linux-stable/fs/ocfs2/dlmfs/dlmfs.c
Christian Brauner f2d40141d5
fs: port inode_init_owner() to mnt_idmap
Convert to struct mnt_idmap.

Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.

Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.

Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.

Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
2023-01-19 09:24:28 +01:00

630 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* dlmfs.c
*
* Code which implements the kernel side of a minimal userspace
* interface to our DLM. This file handles the virtual file system
* used for communication with userspace. Credit should go to ramfs,
* which was a template for the fs side of this module.
*
* Copyright (C) 2003, 2004 Oracle. All rights reserved.
*/
/* Simple VFS hooks based on: */
/*
* Resizable simple ram filesystem for Linux.
*
* Copyright (C) 2000 Linus Torvalds.
* 2000 Transmeta Corp.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/poll.h>
#include <linux/uaccess.h>
#include "../stackglue.h"
#include "userdlm.h"
#define MLOG_MASK_PREFIX ML_DLMFS
#include "../cluster/masklog.h"
static const struct super_operations dlmfs_ops;
static const struct file_operations dlmfs_file_operations;
static const struct inode_operations dlmfs_dir_inode_operations;
static const struct inode_operations dlmfs_root_inode_operations;
static const struct inode_operations dlmfs_file_inode_operations;
static struct kmem_cache *dlmfs_inode_cache;
struct workqueue_struct *user_dlm_worker;
/*
* These are the ABI capabilities of dlmfs.
*
* Over time, dlmfs has added some features that were not part of the
* initial ABI. Unfortunately, some of these features are not detectable
* via standard usage. For example, Linux's default poll always returns
* EPOLLIN, so there is no way for a caller of poll(2) to know when dlmfs
* added poll support. Instead, we provide this list of new capabilities.
*
* Capabilities is a read-only attribute. We do it as a module parameter
* so we can discover it whether dlmfs is built in, loaded, or even not
* loaded.
*
* The ABI features are local to this machine's dlmfs mount. This is
* distinct from the locking protocol, which is concerned with inter-node
* interaction.
*
* Capabilities:
* - bast : EPOLLIN against the file descriptor of a held lock
* signifies a bast fired on the lock.
*/
#define DLMFS_CAPABILITIES "bast stackglue"
static int param_set_dlmfs_capabilities(const char *val,
const struct kernel_param *kp)
{
printk(KERN_ERR "%s: readonly parameter\n", kp->name);
return -EINVAL;
}
static int param_get_dlmfs_capabilities(char *buffer,
const struct kernel_param *kp)
{
return strlcpy(buffer, DLMFS_CAPABILITIES,
strlen(DLMFS_CAPABILITIES) + 1);
}
module_param_call(capabilities, param_set_dlmfs_capabilities,
param_get_dlmfs_capabilities, NULL, 0444);
MODULE_PARM_DESC(capabilities, DLMFS_CAPABILITIES);
/*
* decodes a set of open flags into a valid lock level and a set of flags.
* returns < 0 if we have invalid flags
* flags which mean something to us:
* O_RDONLY -> PRMODE level
* O_WRONLY -> EXMODE level
*
* O_NONBLOCK -> NOQUEUE
*/
static int dlmfs_decode_open_flags(int open_flags,
int *level,
int *flags)
{
if (open_flags & (O_WRONLY|O_RDWR))
*level = DLM_LOCK_EX;
else
*level = DLM_LOCK_PR;
*flags = 0;
if (open_flags & O_NONBLOCK)
*flags |= DLM_LKF_NOQUEUE;
return 0;
}
static int dlmfs_file_open(struct inode *inode,
struct file *file)
{
int status, level, flags;
struct dlmfs_filp_private *fp = NULL;
struct dlmfs_inode_private *ip;
if (S_ISDIR(inode->i_mode))
BUG();
mlog(0, "open called on inode %lu, flags 0x%x\n", inode->i_ino,
file->f_flags);
status = dlmfs_decode_open_flags(file->f_flags, &level, &flags);
if (status < 0)
goto bail;
/* We don't want to honor O_APPEND at read/write time as it
* doesn't make sense for LVB writes. */
file->f_flags &= ~O_APPEND;
fp = kmalloc(sizeof(*fp), GFP_NOFS);
if (!fp) {
status = -ENOMEM;
goto bail;
}
fp->fp_lock_level = level;
ip = DLMFS_I(inode);
status = user_dlm_cluster_lock(&ip->ip_lockres, level, flags);
if (status < 0) {
/* this is a strange error to return here but I want
* to be able userspace to be able to distinguish a
* valid lock request from one that simply couldn't be
* granted. */
if (flags & DLM_LKF_NOQUEUE && status == -EAGAIN)
status = -ETXTBSY;
kfree(fp);
goto bail;
}
file->private_data = fp;
bail:
return status;
}
static int dlmfs_file_release(struct inode *inode,
struct file *file)
{
int level;
struct dlmfs_inode_private *ip = DLMFS_I(inode);
struct dlmfs_filp_private *fp = file->private_data;
if (S_ISDIR(inode->i_mode))
BUG();
mlog(0, "close called on inode %lu\n", inode->i_ino);
if (fp) {
level = fp->fp_lock_level;
if (level != DLM_LOCK_IV)
user_dlm_cluster_unlock(&ip->ip_lockres, level);
kfree(fp);
file->private_data = NULL;
}
return 0;
}
/*
* We do ->setattr() just to override size changes. Our size is the size
* of the LVB and nothing else.
