmcb12->save.efer & EFER_SVME) == 0)
return false;
if (((vmcb12->save.cr0 & X86_CR0_CD) == 0) && (vmcb12->save.cr0 & X86_CR0_NW))
return false;
if (!kvm_dr6_valid(vmcb12->save.dr6) || !kvm_dr7_valid(vmcb12->save.dr7))
return false;
vmcb12_lma = (vmcb12->save.efer & EFER_LME) && (vmcb12->save.cr0 & X86_CR0_PG);
if (!vmcb12_lma) {
if (vmcb12->save.cr4 & X86_CR4_PAE) {
if (vmcb12->save.cr3 & MSR_CR3_LEGACY_PAE_RESERVED_MASK)
return false;
} else {
if (vmcb12->save.cr3 & MSR_CR3_LEGACY_RESERVED_MASK)
return false;
}
} else {
if (!(vmcb12->save.cr4 & X86_CR4_PAE) ||
!(vmcb12->save.cr0 & X86_CR0_PE) ||
(vmcb12->save.cr3 & MSR_CR3_LONG_MBZ_MASK))
return false;
}
if (kvm_valid_cr4(&svm->vcpu, vmcb12->save.cr4))
return false;
return nested_vmcb_check_controls(&vmcb12->control);
}
static void load_nested_vmcb_control(struct vcpu_svm *svm,
struct vmcb_control_area *control)
{
copy_vmcb_control_area(&svm->nested.ctl, control);
/* Copy it here because nested_svm_check_controls will check it. */
svm->nested.ctl.asid = control->asid;
svm->nested.ctl.msrpm_base_pa &= ~0x0fffULL;
svm->nested.ctl.iopm_base_pa &= ~0x0fffULL;
}
/*
* Synchronize fields that are written by the processor, so that
* they can be copied back into the nested_vmcb.
*/
void sync_nested_vmcb_control(struct vcpu_svm *svm)
{
u32 mask;
svm->nested.ctl.event_inj = svm->vmcb->control.event_inj;
svm->nested.ctl.event_inj_err = svm->vmcb->control.event_inj_err;
/* Only a few fields of int_ctl are written by the processor. */
mask = V_IRQ_MASK | V_TPR_MASK;
if (!(svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK) &&
svm_is_intercept(svm, INTERCEPT_VINTR)) {
/*
* In order to request an interrupt window, L0 is usurping
* svm->vmcb->control.int_ctl and possibly setting V_IRQ
* even if it was clear in L1's VMCB. Restoring it would be
* wrong. However, in this case V_IRQ will remain true until
* interrupt_window_interception calls svm_clear_vintr and
* restores int_ctl. We can just leave it aside.
*/
mask &= ~V_IRQ_MASK;
}
svm->nested.ctl.int_ctl &= ~mask;
svm->nested.ctl.int_ctl |= svm->vmcb->control.int_ctl & mask;
}
/*
* Transfer any event that L0 or L1 wanted to inject into L2 to
* EXIT_INT_INFO.
*/
static void nested_vmcb_save_pending_event(struct vcpu_svm *svm,
struct vmcb *vmcb12)
{
struct kvm_vcpu *vcpu = &svm->vcpu;
u32 exit_int_info = 0;
unsigned int nr;
if (vcpu->arch.exception.injected) {
nr = vcpu->arch.exception.nr;
exit_int_info = nr | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT;
if (vcpu->arch.exception.has_error_code) {
exit_int_info |= SVM_EVTINJ_VALID_ERR;
vmcb12->control.exit_int_info_err =
vcpu->arch.exception.error_code;
}
} else if (vcpu->arch.nmi_injected) {
exit_int_info = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
} else if (vcpu->arch.interrupt.injected) {
nr = vcpu->arch.interrupt.nr;
exit_int_info = nr | SVM_EVTINJ_VALID;
if (vcpu->arch.interrupt.soft)
exit_int_info |= SVM_EVTINJ_TYPE_SOFT;
else
exit_int_info |= SVM_EVTINJ_TYPE_INTR;
}
vmcb12->control.exit_int_info = exit_int_info;
}
static inline bool nested_npt_enabled(struct vcpu_svm *svm)
{
return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
}
/*
* Load guest's/host's cr3 on nested vmentry or vmexit. @nested_npt is true
* if we are emulating VM-Entry into a guest with NPT enabled.
