linux-stable/arch/um/kernel/process.c
Johannes Berg 4b786e24ca um: time-travel: Rewrite as an event scheduler
Instead of tracking all the various timer configurations,
modify the time-travel mode to have an event scheduler and
use a timer event on the scheduler to handle the different
timer configurations.

This doesn't change the function right now, but it prepares
the code for having different kinds of events in the future
(i.e. interrupts coming from other devices that are part of
co-simulation.)

While at it, also move time_travel_sleep() to time.c to
reduce the externally visible API surface.

Also, we really should mark time-travel as incompatible with
SMP, even if UML doesn't support SMP yet.

Finally, I noticed a bug while developing this - if we move
time forward due to consuming time while reading the clock,
we might move across the next event and that would cause us
to go backward in time when we then handle that event. Fix
that by invoking the whole event machine in this case, but
in order to simplify this, make reading the clock only cost
something when interrupts are not disabled. Otherwise, we'd
have to hook into the interrupt delivery machinery etc. and
that's somewhat intrusive.

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
2020-03-29 23:28:51 +02:00

411 lines
8.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
* Copyright 2003 PathScale, Inc.
*/
#include <linux/stddef.h>
#include <linux/err.h>
#include <linux/hardirq.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/personality.h>
#include <linux/proc_fs.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/seq_file.h>
#include <linux/tick.h>
#include <linux/threads.h>
#include <linux/tracehook.h>
#include <asm/current.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <linux/uaccess.h>
#include <as-layout.h>
#include <kern_util.h>
#include <os.h>
#include <skas.h>
#include <linux/time-internal.h>
/*
* This is a per-cpu array. A processor only modifies its entry and it only
* cares about its entry, so it's OK if another processor is modifying its
* entry.
*/
struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
static inline int external_pid(void)
{
/* FIXME: Need to look up userspace_pid by cpu */
return userspace_pid[0];
}
int pid_to_processor_id(int pid)
{
int i;
for (i = 0; i < ncpus; i++) {
if (cpu_tasks[i].pid == pid)
return i;
}
return -1;
}
void free_stack(unsigned long stack, int order)
{
free_pages(stack, order);
}
unsigned long alloc_stack(int order, int atomic)
{
unsigned long page;
gfp_t flags = GFP_KERNEL;
if (atomic)
flags = GFP_ATOMIC;
page = __get_free_pages(flags, order);
return page;
}
static inline void set_current(struct task_struct *task)
{
cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
{ external_pid(), task });
}
extern void arch_switch_to(struct task_struct *to);
void *__switch_to(struct task_struct *from, struct task_struct *to)
{
to->thread.prev_sched = from;
set_current(to);
switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
arch_switch_to(current);
return current->thread.prev_sched;
}
void interrupt_end(void)
{
struct pt_regs *regs = &current->thread.regs;
if (need_resched())
schedule();
if (test_thread_flag(TIF_SIGPENDING))
do_signal(regs);
if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
tracehook_notify_resume(regs);
}
int get_current_pid(void)
{
return task_pid_nr(current);
}
/*
* This is called magically, by its address being stuffed in a jmp_buf
* and being longjmp-d to.
*/
void new_thread_handler(void)
{
int (*fn)(void *), n;
void *arg;
if (current->thread.prev_sched != NULL)
schedule_tail(current->thread.prev_sched);
current->thread.prev_sched = NULL;
fn = current->thread.request.u.thread.proc;
arg = current->thread.request.u.thread.arg;
/*
* callback returns only if the kernel thread execs a process
*/
n = fn(arg);
userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
}
/* Called magically, see new_thread_handler above */
void fork_handler(void)
{
force_flush_all();
schedule_tail(current->thread.prev_sched);
/*
* XXX: if interrupt_end() calls schedule, this call to
* arch_switch_to isn't needed. We could want to apply this to
* improve performance. -bb
*/
arch_switch_to(current);
current->thread.prev_sched = NULL;
userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
}
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct * p, unsigned long tls)
{
void (*handler)(void);
int kthread = current->flags & PF_KTHREAD;
int ret = 0;
p->thread = (struct thread_struct) INIT_THREAD;
if (!kthread) {
memcpy(&p->thread.regs.regs, current_pt_regs(),
sizeof(p->thread.regs.regs));
PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
if (sp != 0)
REGS_SP(p->thread.regs.regs.gp) = sp;
handler = fork_handler;
arch_copy_thread(&current->thread.arch, &p->thread.arch);
} else {
get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
p->thread.request.u.thread.proc = (int (*)(void *))sp;
p->thread.request.u.thread.arg = (void *)arg;
handler = new_thread_handler;
}
new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
if (!kthread) {
clear_flushed_tls(p);
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS)
ret = arch_set_tls(p, tls);
}
return ret;
}
void initial_thread_cb(void (*proc)(void *), void *arg)
{
int save_kmalloc_ok = kmalloc_ok;
kmalloc_ok = 0;
initial_thread_cb_skas(proc, arg);
kmalloc_ok = save_kmalloc_ok;
}
static void um_idle_sleep(void)
{
unsigned long long duration = UM_NSEC_PER_SEC;
if (time_travel_mode != TT_MODE_OFF) {
time_travel_sleep(duration);
} else {
os_idle_sleep(duration);
}
}
void arch_cpu_idle(void)
{
cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
um_idle_sleep();
local_irq_enable();
}
int __cant_sleep(void) {
return in_atomic() || irqs_disabled() || in_interrupt();
/* Is in_interrupt() really needed? */
}
int user_context(unsigned long sp)
{
unsigned long stack;
stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
return stack != (unsigned long) current_thread_info();
}
extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
void do_uml_exitcalls(void)
{
exitcall_t *call;
call = &__uml_exitcall_end;
while (--call >= &__uml_exitcall_begin)
(*call)();
}
char *uml_strdup(const char *string)
{
return kstrdup(string, GFP_KERNEL);
}
EXPORT_SYMBOL(uml_strdup);
int copy_to_user_proc(void __user *to, void *from, int size)
{
return copy_to_user(to, from, size);
}
int copy_from_user_proc(void *to, void __user *from, int size)
{
return copy_from_user(to, from, size);
}
int clear_user_proc(void __user *buf, int size)
{
return clear_user(buf, size);
}
int cpu(void)
{
return current_thread_info()->cpu;
}
static atomic_t using_sysemu = ATOMIC_INIT(0);
int sysemu_supported;
void set_using_sysemu(int value)
{
if (value > sysemu_supported)
return;
atomic_set(&using_sysemu, value);
}
int get_using_sysemu(void)
{
return atomic_read(&using_sysemu);
}
static int sysemu_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "%d\n", get_using_sysemu());
return 0;
}
static int sysemu_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, sysemu_proc_show, NULL);
}
static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
char tmp[2];
if (copy_from_user(tmp, buf, 1))
return -EFAULT;
if (tmp[0] >= '0' && tmp[0] <= '2')
set_using_sysemu(tmp[0] - '0');
/* We use the first char, but pretend to write everything */
return count;
}
static const struct proc_ops sysemu_proc_ops = {
.proc_open = sysemu_proc_open,
.proc_read = seq_read,
.proc_lseek = seq_lseek,
.proc_release = single_release,
.proc_write = sysemu_proc_write,
};
int __init make_proc_sysemu(void)
{
struct proc_dir_entry *ent;
if (!sysemu_supported)
return 0;
ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_ops);
if (ent == NULL)
{
printk(KERN_WARNING "Failed to register /proc/sysemu\n");
return 0;
}
return 0;
}
late_initcall(make_proc_sysemu);
int singlestepping(void * t)
{
struct task_struct *task = t ? t : current;
if (!(task->ptrace & PT_DTRACE))
return 0;
if (task->thread.singlestep_syscall)
return 1;
return 2;
}
/*
* Only x86 and x86_64 have an arch_align_stack().
* All other arches have "#define arch_align_stack(x) (x)"
* in their asm/exec.h
* As this is included in UML from asm-um/system-generic.h,
* we can use it to behave as the subarch does.
*/
#ifndef arch_align_stack
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}
#endif
unsigned long get_wchan(struct task_struct *p)
{
unsigned long stack_page, sp, ip;
bool seen_sched = 0;
if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
return 0;
stack_page = (unsigned long) task_stack_page(p);
/* Bail if the process has no kernel stack for some reason */
if (stack_page == 0)
return 0;
sp = p->thread.switch_buf->JB_SP;
/*
* Bail if the stack pointer is below the bottom of the kernel
* stack for some reason
*/
if (sp < stack_page)
return 0;
while (sp < stack_page + THREAD_SIZE) {
ip = *((unsigned long *) sp);
if (in_sched_functions(ip))
/* Ignore everything until we're above the scheduler */
seen_sched = 1;
else if (kernel_text_address(ip) && seen_sched)
return ip;
sp += sizeof(unsigned long);
}
return 0;
}
int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
{
int cpu = current_thread_info()->cpu;
return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
}