linux-stable/arch/powerpc/include/asm/highmem.h
Benjamin Herrenschmidt 8d30c14cab powerpc/mm: Rework I$/D$ coherency (v3)
This patch reworks the way we do I and D cache coherency on PowerPC.

The "old" way was split in 3 different parts depending on the processor type:

   - Hash with per-page exec support (64-bit and >= POWER4 only) does it
at hashing time, by preventing exec on unclean pages and cleaning pages
on exec faults.

   - Everything without per-page exec support (32-bit hash, 8xx, and
64-bit < POWER4) does it for all page going to user space in update_mmu_cache().

   - Embedded with per-page exec support does it from do_page_fault() on
exec faults, in a way similar to what the hash code does.

That leads to confusion, and bugs. For example, the method using update_mmu_cache()
is racy on SMP where another processor can see the new PTE and hash it in before
we have cleaned the cache, and then blow trying to execute. This is hard to hit but
I think it has bitten us in the past.

Also, it's inefficient for embedded where we always end up having to do at least
one more page fault.

This reworks the whole thing by moving the cache sync into two main call sites,
though we keep different behaviours depending on the HW capability. The call
sites are set_pte_at() which is now made out of line, and ptep_set_access_flags()
which joins the former in pgtable.c

The base idea for Embedded with per-page exec support, is that we now do the
flush at set_pte_at() time when coming from an exec fault, which allows us
to avoid the double fault problem completely (we can even improve the situation
more by implementing TLB preload in update_mmu_cache() but that's for later).

If for some reason we didn't do it there and we try to execute, we'll hit
the page fault, which will do a minor fault, which will hit ptep_set_access_flags()
to do things like update _PAGE_ACCESSED or _PAGE_DIRTY if needed, we just make
this guys also perform the I/D cache sync for exec faults now. This second path
is the catch all for things that weren't cleaned at set_pte_at() time.

For cpus without per-pag exec support, we always do the sync at set_pte_at(),
thus guaranteeing that when the PTE is visible to other processors, the cache
is clean.

For the 64-bit hash with per-page exec support case, we keep the old mechanism
for now. I'll look into changing it later, once I've reworked a bit how we
use _PAGE_EXEC.

This is also a first step for adding _PAGE_EXEC support for embedded platforms

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-02-11 16:00:10 +11:00

153 lines
3.9 KiB
C

/*
* highmem.h: virtual kernel memory mappings for high memory
*
* PowerPC version, stolen from the i386 version.
*
* Used in CONFIG_HIGHMEM systems for memory pages which
* are not addressable by direct kernel virtual addresses.
*
* Copyright (C) 1999 Gerhard Wichert, Siemens AG
* Gerhard.Wichert@pdb.siemens.de
*
*
* Redesigned the x86 32-bit VM architecture to deal with
* up to 16 Terrabyte physical memory. With current x86 CPUs
* we now support up to 64 Gigabytes physical RAM.
*
* Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
*/
#ifndef _ASM_HIGHMEM_H
#define _ASM_HIGHMEM_H
#ifdef __KERNEL__
#include <linux/init.h>
#include <linux/interrupt.h>
#include <asm/kmap_types.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/fixmap.h>
extern pte_t *kmap_pte;
extern pgprot_t kmap_prot;
extern pte_t *pkmap_page_table;
/*
* Right now we initialize only a single pte table. It can be extended
* easily, subsequent pte tables have to be allocated in one physical
* chunk of RAM.
*/
/*
* We use one full pte table with 4K pages. And with 16K/64K pages pte
* table covers enough memory (32MB and 512MB resp.) that both FIXMAP
* and PKMAP can be placed in single pte table. We use 1024 pages for
* PKMAP in case of 16K/64K pages.
*/
#ifdef CONFIG_PPC_4K_PAGES
#define PKMAP_ORDER PTE_SHIFT
#else
#define PKMAP_ORDER 10
#endif
#define LAST_PKMAP (1 << PKMAP_ORDER)
#ifndef CONFIG_PPC_4K_PAGES
#define PKMAP_BASE (FIXADDR_START - PAGE_SIZE*(LAST_PKMAP + 1))
#else
#define PKMAP_BASE ((FIXADDR_START - PAGE_SIZE*(LAST_PKMAP + 1)) & PMD_MASK)
#endif
#define LAST_PKMAP_MASK (LAST_PKMAP-1)
#define PKMAP_NR(virt) ((virt-PKMAP_BASE) >> PAGE_SHIFT)
#define PKMAP_ADDR(nr) (PKMAP_BASE + ((nr) << PAGE_SHIFT))
extern void *kmap_high(struct page *page);
extern void kunmap_high(struct page *page);
static inline void *kmap(struct page *page)
{
might_sleep();
if (!PageHighMem(page))
return page_address(page);
return kmap_high(page);
}
static inline void kunmap(struct page *page)
{
BUG_ON(in_interrupt());
if (!PageHighMem(page))
return;
kunmap_high(page);
}
/*
* The use of kmap_atomic/kunmap_atomic is discouraged - kmap/kunmap
* gives a more generic (and caching) interface. But kmap_atomic can
* be used in IRQ contexts, so in some (very limited) cases we need
* it.
*/
static inline void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot)
{
unsigned int idx;
unsigned long vaddr;
/* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
pagefault_disable();
if (!PageHighMem(page))
return page_address(page);
idx = type + KM_TYPE_NR*smp_processor_id();
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
#ifdef CONFIG_DEBUG_HIGHMEM
BUG_ON(!pte_none(*(kmap_pte-idx)));
#endif
__set_pte_at(&init_mm, vaddr, kmap_pte-idx, mk_pte(page, prot), 1);
local_flush_tlb_page(NULL, vaddr);
return (void*) vaddr;
}
static inline void *kmap_atomic(struct page *page, enum km_type type)
{
return kmap_atomic_prot(page, type, kmap_prot);
}
static inline void kunmap_atomic(void *kvaddr, enum km_type type)
{
#ifdef CONFIG_DEBUG_HIGHMEM
unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();
if (vaddr < __fix_to_virt(FIX_KMAP_END)) {
pagefault_enable();
return;
}
BUG_ON(vaddr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
/*
* force other mappings to Oops if they'll try to access
* this pte without first remap it
*/
pte_clear(&init_mm, vaddr, kmap_pte-idx);
local_flush_tlb_page(NULL, vaddr);
#endif
pagefault_enable();
}
static inline struct page *kmap_atomic_to_page(void *ptr)
{
unsigned long idx, vaddr = (unsigned long) ptr;
pte_t *pte;
if (vaddr < FIXADDR_START)
return virt_to_page(ptr);
idx = virt_to_fix(vaddr);
pte = kmap_pte - (idx - FIX_KMAP_BEGIN);
return pte_page(*pte);
}
#define flush_cache_kmaps() flush_cache_all()
#endif /* __KERNEL__ */
#endif /* _ASM_HIGHMEM_H */