*/
static int nested_svm_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
bool nested_npt)
{
if (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63))
return -EINVAL;
if (!nested_npt && is_pae_paging(vcpu) &&
(cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
return -EINVAL;
}
/*
* TODO: optimize unconditional TLB flush/MMU sync here and in
* kvm_init_shadow_npt_mmu().
*/
if (!nested_npt)
kvm_mmu_new_pgd(vcpu, cr3, false, false);
vcpu->arch.cr3 = cr3;
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
kvm_init_mmu(vcpu, false);
return 0;
}
static void nested_prepare_vmcb_save(struct vcpu_svm *svm, struct vmcb *vmcb12)
{
/* Load the nested guest state */
svm->vmcb->save.es = vmcb12->save.es;
svm->vmcb->save.cs = vmcb12->save.cs;
svm->vmcb->save.ss = vmcb12->save.ss;
svm->vmcb->save.ds = vmcb12->save.ds;
svm->vmcb->save.gdtr = vmcb12->save.gdtr;
svm->vmcb->save.idtr = vmcb12->save.idtr;
kvm_set_rflags(&svm->vcpu, vmcb12->save.rflags);
svm_set_efer(&svm->vcpu, vmcb12->save.efer);
svm_set_cr0(&svm->vcpu, vmcb12->save.cr0);
svm_set_cr4(&svm->vcpu, vmcb12->save.cr4);
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = vmcb12->save.cr2;
kvm_rax_write(&svm->vcpu, vmcb12->save.rax);
kvm_rsp_write(&svm->vcpu, vmcb12->save.rsp);
kvm_rip_write(&svm->vcpu, vmcb12->save.rip);
/* In case we don't even reach vcpu_run, the fields are not updated */
svm->vmcb->save.rax = vmcb12->save.rax;
svm->vmcb->save.rsp = vmcb12->save.rsp;
svm->vmcb->save.rip = vmcb12->save.rip;
svm->vmcb->save.dr7 = vmcb12->save.dr7;
svm->vcpu.arch.dr6 = vmcb12->save.dr6;
svm->vmcb->save.cpl = vmcb12->save.cpl;
}
static void nested_prepare_vmcb_control(struct vcpu_svm *svm)
{
const u32 mask = V_INTR_MASKING_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK;
if (nested_npt_enabled(svm))
nested_svm_init_mmu_context(&svm->vcpu);
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
svm->vcpu.arch.l1_tsc_offset + svm->nested.ctl.tsc_offset;
svm->vmcb->control.int_ctl =
(svm->nested.ctl.int_ctl & ~mask) |
(svm->nested.hsave->control.int_ctl & mask);
svm->vmcb->control.virt_ext = svm->nested.ctl.virt_ext;
svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
svm->vmcb->control.int_state = svm->nested.ctl.int_state;
svm->vmcb->control.event_inj = svm->nested.ctl.event_inj;
svm->vmcb->control.event_inj_err = svm->nested.ctl.event_inj_err;
svm->vmcb->control.pause_filter_count = svm->nested.ctl.pause_filter_count;
svm->vmcb->control.pause_filter_thresh = svm->nested.ctl.pause_filter_thresh;
/* Enter Guest-Mode */
enter_guest_mode(&svm->vcpu);
/*
* Merge guest and host intercepts - must be called with vcpu in
* guest-mode to take affect here
*/
recalc_intercepts(svm);
vmcb_mark_all_dirty(svm->vmcb);
}
int enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb12_gpa,
struct vmcb *vmcb12)
{
int ret;
svm->nested.vmcb12_gpa = vmcb12_gpa;
load_nested_vmcb_control(svm, &vmcb12->control);
nested_prepare_vmcb_save(svm, vmcb12);
nested_prepare_vmcb_control(svm);
ret = nested_svm_load_cr3(&svm->vcpu, vmcb12->save.cr3,
nested_npt_enabled(svm));
if (ret)
return ret;
svm_set_gif(svm, true);
return 0;
}
int nested_svm_vmrun(struct vcpu_svm *svm)
{
int ret;
struct vmcb *vmcb12;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
