linux-stable/drivers/net/wireless/realtek/rtlwifi/rtl8188ee/hw.c
Sriram R 046d2e7c50 mac80211: prepare sta handling for MLO support
Currently in mac80211 each STA object is represented
using sta_info datastructure with the associated
STA specific information and drivers access ieee80211_sta
part of it.

With MLO (Multi Link Operation) support being added
in 802.11be standard, though the association is logically
with a single Multi Link capable STA, at the physical level
communication can happen via different advertised
links (uniquely identified by Channel, operating class,
BSSID) and hence the need to handle multiple link
STA parameters within a composite sta_info object
called the MLD STA. The different link STA part of
MLD STA are identified using the link address which can
be same or different as the MLD STA address and unique
link id based on the link vif.

To support extension of such a model, the sta_info
datastructure is modified to hold multiple link STA
objects with link specific params currently within
sta_info moved to this new structure. Similarly this is
done for ieee80211_sta as well which will be accessed
within mac80211 as well as by drivers, hence trivial
driver changes are expected to support this.

For current non MLO supported drivers, only one link STA
is present and link information is accessed via 'deflink'
member.

For MLO drivers, we still need to define the APIs etc. to
get the correct link ID and access the correct part of
the station info.

Currently in mac80211, all link STA info are accessed directly
via deflink. These will be updated to access via link pointers
indexed by link id with MLO support patches, with link id
being 0 for non MLO supported cases.

Except for couple of macro related changes, below spatch takes
care of updating mac80211 and driver code to access to the
link STA info via deflink.

  @ieee80211_sta@
  struct ieee80211_sta *s;
  struct sta_info *si;
  identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr};
  @@

  (
    s->
  -    var
  +    deflink.var
  |
   si->sta.
  -    var
  +    deflink.var
  )

  @sta_info@
  struct sta_info *si;
  identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth};
  @@

  (
    si->
  -    var
  +    deflink.var
  )

Signed-off-by: Sriram R <quic_srirrama@quicinc.com>
Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com
[remove MLO-drivers notes from commit message, not clear yet; run spatch]
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2022-04-11 16:42:03 +02:00

2516 lines
69 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2013 Realtek Corporation.*/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "../pwrseqcmd.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "hw.h"
#include "pwrseq.h"
#define LLT_CONFIG 5
static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}
static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(0);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
unsigned long flags;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
dma_unmap_single(&rtlpci->pdev->dev,
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
true, HW_DESC_TXBUFF_ADDR),
skb->len, DMA_TO_DEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
}
static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw,
u8 rpwm_val, bool b_need_turn_off_ckk)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool b_support_remote_wake_up;
u32 count = 0, isr_regaddr, content;
bool schedule_timer = b_need_turn_off_ckk;
rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
(u8 *)(&b_support_remote_wake_up));
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
while (1) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (rtlhal->fw_clk_change_in_progress) {
while (rtlhal->fw_clk_change_in_progress) {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
count++;
udelay(100);
if (count > 1000)
return;
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
}
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
break;
}
}
if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
if (FW_PS_IS_ACK(rpwm_val)) {
isr_regaddr = REG_HISR;
content = rtl_read_dword(rtlpriv, isr_regaddr);
while (!(content & IMR_CPWM) && (count < 500)) {
udelay(50);
count++;
content = rtl_read_dword(rtlpriv, isr_regaddr);
}
if (content & IMR_CPWM) {
rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
rtl_dbg(rtlpriv, COMP_POWER, DBG_LOUD,
"Receive CPWM INT!!! Set pHalData->FwPSState = %X\n",
rtlhal->fw_ps_state);
}
}
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
} else {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
}
}
static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw,
u8 rpwm_val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring;
enum rf_pwrstate rtstate;
bool schedule_timer = false;
u8 queue;
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
if (!rtlhal->allow_sw_to_change_hwclc)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
return;
for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
ring = &rtlpci->tx_ring[queue];
if (skb_queue_len(&ring->queue)) {
schedule_timer = true;
break;
}
}
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
return;
}
if (FW_PS_STATE(rtlhal->fw_ps_state) !=
FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (!rtlhal->fw_clk_change_in_progress) {
rtlhal->fw_clk_change_in_progress = true;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
rtl_write_word(rtlpriv, REG_HISR, 0x0100);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
&rpwm_val);
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
}
}
static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
_rtl88ee_set_fw_clock_on(hw, rpwm_val, true);
}
static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E;
_rtl88ee_set_fw_clock_off(hw, rpwm_val);
}
void rtl88ee_fw_clk_off_timer_callback(struct timer_list *t)
{
struct rtl_priv *rtlpriv = from_timer(rtlpriv, t,
works.fw_clockoff_timer);
