linux-stable/fs/btrfs/file.c
Yan, Zheng 920bbbfb05 Btrfs: Rewrite btrfs_drop_extents
Rewrite btrfs_drop_extents by using btrfs_duplicate_item, so we can
avoid calling lock_extent within transaction.

Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-12-15 21:24:52 -05:00

1109 lines
29 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/mpage.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/statfs.h>
#include <linux/compat.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "ioctl.h"
#include "print-tree.h"
#include "tree-log.h"
#include "locking.h"
#include "compat.h"
/* simple helper to fault in pages and copy. This should go away
* and be replaced with calls into generic code.
*/
static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
int write_bytes,
struct page **prepared_pages,
const char __user *buf)
{
long page_fault = 0;
int i;
int offset = pos & (PAGE_CACHE_SIZE - 1);
for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
size_t count = min_t(size_t,
PAGE_CACHE_SIZE - offset, write_bytes);
struct page *page = prepared_pages[i];
fault_in_pages_readable(buf, count);
/* Copy data from userspace to the current page */
kmap(page);
page_fault = __copy_from_user(page_address(page) + offset,
buf, count);
/* Flush processor's dcache for this page */
flush_dcache_page(page);
kunmap(page);
buf += count;
write_bytes -= count;
if (page_fault)
break;
}
return page_fault ? -EFAULT : 0;
}
/*
* unlocks pages after btrfs_file_write is done with them
*/
static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
{
size_t i;
for (i = 0; i < num_pages; i++) {
if (!pages[i])
break;
/* page checked is some magic around finding pages that
* have been modified without going through btrfs_set_page_dirty
* clear it here
*/
ClearPageChecked(pages[i]);
unlock_page(pages[i]);
mark_page_accessed(pages[i]);
page_cache_release(pages[i]);
}
}
/*
* after copy_from_user, pages need to be dirtied and we need to make
* sure holes are created between the current EOF and the start of
* any next extents (if required).
*
* this also makes the decision about creating an inline extent vs
* doing real data extents, marking pages dirty and delalloc as required.
*/
static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct file *file,
struct page **pages,
size_t num_pages,
loff_t pos,
size_t write_bytes)
{
int err = 0;
int i;
struct inode *inode = fdentry(file)->d_inode;
u64 num_bytes;
u64 start_pos;
u64 end_of_last_block;
u64 end_pos = pos + write_bytes;
loff_t isize = i_size_read(inode);
start_pos = pos & ~((u64)root->sectorsize - 1);
num_bytes = (write_bytes + pos - start_pos +
root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
end_of_last_block = start_pos + num_bytes - 1;
err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
if (err)
return err;
for (i = 0; i < num_pages; i++) {
struct page *p = pages[i];
SetPageUptodate(p);
ClearPageChecked(p);
set_page_dirty(p);
}
if (end_pos > isize) {
i_size_write(inode, end_pos);
/* we've only changed i_size in ram, and we haven't updated
* the disk i_size. There is no need to log the inode
* at this time.
*/
}
return err;
}
/*
* this drops all the extents in the cache that intersect the range
* [start, end]. Existing extents are split as required.