*/
static int dlmfs_file_setattr(struct mnt_idmap *idmap,
struct dentry *dentry, struct iattr *attr)
{
int error;
struct inode *inode = d_inode(dentry);
attr->ia_valid &= ~ATTR_SIZE;
error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
if (error)
return error;
setattr_copy(&nop_mnt_idmap, inode, attr);
mark_inode_dirty(inode);
return 0;
}
static __poll_t dlmfs_file_poll(struct file *file, poll_table *wait)
{
__poll_t event = 0;
struct inode *inode = file_inode(file);
struct dlmfs_inode_private *ip = DLMFS_I(inode);
poll_wait(file, &ip->ip_lockres.l_event, wait);
spin_lock(&ip->ip_lockres.l_lock);
if (ip->ip_lockres.l_flags & USER_LOCK_BLOCKED)
event = EPOLLIN | EPOLLRDNORM;
spin_unlock(&ip->ip_lockres.l_lock);
return event;
}
static ssize_t dlmfs_file_read(struct file *file,
char __user *buf,
size_t count,
loff_t *ppos)
{
char lvb[DLM_LVB_LEN];
if (!user_dlm_read_lvb(file_inode(file), lvb))
return 0;
return simple_read_from_buffer(buf, count, ppos, lvb, sizeof(lvb));
}
static ssize_t dlmfs_file_write(struct file *filp,
const char __user *buf,
size_t count,
loff_t *ppos)
{
char lvb_buf[DLM_LVB_LEN];
int bytes_left;
struct inode *inode = file_inode(filp);
mlog(0, "inode %lu, count = %zu, *ppos = %llu\n",
inode->i_ino, count, *ppos);
if (*ppos >= DLM_LVB_LEN)
return -ENOSPC;
/* don't write past the lvb */
if (count > DLM_LVB_LEN - *ppos)
count = DLM_LVB_LEN - *ppos;
if (!count)
return 0;
bytes_left = copy_from_user(lvb_buf, buf, count);
count -= bytes_left;
if (count)
user_dlm_write_lvb(inode, lvb_buf, count);
*ppos = *ppos + count;
mlog(0, "wrote %zu bytes\n", count);
return count;
}
static void dlmfs_init_once(void *foo)
{
struct dlmfs_inode_private *ip =
(struct dlmfs_inode_private *) foo;
ip->ip_conn = NULL;
ip->ip_parent = NULL;
inode_init_once(&ip->ip_vfs_inode);
}
static struct inode *dlmfs_alloc_inode(struct super_block *sb)
{
struct dlmfs_inode_private *ip;
ip = alloc_inode_sb(sb, dlmfs_inode_cache, GFP_NOFS);
if (!ip)
return NULL;
return &ip->ip_vfs_inode;
}
static void dlmfs_free_inode(struct inode *inode)
{
kmem_cache_free(dlmfs_inode_cache, DLMFS_I(inode));
}
static void dlmfs_evict_inode(struct inode *inode)
{
int status;
struct dlmfs_inode_private *ip;
struct user_lock_res *lockres;
int teardown;
clear_inode(inode);
mlog(0, "inode %lu\n", inode->i_ino);
ip = DLMFS_I(inode);
lockres = &ip->ip_lockres;
if (S_ISREG(inode->i_mode)) {
spin_lock(&lockres->l_lock);
teardown = !!(lockres->l_flags & USER_LOCK_IN_TEARDOWN);
spin_unlock(&lockres->l_lock);
if (!teardown) {
status = user_dlm_destroy_lock(lockres);
if (status < 0)
mlog_errno(status);
}
iput(ip->ip_parent);
goto clear_fields;
}
mlog(0, "we're a directory, ip->ip_conn = 0x%p\n", ip->ip_conn);
/* we must be a directory. If required, lets unregister the
* dlm context now. */
if (ip->ip_conn)
user_dlm_unregister(ip->ip_conn);
clear_fields:
ip->ip_parent = NULL;
ip->ip_conn = NULL;
}
static struct inode *dlmfs_get_root_inode(struct super_block *sb)
{
struct inode *inode = new_inode(sb);
umode_t mode = S_IFDIR | 0755;
if (inode) {
inode->i_ino = get_next_ino();
inode_init_owner(&nop_mnt_idmap, inode, NULL, mode);