struct ieee80211_hw *hw = rtlpriv->hw;
_rtl88ee_set_fw_ps_rf_off_low_power(hw);
}
static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = false;
u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
if (ppsc->low_power_enable) {
rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */
_rtl88ee_set_fw_clock_on(hw, rpwm_val, false);
rtlhal->allow_sw_to_change_hwclc = false;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
&fw_pwrmode);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
} else {
rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
&fw_pwrmode);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
}
static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = true;
u8 rpwm_val;
if (ppsc->low_power_enable) {
rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
&ppsc->fwctrl_psmode);
rtlhal->allow_sw_to_change_hwclc = true;
_rtl88ee_set_fw_clock_off(hw, rpwm_val);
} else {
rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
&ppsc->fwctrl_psmode);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
}
}
void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON:{
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw,
HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
break; }
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF:{
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break; }
case HAL_DEF_WOWLAN:
break;
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_MACID + idx),
val[idx]);
}
break;
case HW_VAR_BASIC_RATE:{
u16 b_rate_cfg = ((u16 *)val)[0];
u8 rate_index = 0;
b_rate_cfg = b_rate_cfg & 0x15f;
b_rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1,
(b_rate_cfg >> 8) & 0xff);
while (b_rate_cfg > 0x1) {
b_rate_cfg = (b_rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
rate_index);
break;
}
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++) {
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
val[idx]);
}
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
case HW_VAR_SLOT_TIME:{
u8 e_aci;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
&e_aci);
}
break;
}
case HW_VAR_ACK_PREAMBLE:{
u8 reg_tmp;
u8 short_preamble = (bool)*val;
reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2);
if (short_preamble) {
reg_tmp |= 0x02;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL +
2, reg_tmp);
} else {
reg_tmp |= 0xFD;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL +
2, reg_tmp);
}
break; }
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *val);
break;
case HW_VAR_AMPDU_MIN_SPACE:{
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *val;
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg &
0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break; }
case HW_VAR_SHORTGI_DENSITY:{
u8 density_to_set;
density_to_set = *val;
mac->min_space_cfg |= (density_to_set << 3);
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break;
}
case HW_VAR_AMPDU_FACTOR:{
u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
u8 factor_toset;
u8 *p_regtoset = NULL;
u8 index = 0;
p_regtoset = regtoset_normal;
factor_toset = *val;
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
if ((p_regtoset[index] & 0xf0) >
(factor_toset << 4))
p_regtoset[index] =
(p_regtoset[index] & 0x0f) |
(factor_toset << 4);
if ((p_regtoset[index] & 0x0f) >
factor_toset)
p_regtoset[index] =
(p_regtoset[index] & 0xf0) |
(factor_toset);
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + index),
p_regtoset[index]);
}
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break; }
case HW_VAR_AC_PARAM:{
u8 e_aci = *val;
rtl88e_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_ACM_CTRL,
&e_aci);
break; }
case HW_VAR_ACM_CTRL:{
u8 e_aci = *val;
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl = acm_ctrl |
((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_VOQEN);
break;
default:
pr_err("switch case %#x not processed\n",
e_aci);
break;
}
}
rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break; }
case HW_VAR_RCR:
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
rtlpci->receive_config = ((u32 *)(val))[0];
break;
case HW_VAR_RETRY_LIMIT:{
u8 retry_limit = *val;
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break; }
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *val;
break;
case HW_VAR_IO_CMD:
rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_SET_RPWM:{
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7));
}
break; }
case HW_VAR_H2C_FW_PWRMODE:
rtl88e_set_fw_pwrmode_cmd(hw, *val);
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_RESUME_CLK_ON:
_rtl88ee_set_fw_ps_rf_on(hw);
break;
case HW_VAR_FW_LPS_ACTION:{
bool enter_fwlps = *((bool *)val);
if (enter_fwlps)
_rtl88ee_fwlps_enter(hw);
else
_rtl88ee_fwlps_leave(hw);
break; }
case HW_VAR_H2C_FW_JOINBSSRPT:{
u8 mstatus = *val;
u8 tmp_regcr, tmp_reg422, bcnvalid_reg;
u8 count = 0, dlbcn_count = 0;
bool b_recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
NULL);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr | BIT(0)));
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 =
rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
if (tmp_reg422 & BIT(6))
b_recover = true;
do {
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_TDECTRL+2);
rtl_write_byte(rtlpriv, REG_TDECTRL+2,
(bcnvalid_reg | BIT(0)));
_rtl88ee_return_beacon_queue_skb(hw);
rtl88e_set_fw_rsvdpagepkt(hw, 0);
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_TDECTRL+2);
count = 0;
while (!(bcnvalid_reg & BIT(0)) && count < 20) {
count++;
udelay(10);
bcnvalid_reg =
rtl_read_byte(rtlpriv, REG_TDECTRL+2);
}
dlbcn_count++;
} while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5);
if (bcnvalid_reg & BIT(0))
rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (b_recover) {
rtl_write_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
}
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr & ~(BIT(0))));
}
rtl88e_set_fw_joinbss_report_cmd(hw, (*(u8 *)val));
break; }
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl88e_set_p2p_ps_offload_cmd(hw, *val);
