linux-stable/drivers/firmware/qcom_scm.c
Andy Gross a811b420b6 firmware: qcom_scm: Add set remote state API
This patch adds a set remote state SCM API.  This will be used by the
Venus and GPU subsystems to set state on the remote processors.

This work was based on two patch sets by Jordan Crouse and Stanimir
Varbanov.

Signed-off-by: Andy Gross <andy.gross@linaro.org>
2017-01-16 23:45:04 -06:00

451 lines
11 KiB
C

/*
* Qualcomm SCM driver
*
* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
* Copyright (C) 2015 Linaro Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/export.h>
#include <linux/dma-mapping.h>
#include <linux/types.h>
#include <linux/qcom_scm.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/clk.h>
#include <linux/reset-controller.h>
#include "qcom_scm.h"
#define SCM_HAS_CORE_CLK BIT(0)
#define SCM_HAS_IFACE_CLK BIT(1)
#define SCM_HAS_BUS_CLK BIT(2)
struct qcom_scm {
struct device *dev;
struct clk *core_clk;
struct clk *iface_clk;
struct clk *bus_clk;
struct reset_controller_dev reset;
};
static struct qcom_scm *__scm;
static int qcom_scm_clk_enable(void)
{
int ret;
ret = clk_prepare_enable(__scm->core_clk);
if (ret)
goto bail;
ret = clk_prepare_enable(__scm->iface_clk);
if (ret)
goto disable_core;
ret = clk_prepare_enable(__scm->bus_clk);
if (ret)
goto disable_iface;
return 0;
disable_iface:
clk_disable_unprepare(__scm->iface_clk);
disable_core:
clk_disable_unprepare(__scm->core_clk);
bail:
return ret;
}
static void qcom_scm_clk_disable(void)
{
clk_disable_unprepare(__scm->core_clk);
clk_disable_unprepare(__scm->iface_clk);
clk_disable_unprepare(__scm->bus_clk);
}
/**
* qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the cold boot address of the cpus. Any cpu outside the supported
* range would be removed from the cpu present mask.
*/
int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_cold_boot_addr(entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
/**
* qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
* @entry: Entry point function for the cpus
* @cpus: The cpumask of cpus that will use the entry point
*
* Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{
return __qcom_scm_set_warm_boot_addr(__scm->dev, entry, cpus);
}
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
/**
* qcom_scm_cpu_power_down() - Power down the cpu
* @flags - Flags to flush cache
*
* This is an end point to power down cpu. If there was a pending interrupt,
* the control would return from this function, otherwise, the cpu jumps to the
* warm boot entry point set for this cpu upon reset.
*/
void qcom_scm_cpu_power_down(u32 flags)
{
__qcom_scm_cpu_power_down(flags);
}
EXPORT_SYMBOL(qcom_scm_cpu_power_down);
/**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
*
* Return true if HDCP is supported, false if not.
*/
bool qcom_scm_hdcp_available(void)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_CMD_HDCP);
qcom_scm_clk_disable();
return ret > 0 ? true : false;
}
EXPORT_SYMBOL(qcom_scm_hdcp_available);
/**
* qcom_scm_hdcp_req() - Send HDCP request.
* @req: HDCP request array
* @req_cnt: HDCP request array count
* @resp: response buffer passed to SCM
*
* Write HDCP register(s) through SCM.
*/
int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
{
int ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_hdcp_req(__scm->dev, req, req_cnt, resp);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_hdcp_req);
/**
* qcom_scm_pas_supported() - Check if the peripheral authentication service is
* available for the given peripherial
* @peripheral: peripheral id
*
* Returns true if PAS is supported for this peripheral, otherwise false.
*/
bool qcom_scm_pas_supported(u32 peripheral)
{
int ret;
ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
QCOM_SCM_PAS_IS_SUPPORTED_CMD);
if (ret <= 0)
return false;
return __qcom_scm_pas_supported(__scm->dev, peripheral);
}
EXPORT_SYMBOL(qcom_scm_pas_supported);
/**
* qcom_scm_pas_init_image() - Initialize peripheral authentication service
* state machine for a given peripheral, using the
* metadata
* @peripheral: peripheral id
* @metadata: pointer to memory containing ELF header, program header table
* and optional blob of data used for authenticating the metadata
* and the rest of the firmware
* @size: size of the metadata
*
* Returns 0 on success.
*/
int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
{
dma_addr_t mdata_phys;
void *mdata_buf;
int ret;
/*
* During the scm call memory protection will be enabled for the meta
* data blob, so make sure it's physically contiguous, 4K aligned and
* non-cachable to avoid XPU violations.
*/
mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
GFP_KERNEL);
if (!mdata_buf) {
dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
return -ENOMEM;
}
memcpy(mdata_buf, metadata, size);
ret = qcom_scm_clk_enable();
if (ret)
goto free_metadata;
ret = __qcom_scm_pas_init_image(__scm->dev, peripheral, mdata_phys);
qcom_scm_clk_disable();
free_metadata:
dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_init_image);
/**
* qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
* for firmware loading
* @peripheral: peripheral id
* @addr: start address of memory area to prepare
* @size: size of the memory area to prepare
*
* Returns 0 on success.
*/
int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_mem_setup(__scm->dev, peripheral, addr, size);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
/**
* qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
* and reset the remote processor
* @peripheral: peripheral id
*
* Return 0 on success.
*/
int qcom_scm_pas_auth_and_reset(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_auth_and_reset(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
/**
* qcom_scm_pas_shutdown() - Shut down the remote processor
* @peripheral: peripheral id
*
* Returns 0 on success.
*/
int qcom_scm_pas_shutdown(u32 peripheral)
{
int ret;
ret = qcom_scm_clk_enable();
if (ret)
return ret;
ret = __qcom_scm_pas_shutdown(__scm->dev, peripheral);
qcom_scm_clk_disable();
return ret;
}
EXPORT_SYMBOL(qcom_scm_pas_shutdown);
static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 1);
}
static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
unsigned long idx)
{
if (idx != 0)
return -EINVAL;
return __qcom_scm_pas_mss_reset(__scm->dev, 0);
}
static const struct reset_control_ops qcom_scm_pas_reset_ops = {
.assert = qcom_scm_pas_reset_assert,
.deassert = qcom_scm_pas_reset_deassert,
};
/**
* qcom_scm_is_available() - Checks if SCM is available
*/
bool qcom_scm_is_available(void)
{
return !!__scm;
}
EXPORT_SYMBOL(qcom_scm_is_available);
int qcom_scm_set_remote_state(u32 state, u32 id)
{
return __qcom_scm_set_remote_state(__scm->dev, state, id);
}
EXPORT_SYMBOL(qcom_scm_set_remote_state);
static int qcom_scm_probe(struct platform_device *pdev)
{
struct qcom_scm *scm;
unsigned long clks;
int ret;
scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
if (!scm)
return -ENOMEM;
clks = (unsigned long)of_device_get_match_data(&pdev->dev);
if (clks & SCM_HAS_CORE_CLK) {
scm->core_clk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(scm->core_clk)) {
if (PTR_ERR(scm->core_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire core clk\n");
return PTR_ERR(scm->core_clk);
}
}
if (clks & SCM_HAS_IFACE_CLK) {
scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
if (IS_ERR(scm->iface_clk)) {
if (PTR_ERR(scm->iface_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire iface clk\n");
return PTR_ERR(scm->iface_clk);
}
}
if (clks & SCM_HAS_BUS_CLK) {
scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(scm->bus_clk)) {
if (PTR_ERR(scm->bus_clk) != -EPROBE_DEFER)
dev_err(&pdev->dev,
"failed to acquire bus clk\n");
return PTR_ERR(scm->bus_clk);
}
}
scm->reset.ops = &qcom_scm_pas_reset_ops;
scm->reset.nr_resets = 1;
scm->reset.of_node = pdev->dev.of_node;
ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
if (ret)
return ret;
/* vote for max clk rate for highest performance */
ret = clk_set_rate(scm->core_clk, INT_MAX);
if (ret)
return ret;
__scm = scm;
__scm->dev = &pdev->dev;
__qcom_scm_init();
return 0;
}
static const struct of_device_id qcom_scm_dt_match[] = {
{ .compatible = "qcom,scm-apq8064",
/* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
},
{ .compatible = "qcom,scm-msm8660",
.data = (void *) SCM_HAS_CORE_CLK,
},
{ .compatible = "qcom,scm-msm8960",
.data = (void *) SCM_HAS_CORE_CLK,
},
{ .compatible = "qcom,scm-msm8996",
.data = NULL, /* no clocks */
},
{ .compatible = "qcom,scm",
.data = (void *)(SCM_HAS_CORE_CLK
| SCM_HAS_IFACE_CLK
| SCM_HAS_BUS_CLK),
},
{}
};
static struct platform_driver qcom_scm_driver = {
.driver = {
.name = "qcom_scm",
.of_match_table = qcom_scm_dt_match,
},
.probe = qcom_scm_probe,
};
static int __init qcom_scm_init(void)
{
struct device_node *np, *fw_np;
int ret;
fw_np = of_find_node_by_name(NULL, "firmware");
if (!fw_np)
return -ENODEV;
np = of_find_matching_node(fw_np, qcom_scm_dt_match);
if (!np) {
of_node_put(fw_np);
return -ENODEV;
}
of_node_put(np);
ret = of_platform_populate(fw_np, qcom_scm_dt_match, NULL, NULL);
of_node_put(fw_np);
if (ret)
return ret;
return platform_driver_register(&qcom_scm_driver);
}
subsys_initcall(qcom_scm_init);