u64 vmcb12_gpa;
if (is_smm(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
vmcb12_gpa = svm->vmcb->save.rax;
ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb12_gpa), &map);
if (ret == -EINVAL) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
} else if (ret) {
return kvm_skip_emulated_instruction(&svm->vcpu);
}
ret = kvm_skip_emulated_instruction(&svm->vcpu);
vmcb12 = map.hva;
if (WARN_ON_ONCE(!svm->nested.initialized))
return -EINVAL;
if (!nested_vmcb_checks(svm, vmcb12)) {
vmcb12->control.exit_code = SVM_EXIT_ERR;
vmcb12->control.exit_code_hi = 0;
vmcb12->control.exit_info_1 = 0;
vmcb12->control.exit_info_2 = 0;
goto out;
}
trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb12_gpa,
vmcb12->save.rip,
vmcb12->control.int_ctl,
vmcb12->control.event_inj,
vmcb12->control.nested_ctl);
trace_kvm_nested_intercepts(vmcb12->control.intercepts[INTERCEPT_CR] & 0xffff,
vmcb12->control.intercepts[INTERCEPT_CR] >> 16,
vmcb12->control.intercepts[INTERCEPT_EXCEPTION],
vmcb12->control.intercepts[INTERCEPT_WORD3],
vmcb12->control.intercepts[INTERCEPT_WORD4],
vmcb12->control.intercepts[INTERCEPT_WORD5]);
/* Clear internal status */
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
/*
* Save the old vmcb, so we don't need to pick what we save, but can
* restore everything when a VMEXIT occurs
*/
hsave->save.es = vmcb->save.es;
hsave->save.cs = vmcb->save.cs;
hsave->save.ss = vmcb->save.ss;
hsave->save.ds = vmcb->save.ds;
hsave->save.gdtr = vmcb->save.gdtr;
hsave->save.idtr = vmcb->save.idtr;
hsave->save.efer = svm->vcpu.arch.efer;
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
hsave->save.cr4 = svm->vcpu.arch.cr4;
hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
hsave->save.rip = kvm_rip_read(&svm->vcpu);
hsave->save.rsp = vmcb->save.rsp;
hsave->save.rax = vmcb->save.rax;
if (npt_enabled)
hsave->save.cr3 = vmcb->save.cr3;
else
hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
copy_vmcb_control_area(&hsave->control, &vmcb->control);
svm->nested.nested_run_pending = 1;
if (enter_svm_guest_mode(svm, vmcb12_gpa, vmcb12))
goto out_exit_err;
if (nested_svm_vmrun_msrpm(svm))
goto out;
out_exit_err:
svm->nested.nested_run_pending = 0;
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
svm->vmcb->control.exit_code_hi = 0;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
out:
kvm_vcpu_unmap(&svm->vcpu, &map, true);
return ret;
}
void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
{
to_vmcb->save.fs = from_vmcb->save.fs;
to_vmcb->save.gs = from_vmcb->save.gs;
to_vmcb->save.tr = from_vmcb->save.tr;
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
to_vmcb->save.star = from_vmcb->save.star;
to_vmcb->save.lstar = from_vmcb->save.lstar;
to_vmcb->save.cstar = from_vmcb->save.cstar;
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
}
int nested_svm_vmexit(struct vcpu_svm *svm)
{
int rc;
struct vmcb *vmcb12;
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
struct kvm_host_map map;
rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb12_gpa), &map);
if (rc) {
if (rc == -EINVAL)
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
vmcb12 = map.hva;
/* Exit Guest-Mode */
leave_guest_mode(&svm->vcpu);