break;
case HW_VAR_AID:{
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
mac->assoc_id));
break; }
case HW_VAR_CORRECT_TSF:{
u8 btype_ibss = *val;
if (btype_ibss)
_rtl88ee_stop_tx_beacon(hw);
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32)(mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32)((mac->tsf >> 32) & 0xffffffff));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl88ee_resume_tx_beacon(hw);
break; }
case HW_VAR_KEEP_ALIVE: {
u8 array[2];
array[0] = 0xff;
array[1] = *((u8 *)val);
rtl88e_fill_h2c_cmd(hw, H2C_88E_KEEP_ALIVE_CTRL,
2, array);
break; }
default:
pr_err("switch case %#x not processed\n", variable);
break;
}
}
static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
_LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
pr_err("Failed to polling write LLT done at address %d!\n",
address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxpage;
bool status;
maxpage = 0xAF;
txpktbuf_bndy = 0xAB;
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01);
rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29);
/*0x2600 MaxRxBuff=10k-max(TxReportSize(64*8), WOLPattern(16*24)) */
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy));
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl88ee_llt_write(hw, i, i + 1);
if (!status)
return status;
}
status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (!status)
return status;
for (i = txpktbuf_bndy; i < maxpage; i++) {
status = _rtl88ee_llt_write(hw, i, (i + 1));
if (!status)
return status;
}
status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy);
if (!status)
return status;
return true;
}
static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
if (rtlpriv->rtlhal.up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl88ee_sw_led_on(hw, pled0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl88ee_sw_led_on(hw, pled0);
else
rtl88ee_sw_led_off(hw, pled0);
}
static bool _rtl88ee_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 bytetmp;
u16 wordtmp;
/*Disable XTAL OUTPUT for power saving. YJ,add,111206. */
bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0));
rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp);
/*Auto Power Down to CHIP-off State*/
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
/* HW Power on sequence */
if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
RTL8188EE_NIC_ENABLE_FLOW)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"init MAC Fail as rtl_hal_pwrseqcmdparsing\n");
return false;
}
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2));
bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1);
rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7));
bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1);
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1));
bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0));
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2);
rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0);
/*Add for wake up online*/
bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3));
bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1);
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4))));
rtl_write_byte(rtlpriv, 0x367, 0x80);
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
rtl_write_byte(rtlpriv, REG_CR+1, 0x06);
rtl_write_byte(rtlpriv, MSR, 0x00);
if (!rtlhal->mac_func_enable) {
if (!_rtl88ee_llt_table_init(hw)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"LLT table init fail\n");
return false;
}
}
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xE771;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff);
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ_DESA,
(u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
/* if we want to support 64 bit DMA, we should set it here,
* but now we do not support 64 bit DMA
*/
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */
if (rtlhal->earlymode_enable) {/*Early mode enable*/
bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL);
bytetmp |= 0x1f;
rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp);
rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81);
}
_rtl88ee_gen_refresh_led_state(hw);
return true;
}
static void _rtl88ee_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 reg_prsr;
reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
}
static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 tmp1byte = 0;
u32 tmp4byte = 0, count = 0;
rtl_write_word(rtlpriv, 0x354, 0x8104);
rtl_write_word(rtlpriv, 0x358, 0x24);
rtl_write_word(rtlpriv, 0x350, 0x70c);
rtl_write_byte(rtlpriv, 0x352, 0x2);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
if (0 == tmp1byte) {
tmp4byte = rtl_read_dword(rtlpriv, 0x34c);
rtl_write_dword(rtlpriv, 0x348, tmp4byte|BIT(31));
rtl_write_word(rtlpriv, 0x350, 0xf70c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
rtl_write_word(rtlpriv, 0x350, 0x718);
rtl_write_byte(rtlpriv, 0x352, 0x2);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
if (ppsc->support_backdoor || (0 == tmp1byte)) {
tmp4byte = rtl_read_dword(rtlpriv, 0x34c);
rtl_write_dword(rtlpriv, 0x348, tmp4byte|BIT(11)|BIT(12));
rtl_write_word(rtlpriv, 0x350, 0xf718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count = 0;
while (tmp1byte && count < 20) {
udelay(10);
tmp1byte = rtl_read_byte(rtlpriv, 0x352);
count++;
}
}
void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"The SECR-value %x\n", sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl88ee_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
bool rtstatus;
int err = 0;
u8 tmp_u1b, u1byte;
unsigned long flags;
rtlpriv->rtlhal.being_init_adapter = true;
/* As this function can take a very long time (up to 350 ms)
* and can be called with irqs disabled, reenable the irqs
* to let the other devices continue being serviced.
*
* It is safe doing so since our own interrupts will only be enabled
* in a subsequent step.