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
inc_nlink(inode);
inode->i_fop = &simple_dir_operations;
inode->i_op = &dlmfs_root_inode_operations;
}
return inode;
}
static struct inode *dlmfs_get_inode(struct inode *parent,
struct dentry *dentry,
umode_t mode)
{
struct super_block *sb = parent->i_sb;
struct inode * inode = new_inode(sb);
struct dlmfs_inode_private *ip;
if (!inode)
return NULL;
inode->i_ino = get_next_ino();
inode_init_owner(&nop_mnt_idmap, inode, parent, mode);
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
ip = DLMFS_I(inode);
ip->ip_conn = DLMFS_I(parent)->ip_conn;
switch (mode & S_IFMT) {
default:
/* for now we don't support anything other than
* directories and regular files. */
BUG();
break;
case S_IFREG:
inode->i_op = &dlmfs_file_inode_operations;
inode->i_fop = &dlmfs_file_operations;
i_size_write(inode, DLM_LVB_LEN);
user_dlm_lock_res_init(&ip->ip_lockres, dentry);
/* released at clear_inode time, this insures that we
* get to drop the dlm reference on each lock *before*
* we call the unregister code for releasing parent
* directories. */
ip->ip_parent = igrab(parent);
BUG_ON(!ip->ip_parent);
break;
case S_IFDIR:
inode->i_op = &dlmfs_dir_inode_operations;
inode->i_fop = &simple_dir_operations;
/* directory inodes start off with i_nlink ==
* 2 (for "." entry) */
inc_nlink(inode);
break;
}
return inode;
}
/*
* File creation. Allocate an inode, and we're done..
*/
/* SMP-safe */
static int dlmfs_mkdir(struct mnt_idmap * idmap,
struct inode * dir,
struct dentry * dentry,
umode_t mode)
{
int status;
struct inode *inode = NULL;
const struct qstr *domain = &dentry->d_name;
struct dlmfs_inode_private *ip;
struct ocfs2_cluster_connection *conn;
mlog(0, "mkdir %.*s\n", domain->len, domain->name);
/* verify that we have a proper domain */
if (domain->len >= GROUP_NAME_MAX) {
status = -EINVAL;
mlog(ML_ERROR, "invalid domain name for directory.\n");
goto bail;
}
inode = dlmfs_get_inode(dir, dentry, mode | S_IFDIR);
if (!inode) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ip = DLMFS_I(inode);
conn = user_dlm_register(domain);
if (IS_ERR(conn)) {
status = PTR_ERR(conn);
mlog(ML_ERROR, "Error %d could not register domain \"%.*s\"\n",
status, domain->len, domain->name);
goto bail;
}
ip->ip_conn = conn;
inc_nlink(dir);
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
status = 0;
bail:
if (status < 0)
iput(inode);
return status;
}
static int dlmfs_create(struct mnt_idmap *idmap,
struct inode *dir,
struct dentry *dentry,
umode_t mode,
bool excl)
{
int status = 0;
struct inode *inode;
const struct qstr *name = &dentry->d_name;
mlog(0, "create %.*s\n", name->len, name->name);
/* verify name is valid and doesn't contain any dlm reserved
* characters */
if (name->len >= USER_DLM_LOCK_ID_MAX_LEN ||
name->name[0] == '$') {
status = -EINVAL;
mlog(ML_ERROR, "invalid lock name, %.*s\n", name->len,
name->name);
goto bail;
}
inode = dlmfs_get_inode(dir, dentry, mode | S_IFREG);
if (!inode) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
d_instantiate(dentry, inode);
dget(dentry); /* Extra count - pin the dentry in core */
bail:
return status;
}
static int dlmfs_unlink(struct inode *dir,