svm->nested.vmcb12_gpa = 0;
WARN_ON_ONCE(svm->nested.nested_run_pending);
/* in case we halted in L2 */
svm->vcpu.arch.mp_state = KVM_MP_STATE_RUNNABLE;
/* Give the current vmcb to the guest */
vmcb12->save.es = vmcb->save.es;
vmcb12->save.cs = vmcb->save.cs;
vmcb12->save.ss = vmcb->save.ss;
vmcb12->save.ds = vmcb->save.ds;
vmcb12->save.gdtr = vmcb->save.gdtr;
vmcb12->save.idtr = vmcb->save.idtr;
vmcb12->save.efer = svm->vcpu.arch.efer;
vmcb12->save.cr0 = kvm_read_cr0(&svm->vcpu);
vmcb12->save.cr3 = kvm_read_cr3(&svm->vcpu);
vmcb12->save.cr2 = vmcb->save.cr2;
vmcb12->save.cr4 = svm->vcpu.arch.cr4;
vmcb12->save.rflags = kvm_get_rflags(&svm->vcpu);
vmcb12->save.rip = kvm_rip_read(&svm->vcpu);
vmcb12->save.rsp = kvm_rsp_read(&svm->vcpu);
vmcb12->save.rax = kvm_rax_read(&svm->vcpu);
vmcb12->save.dr7 = vmcb->save.dr7;
vmcb12->save.dr6 = svm->vcpu.arch.dr6;
vmcb12->save.cpl = vmcb->save.cpl;
vmcb12->control.int_state = vmcb->control.int_state;
vmcb12->control.exit_code = vmcb->control.exit_code;
vmcb12->control.exit_code_hi = vmcb->control.exit_code_hi;
vmcb12->control.exit_info_1 = vmcb->control.exit_info_1;
vmcb12->control.exit_info_2 = vmcb->control.exit_info_2;
if (vmcb12->control.exit_code != SVM_EXIT_ERR)
nested_vmcb_save_pending_event(svm, vmcb12);
if (svm->nrips_enabled)
vmcb12->control.next_rip = vmcb->control.next_rip;
vmcb12->control.int_ctl = svm->nested.ctl.int_ctl;
vmcb12->control.tlb_ctl = svm->nested.ctl.tlb_ctl;
vmcb12->control.event_inj = svm->nested.ctl.event_inj;
vmcb12->control.event_inj_err = svm->nested.ctl.event_inj_err;
vmcb12->control.pause_filter_count =
svm->vmcb->control.pause_filter_count;
vmcb12->control.pause_filter_thresh =
svm->vmcb->control.pause_filter_thresh;
/* Restore the original control entries */
copy_vmcb_control_area(&vmcb->control, &hsave->control);
/* On vmexit the GIF is set to false */
svm_set_gif(svm, false);
svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset =
svm->vcpu.arch.l1_tsc_offset;
svm->nested.ctl.nested_cr3 = 0;
/* Restore selected save entries */
svm->vmcb->save.es = hsave->save.es;
svm->vmcb->save.cs = hsave->save.cs;
svm->vmcb->save.ss = hsave->save.ss;
svm->vmcb->save.ds = hsave->save.ds;
svm->vmcb->save.gdtr = hsave->save.gdtr;
svm->vmcb->save.idtr = hsave->save.idtr;
kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
svm_set_efer(&svm->vcpu, hsave->save.efer);
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
kvm_rax_write(&svm->vcpu, hsave->save.rax);
kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
kvm_rip_write(&svm->vcpu, hsave->save.rip);
svm->vmcb->save.dr7 = 0;
svm->vmcb->save.cpl = 0;
svm->vmcb->control.exit_int_info = 0;
vmcb_mark_all_dirty(svm->vmcb);
trace_kvm_nested_vmexit_inject(vmcb12->control.exit_code,
vmcb12->control.exit_info_1,
vmcb12->control.exit_info_2,
vmcb12->control.exit_int_info,
vmcb12->control.exit_int_info_err,
KVM_ISA_SVM);
kvm_vcpu_unmap(&svm->vcpu, &map, true);
nested_svm_uninit_mmu_context(&svm->vcpu);
rc = nested_svm_load_cr3(&svm->vcpu, hsave->save.cr3, false);
if (rc)
return 1;
if (npt_enabled)
svm->vmcb->save.cr3 = hsave->save.cr3;
/*
* Drop what we picked up for L2 via svm_complete_interrupts() so it
* doesn't end up in L1.