*/
local_save_flags(flags);
local_irq_enable();
rtlhal->fw_ready = false;
rtlpriv->intf_ops->disable_aspm(hw);
tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1);
u1byte = rtl_read_byte(rtlpriv, REG_CR);
if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) {
rtlhal->mac_func_enable = true;
} else {
rtlhal->mac_func_enable = false;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
}
rtstatus = _rtl88ee_init_mac(hw);
if (!rtstatus) {
pr_info("Init MAC failed\n");
err = 1;
goto exit;
}
err = rtl88e_download_fw(hw, false);
if (err) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
goto exit;
}
rtlhal->fw_ready = true;
/*fw related variable initialize */
rtlhal->last_hmeboxnum = 0;
rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
rtlhal->fw_clk_change_in_progress = false;
rtlhal->allow_sw_to_change_hwclc = false;
ppsc->fw_current_inpsmode = false;
rtl88e_phy_mac_config(hw);
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
*/
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl88e_phy_bb_config(hw);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl88e_phy_rf_config(hw);
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff;
_rtl88ee_hw_configure(hw);
rtl_cam_reset_all_entry(hw);
rtl88ee_enable_hw_security_config(hw);
rtlhal->mac_func_enable = true;
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl88ee_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
if (ppsc->rfpwr_state == ERFON) {
if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) ||
((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) &&
(rtlhal->oem_id == RT_CID_819X_HP))) {
rtl88e_phy_set_rfpath_switch(hw, true);
rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT;
} else {
rtl88e_phy_set_rfpath_switch(hw, false);
rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "rx idle ant %s\n",
(rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ?
("MAIN_ANT") : ("AUX_ANT"));
if (rtlphy->iqk_initialized) {
rtl88e_phy_iq_calibrate(hw, true);
} else {
rtl88e_phy_iq_calibrate(hw, false);
rtlphy->iqk_initialized = true;
}
rtl88e_dm_check_txpower_tracking(hw);
rtl88e_phy_lc_calibrate(hw);
}
tmp_u1b = efuse_read_1byte(hw, 0x1FA);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n");
}
if (!(tmp_u1b & BIT(4))) {
tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
tmp_u1b &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
udelay(10);
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n");
}
rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128));
rtl88e_dm_init(hw);
exit:
local_irq_restore(flags);
rtlpriv->rtlhal.being_init_adapter = false;
return err;
}
static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum version_8188e version = VERSION_UNKNOWN;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
version = (enum version_8188e) VERSION_TEST_CHIP_88E;
} else {
version = NORMAL_CHIP;
version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0);
version = version | ((value32 & VENDOR_ID) ?
CHIP_VENDOR_UMC : 0);
}
rtlphy->rf_type = RF_1T1R;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
"RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl88ee_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
u8 mode = MSR_NOLINK;
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
mode = MSR_NOLINK;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MESH_POINT:
mode = MSR_ADHOC;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
mode = MSR_INFRA;
ledaction = LED_CTL_LINK;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
mode = MSR_AP;
ledaction = LED_CTL_LINK;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
pr_err("Network type %d not support!\n", type);
return 1;
}
/* MSR_INFRA == Link in infrastructure network;
* MSR_ADHOC == Link in ad hoc network;
* Therefore, check link state is necessary.
*
* MSR_AP == AP mode; link state is not cared here.
*/
if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) {
mode = MSR_NOLINK;
ledaction = LED_CTL_NO_LINK;
}
if (mode == MSR_NOLINK || mode == MSR_INFRA) {
_rtl88ee_stop_tx_beacon(hw);
_rtl88ee_enable_bcn_sub_func(hw);
} else if (mode == MSR_ADHOC || mode == MSR_AP) {
_rtl88ee_resume_tx_beacon(hw);
_rtl88ee_disable_bcn_sub_func(hw);
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
mode);
}
rtl_write_byte(rtlpriv, MSR, bt_msr | mode);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if (mode == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rcr = rtlpci->receive_config;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(&reg_rcr));
_rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (!check_bssid) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_RCR, (u8 *)(&reg_rcr));
}
}
int rtl88ee_set_network_type(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl88ee_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP &&
type != NL80211_IFTYPE_MESH_POINT)
rtl88ee_set_check_bssid(hw, true);
} else {
rtl88ee_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here
* because mac80211 will send pkt when scan
*/
void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl88e_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
WARN_ONCE(true, "rtl8188ee: invalid aci: %d !\n", aci);
break;
}
}
void rtl88ee_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR,
rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE,
rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
/* there are some C2H CMDs have been sent
* before system interrupt is enabled, e.g., C2H, CPWM.
* So we need to clear all C2H events that FW has notified,
* otherwise FW won't schedule any commands anymore.