struct dentry *dentry)
{
int status;
struct inode *inode = d_inode(dentry);
mlog(0, "unlink inode %lu\n", inode->i_ino);
/* if there are no current holders, or none that are waiting
* to acquire a lock, this basically destroys our lockres. */
status = user_dlm_destroy_lock(&DLMFS_I(inode)->ip_lockres);
if (status < 0) {
mlog(ML_ERROR, "unlink %pd, error %d from destroy\n",
dentry, status);
goto bail;
}
status = simple_unlink(dir, dentry);
bail:
return status;
}
static int dlmfs_fill_super(struct super_block * sb,
void * data,
int silent)
{
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_blocksize = PAGE_SIZE;
sb->s_blocksize_bits = PAGE_SHIFT;
sb->s_magic = DLMFS_MAGIC;
sb->s_op = &dlmfs_ops;
sb->s_root = d_make_root(dlmfs_get_root_inode(sb));
if (!sb->s_root)
return -ENOMEM;
return 0;
}
static const struct file_operations dlmfs_file_operations = {
.open = dlmfs_file_open,
.release = dlmfs_file_release,
.poll = dlmfs_file_poll,
.read = dlmfs_file_read,
.write = dlmfs_file_write,
.llseek = default_llseek,
};
static const struct inode_operations dlmfs_dir_inode_operations = {
.create = dlmfs_create,
.lookup = simple_lookup,
.unlink = dlmfs_unlink,
};
/* this way we can restrict mkdir to only the toplevel of the fs. */
static const struct inode_operations dlmfs_root_inode_operations = {
.lookup = simple_lookup,
.mkdir = dlmfs_mkdir,
.rmdir = simple_rmdir,
};
static const struct super_operations dlmfs_ops = {
.statfs = simple_statfs,
.alloc_inode = dlmfs_alloc_inode,
.free_inode = dlmfs_free_inode,
.evict_inode = dlmfs_evict_inode,
.drop_inode = generic_delete_inode,
};
static const struct inode_operations dlmfs_file_inode_operations = {
.getattr = simple_getattr,
.setattr = dlmfs_file_setattr,
};
static struct dentry *dlmfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_nodev(fs_type, flags, data, dlmfs_fill_super);
}
static struct file_system_type dlmfs_fs_type = {
.owner = THIS_MODULE,
.name = "ocfs2_dlmfs",
.mount = dlmfs_mount,
.kill_sb = kill_litter_super,
};
MODULE_ALIAS_FS("ocfs2_dlmfs");
static int __init init_dlmfs_fs(void)
{
int status;
int cleanup_inode = 0, cleanup_worker = 0;
dlmfs_inode_cache = kmem_cache_create("dlmfs_inode_cache",
sizeof(struct dlmfs_inode_private),
0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
dlmfs_init_once);
if (!dlmfs_inode_cache) {
status = -ENOMEM;
goto bail;
}
cleanup_inode = 1;
user_dlm_worker = alloc_workqueue("user_dlm", WQ_MEM_RECLAIM, 0);
if (!user_dlm_worker) {
status = -ENOMEM;
goto bail;
}
cleanup_worker = 1;
user_dlm_set_locking_protocol();
status = register_filesystem(&dlmfs_fs_type);
bail:
if (status) {
if (cleanup_inode)
kmem_cache_destroy(dlmfs_inode_cache);
if (cleanup_worker)
destroy_workqueue(user_dlm_worker);
} else
printk("OCFS2 User DLM kernel interface loaded\n");
return status;
}
static void __exit exit_dlmfs_fs(void)
{
unregister_filesystem(&dlmfs_fs_type);
destroy_workqueue(user_dlm_worker);
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(dlmfs_inode_cache);
}
MODULE_AUTHOR("Oracle");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("OCFS2 DLM-Filesystem");
module_init(init_dlmfs_fs)
module_exit(exit_dlmfs_fs)