*/
svm->vcpu.arch.nmi_injected = false;
kvm_clear_exception_queue(&svm->vcpu);
kvm_clear_interrupt_queue(&svm->vcpu);
return 0;
}
int svm_allocate_nested(struct vcpu_svm *svm)
{
struct page *hsave_page;
if (svm->nested.initialized)
return 0;
hsave_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!hsave_page)
return -ENOMEM;
svm->nested.hsave = page_address(hsave_page);
svm->nested.msrpm = svm_vcpu_alloc_msrpm();
if (!svm->nested.msrpm)
goto err_free_hsave;
svm_vcpu_init_msrpm(&svm->vcpu, svm->nested.msrpm);
svm->nested.initialized = true;
return 0;
err_free_hsave:
__free_page(hsave_page);
return -ENOMEM;
}
void svm_free_nested(struct vcpu_svm *svm)
{
if (!svm->nested.initialized)
return;
svm_vcpu_free_msrpm(svm->nested.msrpm);
svm->nested.msrpm = NULL;
__free_page(virt_to_page(svm->nested.hsave));
svm->nested.hsave = NULL;
svm->nested.initialized = false;
}
/*
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
*/
void svm_leave_nested(struct vcpu_svm *svm)
{
if (is_guest_mode(&svm->vcpu)) {
struct vmcb *hsave = svm->nested.hsave;
struct vmcb *vmcb = svm->vmcb;
svm->nested.nested_run_pending = 0;
leave_guest_mode(&svm->vcpu);
copy_vmcb_control_area(&vmcb->control, &hsave->control);
nested_svm_uninit_mmu_context(&svm->vcpu);
}
kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, &svm->vcpu);
}
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
{
u32 offset, msr, value;
int write, mask;
if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT)))
return NESTED_EXIT_HOST;
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
offset = svm_msrpm_offset(msr);
write = svm->vmcb->control.exit_info_1 & 1;
mask = 1 << ((2 * (msr & 0xf)) + write);
if (offset == MSR_INVALID)
return NESTED_EXIT_DONE;
/* Offset is in 32 bit units but need in 8 bit units */
offset *= 4;
if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.ctl.msrpm_base_pa + offset, &value, 4))
return NESTED_EXIT_DONE;
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
{
unsigned port, size, iopm_len;
u16 val, mask;
u8 start_bit;
u64 gpa;
if (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_IOIO_PROT)))
return NESTED_EXIT_HOST;
port = svm->vmcb->control.exit_info_1 >> 16;
size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
SVM_IOIO_SIZE_SHIFT;
gpa = svm->nested.ctl.iopm_base_pa + (port / 8);
start_bit = port % 8;
iopm_len = (start_bit + size > 8) ? 2 : 1;
mask = (0xf >> (4 - size)) << start_bit;
val = 0;
if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
return NESTED_EXIT_DONE;
return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
}
static int nested_svm_intercept(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
int vmexit = NESTED_EXIT_HOST;
switch (exit_code) {
case SVM_EXIT_MSR:
vmexit = nested_svm_exit_handled_msr(svm);
break;
case SVM_EXIT_IOIO:
vmexit = nested_svm_intercept_ioio(svm);
break;
case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
/*
* Host-intercepted exceptions have been checked already in
* nested_svm_exit_special. There is nothing to do here,
* the vmexit is injected by svm_check_nested_events.
*/
vmexit = NESTED_EXIT_DONE;
break;
}
case SVM_EXIT_ERR: {
vmexit = NESTED_EXIT_DONE;
break;
}
default: {
if (vmcb_is_intercept(&svm->nested.ctl, exit_code))
vmexit = NESTED_EXIT_DONE;
}
}
return vmexit;
}
int nested_svm_exit_handled(struct vcpu_svm *svm)
{
int vmexit;
vmexit = nested_svm_intercept(svm);
if (vmexit == NESTED_EXIT_DONE)
nested_svm_vmexit(svm);
return vmexit;
}
int nested_svm_check_permissions(struct vcpu_svm *svm)
{
if (!(svm->vcpu.arch.efer & EFER_SVME) ||
!is_paging(&svm->vcpu)) {
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
return 1;
}
if (svm->vmcb->save.cpl) {
kvm_inject_gp(&svm->vcpu, 0);
return 1;
}
return 0;
}
static bool nested_exit_on_exception(struct vcpu_svm *svm)
{
unsigned int nr = svm->vcpu.arch.exception.nr;
return (svm->nested.ctl.intercepts[INTERCEPT_EXCEPTION] & BIT(nr));
}
static void nested_svm_inject_exception_vmexit(struct vcpu_svm *svm)
{
unsigned int nr = svm->vcpu.arch.exception.nr;
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
svm->vmcb->control.exit_code_hi = 0;
if (svm->vcpu.arch.exception.has_error_code)
svm->vmcb->control.exit_info_1 = svm->vcpu.arch.exception.error_code;
/*
* EXITINFO2 is undefined for all exception intercepts other
* than #PF.