*/
rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
/*enable system interrupt*/
rtl_write_dword(rtlpriv, REG_HSIMR,
rtlpci->sys_irq_mask & 0xFFFFFFFF);
}
void rtl88ee_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
rtlpci->irq_enabled = false;
/*synchronize_irq(rtlpci->pdev->irq);*/
}
static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1b_tmp;
u32 count = 0;
rtlhal->mac_func_enable = false;
rtlpriv->intf_ops->enable_aspm(hw);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n");
u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1)));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
while (!(u1b_tmp & BIT(1)) && (count++ < 100)) {
udelay(10);
u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
count++;
}
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF);
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK,
RTL8188EE_NIC_LPS_ENTER_FLOW);
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready)
rtl88e_firmware_selfreset(hw);
u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL);
rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0))));
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8188EE_NIC_DISABLE_FLOW);
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3))));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3)));
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN);
rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp);
rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F);
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp);
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1);
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F);
rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808);
}
void rtl88ee_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n");
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl88ee_set_media_status(hw, opmode);
if (rtlpriv->rtlhal.driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
_rtl88ee_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw,
struct rtl_int *intvec)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, intvec->inta);
intvec->intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
rtl_write_dword(rtlpriv, REG_HISRE, intvec->intb);
}
void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl88ee_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtlpci->reg_bcn_ctrl_val |= BIT(3);
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
/*rtl88ee_enable_interrupt(hw);*/
}
void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
/*rtl88ee_disable_interrupt(hw);*/
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
/*rtl88ee_enable_interrupt(hw);*/
}
void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
"add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl88ee_disable_interrupt(hw);
rtl88ee_enable_interrupt(hw);
}
static u8 _rtl88e_get_chnl_group(u8 chnl)
{
u8 group = 0;
if (chnl < 3)
group = 0;
else if (chnl < 6)
group = 1;
else if (chnl < 9)
group = 2;
else if (chnl < 12)
group = 3;
else if (chnl < 14)
group = 4;
else if (chnl == 14)
group = 5;
return group;
}
static void set_24g_base(struct txpower_info_2g *pwrinfo24g, u32 rfpath)
{
int group, txcnt;
for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) {
pwrinfo24g->index_cck_base[rfpath][group] = 0x2D;
pwrinfo24g->index_bw40_base[rfpath][group] = 0x2D;
}
for (txcnt = 0; txcnt < MAX_TX_COUNT; txcnt++) {
if (txcnt == 0) {
pwrinfo24g->bw20_diff[rfpath][0] = 0x02;
pwrinfo24g->ofdm_diff[rfpath][0] = 0x04;
} else {
pwrinfo24g->bw20_diff[rfpath][txcnt] = 0xFE;
pwrinfo24g->bw40_diff[rfpath][txcnt] = 0xFE;
pwrinfo24g->cck_diff[rfpath][txcnt] = 0xFE;
pwrinfo24g->ofdm_diff[rfpath][txcnt] = 0xFE;
}
}
}
static void read_power_value_fromprom(struct ieee80211_hw *hw,
struct txpower_info_2g *pwrinfo24g,
struct txpower_info_5g *pwrinfo5g,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 rfpath, eeaddr = EEPROM_TX_PWR_INX, group, txcnt = 0;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"hal_ReadPowerValueFromPROM88E():PROMContent[0x%x]=0x%x\n",
(eeaddr + 1), hwinfo[eeaddr + 1]);
if (0xFF == hwinfo[eeaddr+1]) /*YJ,add,120316*/
autoload_fail = true;
if (autoload_fail) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"auto load fail : Use Default value!\n");
for (rfpath = 0 ; rfpath < MAX_RF_PATH ; rfpath++) {
/* 2.4G default value */
set_24g_base(pwrinfo24g, rfpath);
}
return;
}
for (rfpath = 0 ; rfpath < MAX_RF_PATH ; rfpath++) {
/*2.4G default value*/
for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) {
pwrinfo24g->index_cck_base[rfpath][group] =
hwinfo[eeaddr++];
if (pwrinfo24g->index_cck_base[rfpath][group] == 0xFF)
pwrinfo24g->index_cck_base[rfpath][group] =
0x2D;
}
for (group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++) {
pwrinfo24g->index_bw40_base[rfpath][group] =
hwinfo[eeaddr++];
if (pwrinfo24g->index_bw40_base[rfpath][group] == 0xFF)
pwrinfo24g->index_bw40_base[rfpath][group] =
0x2D;
}
pwrinfo24g->bw40_diff[rfpath][0] = 0;
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->bw20_diff[rfpath][0] = 0x02;
} else {
pwrinfo24g->bw20_diff[rfpath][0] =
(hwinfo[eeaddr]&0xf0)>>4;
/*bit sign number to 8 bit sign number*/
if (pwrinfo24g->bw20_diff[rfpath][0] & BIT(3))
pwrinfo24g->bw20_diff[rfpath][0] |= 0xF0;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->ofdm_diff[rfpath][0] = 0x04;
} else {
pwrinfo24g->ofdm_diff[rfpath][0] =
(hwinfo[eeaddr]&0x0f);
/*bit sign number to 8 bit sign number*/
if (pwrinfo24g->ofdm_diff[rfpath][0] & BIT(3))
pwrinfo24g->ofdm_diff[rfpath][0] |= 0xF0;
}
pwrinfo24g->cck_diff[rfpath][0] = 0;
eeaddr++;
for (txcnt = 1; txcnt < MAX_TX_COUNT; txcnt++) {
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->bw40_diff[rfpath][txcnt] = 0xFE;
} else {
pwrinfo24g->bw40_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0xf0)>>4;
if (pwrinfo24g->bw40_diff[rfpath][txcnt] &
BIT(3))
pwrinfo24g->bw40_diff[rfpath][txcnt] |=
0xF0;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->bw20_diff[rfpath][txcnt] =
0xFE;
} else {
pwrinfo24g->bw20_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0x0f);
if (pwrinfo24g->bw20_diff[rfpath][txcnt] &
BIT(3))
pwrinfo24g->bw20_diff[rfpath][txcnt] |=
0xF0;
}
eeaddr++;
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->ofdm_diff[rfpath][txcnt] = 0xFE;
} else {
pwrinfo24g->ofdm_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0xf0)>>4;
if (pwrinfo24g->ofdm_diff[rfpath][txcnt] &
BIT(3))
pwrinfo24g->ofdm_diff[rfpath][txcnt] |=
0xF0;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo24g->cck_diff[rfpath][txcnt] = 0xFE;
} else {
pwrinfo24g->cck_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0x0f);
if (pwrinfo24g->cck_diff[rfpath][txcnt] &
BIT(3))
pwrinfo24g->cck_diff[rfpath][txcnt] |=
0xF0;
}
eeaddr++;
}
/*5G default value*/
for (group = 0 ; group < MAX_CHNL_GROUP_5G; group++) {
pwrinfo5g->index_bw40_base[rfpath][group] =
hwinfo[eeaddr++];
if (pwrinfo5g->index_bw40_base[rfpath][group] == 0xFF)
pwrinfo5g->index_bw40_base[rfpath][group] =
0xFE;
}
pwrinfo5g->bw40_diff[rfpath][0] = 0;
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo5g->bw20_diff[rfpath][0] = 0;
} else {
pwrinfo5g->bw20_diff[rfpath][0] =
(hwinfo[eeaddr]&0xf0)>>4;
if (pwrinfo5g->bw20_diff[rfpath][0] & BIT(3))
pwrinfo5g->bw20_diff[rfpath][0] |= 0xF0;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo5g->ofdm_diff[rfpath][0] = 0x04;
} else {
pwrinfo5g->ofdm_diff[rfpath][0] = (hwinfo[eeaddr]&0x0f);
if (pwrinfo5g->ofdm_diff[rfpath][0] & BIT(3))
pwrinfo5g->ofdm_diff[rfpath][0] |= 0xF0;
}
eeaddr++;
for (txcnt = 1; txcnt < MAX_TX_COUNT; txcnt++) {
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo5g->bw40_diff[rfpath][txcnt] = 0xFE;
} else {
pwrinfo5g->bw40_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0xf0)>>4;
if (pwrinfo5g->bw40_diff[rfpath][txcnt] &
BIT(3))
pwrinfo5g->bw40_diff[rfpath][txcnt] |=
0xF0;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo5g->bw20_diff[rfpath][txcnt] = 0xFE;
} else {
pwrinfo5g->bw20_diff[rfpath][txcnt] =
(hwinfo[eeaddr]&0x0f);
if (pwrinfo5g->bw20_diff[rfpath][txcnt] &
BIT(3))
pwrinfo5g->bw20_diff[rfpath][txcnt] |=
0xF0;
}
eeaddr++;
}
if (hwinfo[eeaddr] == 0xFF) {
pwrinfo5g->ofdm_diff[rfpath][1] = 0xFE;
pwrinfo5g->ofdm_diff[rfpath][2] = 0xFE;
} else {
pwrinfo5g->ofdm_diff[rfpath][1] =
(hwinfo[eeaddr]&0xf0)>>4;
pwrinfo5g->ofdm_diff[rfpath][2] =
(hwinfo[eeaddr]&0x0f);
}
eeaddr++;
if (hwinfo[eeaddr] == 0xFF)
pwrinfo5g->ofdm_diff[rfpath][3] = 0xFE;
else
pwrinfo5g->ofdm_diff[rfpath][3] = (hwinfo[eeaddr]&0x0f);
eeaddr++;
for (txcnt = 1; txcnt < MAX_TX_COUNT; txcnt++) {
if (pwrinfo5g->ofdm_diff[rfpath][txcnt] == 0xFF)
pwrinfo5g->ofdm_diff[rfpath][txcnt] = 0xFE;
else if (pwrinfo5g->ofdm_diff[rfpath][txcnt] & BIT(3))
pwrinfo5g->ofdm_diff[rfpath][txcnt] |= 0xF0;
}
}
}
static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct txpower_info_2g pwrinfo24g;
struct txpower_info_5g pwrinfo5g;
u8 rf_path, index;
u8 i;
read_power_value_fromprom(hw, &pwrinfo24g,
&pwrinfo5g, autoload_fail, hwinfo);
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl88e_get_chnl_group(i+1);
rtlefuse->txpwrlevel_cck[rf_path][i] =
pwrinfo24g.index_cck_base[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
pwrinfo24g.index_bw40_base[rf_path][index];
rtlefuse->txpwr_ht20diff[rf_path][i] =
pwrinfo24g.bw20_diff[rf_path][0];
rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
pwrinfo24g.ofdm_diff[rf_path][0];
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"RF(%d)-Ch(%d) [CCK / HT40_1S ] = [0x%x / 0x%x ]\n",
rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
}