*/
if (nr == PF_VECTOR) {
if (svm->vcpu.arch.exception.nested_apf)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
else if (svm->vcpu.arch.exception.has_payload)
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
else
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
} else if (nr == DB_VECTOR) {
/* See inject_pending_event. */
kvm_deliver_exception_payload(&svm->vcpu);
if (svm->vcpu.arch.dr7 & DR7_GD) {
svm->vcpu.arch.dr7 &= ~DR7_GD;
kvm_update_dr7(&svm->vcpu);
}
} else
WARN_ON(svm->vcpu.arch.exception.has_payload);
nested_svm_vmexit(svm);
}
static void nested_svm_smi(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_SMI;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static void nested_svm_nmi(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_NMI;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static void nested_svm_intr(struct vcpu_svm *svm)
{
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static inline bool nested_exit_on_init(struct vcpu_svm *svm)
{
return vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_INIT);
}
static void nested_svm_init(struct vcpu_svm *svm)
{
svm->vmcb->control.exit_code = SVM_EXIT_INIT;
svm->vmcb->control.exit_info_1 = 0;
svm->vmcb->control.exit_info_2 = 0;
nested_svm_vmexit(svm);
}
static int svm_check_nested_events(struct kvm_vcpu *vcpu)
{
struct vcpu_svm *svm = to_svm(vcpu);
bool block_nested_events =
kvm_event_needs_reinjection(vcpu) || svm->nested.nested_run_pending;
struct kvm_lapic *apic = vcpu->arch.apic;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_init(svm))
return 0;
nested_svm_init(svm);
return 0;
}
if (vcpu->arch.exception.pending) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_exception(svm))
return 0;
nested_svm_inject_exception_vmexit(svm);
return 0;
}
if (vcpu->arch.smi_pending && !svm_smi_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_smi(svm))
return 0;
nested_svm_smi(svm);
return 0;
}
if (vcpu->arch.nmi_pending && !svm_nmi_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_nmi(svm))
return 0;
nested_svm_nmi(svm);
return 0;
}
if (kvm_cpu_has_interrupt(vcpu) && !svm_interrupt_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_intr(svm))
return 0;
nested_svm_intr(svm);
return 0;
}
return 0;
}
int nested_svm_exit_special(struct vcpu_svm *svm)
{
u32 exit_code = svm->vmcb->control.exit_code;
switch (exit_code) {
case SVM_EXIT_INTR:
case SVM_EXIT_NMI:
case SVM_EXIT_NPF:
return NESTED_EXIT_HOST;
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
if (get_host_vmcb(svm)->control.intercepts[INTERCEPT_EXCEPTION] &
excp_bits)
return NESTED_EXIT_HOST;
else if (exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR &&
svm->vcpu.arch.apf.host_apf_flags)
/* Trap async PF even if not shadowing */
return NESTED_EXIT_HOST;
break;
}
default:
break;
}
return NESTED_EXIT_CONTINUE;
}
static int svm_get_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
u32 user_data_size)
{
struct vcpu_svm *svm;
struct kvm_nested_state kvm_state = {
.flags = 0,
.format = KVM_STATE_NESTED_FORMAT_SVM,
.size = sizeof(kvm_state),
};
struct vmcb __user *user_vmcb = (struct vmcb __user *)
&user_kvm_nested_state->data.svm[0];
if (!vcpu)
return kvm_state.size + KVM_STATE_NESTED_SVM_VMCB_SIZE;
svm = to_svm(vcpu);
if (user_data_size < kvm_state.size)
goto out;
/* First fill in the header and copy it out. */
if (is_guest_mode(vcpu)) {
kvm_state.hdr.svm.vmcb_pa = svm->nested.vmcb12_gpa;
kvm_state.size += KVM_STATE_NESTED_SVM_VMCB_SIZE;
kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
if (svm->nested.nested_run_pending)
kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
}
if (gif_set(svm))
kvm_state.flags |= KVM_STATE_NESTED_GIF_SET;
if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
return -EFAULT;
if (!is_guest_mode(vcpu))
goto out;
/*
* Copy over the full size of the VMCB rather than just the size
* of the structs.
*/
if (clear_user(user_vmcb, KVM_STATE_NESTED_SVM_VMCB_SIZE))
return -EFAULT;
if (copy_to_user(&user_vmcb->control, &svm->nested.ctl,
sizeof(user_vmcb->control)))
return -EFAULT;
if (copy_to_user(&user_vmcb->save, &svm->nested.hsave->save,
sizeof(user_vmcb->save)))
return -EFAULT;
out:
return kvm_state.size;
}
static int svm_set_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
struct kvm_nested_state *kvm_state)
{
struct vcpu_svm *svm = to_svm(vcpu);
struct vmcb *hsave = svm->nested.hsave;
struct vmcb __user *user_vmcb = (struct vmcb __user *)
&user_kvm_nested_state->data.svm[0];
struct vmcb_control_area *ctl;
struct vmcb_save_area *save;
int ret;
u32 cr0;
BUILD_BUG_ON(sizeof(struct vmcb_control_area) + sizeof(struct vmcb_save_area) >
KVM_STATE_NESTED_SVM_VMCB_SIZE);
if (kvm_state->format != KVM_STATE_NESTED_FORMAT_SVM)
return -EINVAL;
if (kvm_state->flags & ~(KVM_STATE_NESTED_GUEST_MODE |
KVM_STATE_NESTED_RUN_PENDING |
KVM_STATE_NESTED_GIF_SET))
return -EINVAL;
/*
* If in guest mode, vcpu->arch.efer actually refers to the L2 guest's
* EFER.SVME, but EFER.SVME still has to be 1 for VMRUN to succeed.
*/
if (!(vcpu->arch.efer & EFER_SVME)) {
/* GIF=1 and no guest mode are required if SVME=0. */
if (kvm_state->flags != KVM_STATE_NESTED_GIF_SET)
return -EINVAL;
}
/* SMM temporarily disables SVM, so we cannot be in guest mode. */
if (is_smm(vcpu) && (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
return -EINVAL;
if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE)) {
svm_leave_nested(svm);
svm_set_gif(svm, !!(kvm_state->flags & KVM_STATE_NESTED_GIF_SET));
return 0;
}
if (!page_address_valid(vcpu, kvm_state->hdr.svm.vmcb_pa))
return -EINVAL;
if (kvm_state->size < sizeof(*kvm_state) + KVM_STATE_NESTED_SVM_VMCB_SIZE)
return -EINVAL;
ret = -ENOMEM;
ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
save = kzalloc(sizeof(*save), GFP_KERNEL);
if (!ctl || !save)
goto out_free;
ret = -EFAULT;
if (copy_from_user(ctl, &user_vmcb->control, sizeof(*ctl)))
goto out_free;
if (copy_from_user(save, &user_vmcb->save, sizeof(*save)))
goto out_free;
ret = -EINVAL;
if (!nested_vmcb_check_controls(ctl))
goto out_free;
/*
* Processor state contains L2 state. Check that it is
* valid for guest mode (see nested_vmcb_checks).
*/
cr0 = kvm_read_cr0(vcpu);
if (((cr0 & X86_CR0_CD) == 0) && (cr0 & X86_CR0_NW))
goto out_free;
/*
* Validate host state saved from before VMRUN (see
* nested_svm_check_permissions).
* TODO: validate reserved bits for all saved state.
*/
if (!(save->cr0 & X86_CR0_PG))
goto out_free;
/*
* All checks done, we can enter guest mode. L1 control fields
* come from the nested save state. Guest state is already
* in the registers, the save area of the nested state instead
* contains saved L1 state.
*/
copy_vmcb_control_area(&hsave->control, &svm->vmcb->control);
hsave->save = *save;
svm->nested.vmcb12_gpa = kvm_state->hdr.svm.vmcb_pa;
load_nested_vmcb_control(svm, ctl);
nested_prepare_vmcb_control(svm);
kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
ret = 0;
out_free:
kfree(save);
kfree(ctl);
return ret;
}
struct kvm_x86_nested_ops svm_nested_ops = {
.check_events = svm_check_nested_events,
.get_nested_state_pages = svm_get_nested_state_pages,
.get_state = svm_get_nested_state,
.set_state = svm_set_nested_state,
};