}
if (!autoload_fail)
rtlefuse->eeprom_thermalmeter =
hwinfo[EEPROM_THERMAL_METER_88E];
else
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
}
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
if (!autoload_fail) {
rtlefuse->eeprom_regulatory =
hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/
if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
rtlefuse->eeprom_regulatory = 0;
} else {
rtlefuse->eeprom_regulatory = 0;
}
RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
}
static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
int params[] = {RTL8188E_EEPROM_ID, EEPROM_VID, EEPROM_DID,
EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR,
EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
COUNTRY_CODE_WORLD_WIDE_13};
u8 *hwinfo;
hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
if (!hwinfo)
return;
if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
goto exit;
if (rtlefuse->eeprom_oemid == 0xFF)
rtlefuse->eeprom_oemid = 0;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
/* set channel plan from efuse */
rtlefuse->channel_plan = rtlefuse->eeprom_channelplan;
/*tx power*/
_rtl88ee_read_txpower_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
rtlefuse->txpwr_fromeprom = true;
rtl8188ee_read_bt_coexist_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
/*board type*/
rtlefuse->board_type =
((hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0xE0) >> 5);
rtlhal->board_type = rtlefuse->board_type;
/*Wake on wlan*/
rtlefuse->wowlan_enable =
((hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & 0x40) >> 6);
/*parse xtal*/
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E];
if (hwinfo[EEPROM_XTAL_88E])
rtlefuse->crystalcap = 0x20;
/*antenna diversity*/
rtlefuse->antenna_div_cfg =
(hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x18) >> 3;
if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
rtlefuse->antenna_div_cfg = 0;
if (rtlpriv->btcoexist.eeprom_bt_coexist != 0 &&
rtlpriv->btcoexist.eeprom_bt_ant_num == ANT_X1)
rtlefuse->antenna_div_cfg = 0;
rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E];
if (rtlefuse->antenna_div_type == 0xFF)
rtlefuse->antenna_div_type = 0x01;
if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV ||
rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
rtlefuse->antenna_div_cfg = 1;
if (rtlhal->oem_id == RT_CID_DEFAULT) {
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x8179) {
if (rtlefuse->eeprom_svid == 0x1025) {
rtlhal->oem_id = RT_CID_819X_ACER;
} else if ((rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x0179) ||
(rtlefuse->eeprom_svid == 0x17AA &&
rtlefuse->eeprom_smid == 0x0179)) {
rtlhal->oem_id = RT_CID_819X_LENOVO;
} else if (rtlefuse->eeprom_svid == 0x103c &&
rtlefuse->eeprom_smid == 0x197d) {
rtlhal->oem_id = RT_CID_819X_HP;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819X_QMI;
break;
case EEPROM_CID_WHQL:
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
exit:
kfree(hwinfo);
}
static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
rtlpriv->ledctl.led_opendrain = true;
switch (rtlhal->oem_id) {
case RT_CID_819X_HP:
rtlpriv->ledctl.led_opendrain = true;
break;
case RT_CID_819X_LENOVO:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819X_ACER:
case RT_CID_WHQL:
default:
break;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl88ee_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl88ee_read_adapter_info(hw);
} else {
pr_err("Autoload ERR!!\n");
}
_rtl88ee_hal_customized_behavior(hw);
}
static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 b_nmode = mac->ht_enable;
/*u8 mimo_ps = IEEE80211_SMPS_OFF;*/
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
u32 ratr_mask;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->deflink.supp_rates[1] << 4;
else
ratr_value = sta->deflink.supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
b_nmode = 1;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
ratr_value &= ratr_mask;
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) &&
(rtlpriv->btcoexist.bt_cur_state) &&
(rtlpriv->btcoexist.bt_ant_isolation) &&
((rtlpriv->btcoexist.bt_service == BT_SCO) ||
(rtlpriv->btcoexist.bt_service == BT_BUSY)))
ratr_value &= 0x0fffcfc0;
else
ratr_value &= 0x0FFFFFFF;
if (b_nmode &&
((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
"%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
}
static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)
? 1 : 0;
u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool b_shortgi = false;
u8 rate_mask[5];
u8 macid = 0;
/*u8 mimo_ps = IEEE80211_SMPS_OFF;*/
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_bitmap = sta->deflink.supp_rates[1] << 4;
else
ratr_bitmap = sta->deflink.supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R ||
rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff005;
}
}
/*}*/
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
b_shortgi = true;
else if (macid == 1)
b_shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
(ratr_index << 28);
rate_mask[4] = macid | (b_shortgi ? 0x20 : 0x00) | 0x80;
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap,
rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3],
rate_mask[4]);
rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask);
_rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
}
void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl88ee_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
else
rtl88ee_update_hal_rate_table(hw, sta);
}
void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
enum rf_pwrstate e_rfpowerstate_toset;
u32 u4tmp;
bool b_actuallyset = false;
if (rtlpriv->rtlhal.being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock(&rtlpriv->locks.rf_ps_lock);
if (ppsc->rfchange_inprogress) {
spin_unlock(&rtlpriv->locks.rf_ps_lock);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT);
e_rfpowerstate_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF;
if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
b_actuallyset = true;
} else if ((!ppsc->hwradiooff) &&
(e_rfpowerstate_toset == ERFOFF)) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
b_actuallyset = true;
}
if (b_actuallyset) {
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
*valid = 1;
return !ppsc->hwradiooff;
}
void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
pr_err("switch case %#x not processed\n",
enc_algo);
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
entry_id =
rtl_cam_get_free_entry(hw, p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->btcoexist.bt_coexistence =
rtlpriv->btcoexist.eeprom_bt_coexist;
rtlpriv->btcoexist.bt_ant_num = rtlpriv->btcoexist.eeprom_bt_ant_num;
rtlpriv->btcoexist.bt_coexist_type = rtlpriv->btcoexist.eeprom_bt_type;
if (rtlpriv->btcoexist.reg_bt_iso == 2)
rtlpriv->btcoexist.bt_ant_isolation =
rtlpriv->btcoexist.eeprom_bt_ant_isol;
else
rtlpriv->btcoexist.bt_ant_isolation =
rtlpriv->btcoexist.reg_bt_iso;
rtlpriv->btcoexist.bt_radio_shared_type =
rtlpriv->btcoexist.eeprom_bt_radio_shared;
if (rtlpriv->btcoexist.bt_coexistence) {
if (rtlpriv->btcoexist.reg_bt_sco == 1)
rtlpriv->btcoexist.bt_service = BT_OTHER_ACTION;
else if (rtlpriv->btcoexist.reg_bt_sco == 2)
rtlpriv->btcoexist.bt_service = BT_SCO;
else if (rtlpriv->btcoexist.reg_bt_sco == 4)
rtlpriv->btcoexist.bt_service = BT_BUSY;
else if (rtlpriv->btcoexist.reg_bt_sco == 5)
rtlpriv->btcoexist.bt_service = BT_OTHERBUSY;
else
rtlpriv->btcoexist.bt_service = BT_IDLE;
rtlpriv->btcoexist.bt_edca_ul = 0;
rtlpriv->btcoexist.bt_edca_dl = 0;
rtlpriv->btcoexist.bt_rssi_state = 0xff;
}
}
void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value;
if (!auto_load_fail) {
rtlpriv->btcoexist.eeprom_bt_coexist =
((hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & 0xe0) >> 5);
if (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] == 0xFF)
rtlpriv->btcoexist.eeprom_bt_coexist = 0;
value = hwinfo[EEPROM_RF_BT_SETTING_88E];
rtlpriv->btcoexist.eeprom_bt_type = ((value & 0xe) >> 1);
rtlpriv->btcoexist.eeprom_bt_ant_num = (value & 0x1);
rtlpriv->btcoexist.eeprom_bt_ant_isol = ((value & 0x10) >> 4);
rtlpriv->btcoexist.eeprom_bt_radio_shared =
((value & 0x20) >> 5);
} else {
rtlpriv->btcoexist.eeprom_bt_coexist = 0;
rtlpriv->btcoexist.eeprom_bt_type = BT_2WIRE;
rtlpriv->btcoexist.eeprom_bt_ant_num = ANT_X2;
rtlpriv->btcoexist.eeprom_bt_ant_isol = 0;
rtlpriv->btcoexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
}
rtl8188ee_bt_var_init(hw);
}
void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rtlpriv->btcoexist.reg_bt_iso = 2;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rtlpriv->btcoexist.reg_bt_sco = 0;
}
void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 u1_tmp;
if (rtlpriv->btcoexist.bt_coexistence &&
((rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) ||
rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC8)) {
if (rtlpriv->btcoexist.bt_ant_isolation)
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) & BIT(0);
u1_tmp = u1_tmp |
((rtlpriv->btcoexist.bt_ant_isolation == 1) ?
0 : BIT((1)) |
((rtlpriv->btcoexist.bt_service == BT_SCO) ?
0 : BIT(2)));
rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
/* Config to 1T1R. */
if (rtlphy->rf_type == RF_1T1R) {
u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
u1_tmp &= ~(BIT(1));
rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
u1_tmp &= ~(BIT(1));
rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
}
}
}
void rtl88ee_suspend(struct ieee80211_hw *hw)
{
}
void rtl88ee_resume(struct ieee80211_hw *hw)
{
}