*/
int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
int skip_pinned)
{
struct extent_map *em;
struct extent_map *split = NULL;
struct extent_map *split2 = NULL;
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 len = end - start + 1;
int ret;
int testend = 1;
unsigned long flags;
int compressed = 0;
WARN_ON(end < start);
if (end == (u64)-1) {
len = (u64)-1;
testend = 0;
}
while (1) {
if (!split)
split = alloc_extent_map(GFP_NOFS);
if (!split2)
split2 = alloc_extent_map(GFP_NOFS);
write_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (!em) {
write_unlock(&em_tree->lock);
break;
}
flags = em->flags;
if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
if (em->start <= start &&
(!testend || em->start + em->len >= start + len)) {
free_extent_map(em);
write_unlock(&em_tree->lock);
break;
}
if (start < em->start) {
len = em->start - start;
} else {
len = start + len - (em->start + em->len);
start = em->start + em->len;
}
free_extent_map(em);
write_unlock(&em_tree->lock);
continue;
}
compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
clear_bit(EXTENT_FLAG_PINNED, &em->flags);
remove_extent_mapping(em_tree, em);
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
em->start < start) {
split->start = em->start;
split->len = start - em->start;
split->orig_start = em->orig_start;
split->block_start = em->block_start;
if (compressed)
split->block_len = em->block_len;
else
split->block_len = split->len;
split->bdev = em->bdev;
split->flags = flags;
ret = add_extent_mapping(em_tree, split);
BUG_ON(ret);
free_extent_map(split);
split = split2;
split2 = NULL;
}
if (em->block_start < EXTENT_MAP_LAST_BYTE &&
testend && em->start + em->len > start + len) {
u64 diff = start + len - em->start;
split->start = start + len;
split->len = em->start + em->len - (start + len);
split->bdev = em->bdev;
split->flags = flags;
if (compressed) {
split->block_len = em->block_len;
split->block_start = em->block_start;
split->orig_start = em->orig_start;
} else {
split->block_len = split->len;
split->block_start = em->block_start + diff;
split->orig_start = split->start;
}
ret = add_extent_mapping(em_tree, split);
BUG_ON(ret);
free_extent_map(split);
split = NULL;
}
write_unlock(&em_tree->lock);
/* once for us */
free_extent_map(em);
/* once for the tree*/
free_extent_map(em);
}
if (split)
free_extent_map(split);
if (split2)
free_extent_map(split2);
return 0;
}
/*
* this is very complex, but the basic idea is to drop all extents
* in the range start - end. hint_block is filled in with a block number
* that would be a good hint to the block allocator for this file.
*
* If an extent intersects the range but is not entirely inside the range
* it is either truncated or split. Anything entirely inside the range
* is deleted from the tree.
*/
int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
u64 start, u64 end, u64 *hint_byte, int drop_cache)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_key new_key;
u64 search_start = start;
u64 disk_bytenr = 0;
u64 num_bytes = 0;
u64 extent_offset = 0;
u64 extent_end = 0;
int del_nr = 0;
int del_slot = 0;
int extent_type;
int recow;
int ret;
if (drop_cache)
btrfs_drop_extent_cache(inode, start, end - 1, 0);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
recow = 0;
ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
search_start, -1);
if (ret < 0)
break;
if (ret > 0 && path->slots[0] > 0 && search_start == start) {
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
if (key.objectid == inode->i_ino &&
key.type == BTRFS_EXTENT_DATA_KEY)
path->slots[0]--;
}
ret = 0;
next_slot:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
BUG_ON(del_nr > 0);
ret = btrfs_next_leaf(root, path);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
break;
}
leaf = path->nodes[0];
recow = 1;
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid > inode->i_ino ||
key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
break;
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(leaf, fi);
if (extent_type == BTRFS_FILE_EXTENT_REG ||
extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
extent_offset = btrfs_file_extent_offset(leaf, fi);
extent_end = key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
extent_end = key.offset +
btrfs_file_extent_inline_len(leaf, fi);
} else {
WARN_ON(1);
extent_end = search_start;
}
if (extent_end <= search_start) {
path->slots[0]++;
goto next_slot;
}
search_start = max(key.offset, start);
if (recow) {
btrfs_release_path(root, path);
continue;
}
/*
* | - range to drop - |
* | -------- extent -------- |
*/
if (start > key.offset && end < extent_end) {
BUG_ON(del_nr > 0);
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = start;
ret = btrfs_duplicate_item(trans, root, path,
&new_key);
if (ret == -EAGAIN) {
btrfs_release_path(root, path);
continue;
}
if (ret < 0)
break;
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
extent_offset += start - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - start);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
ret = btrfs_inc_extent_ref(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
new_key.objectid,
start - extent_offset);
BUG_ON(ret);
*hint_byte = disk_bytenr;
}
key.offset = start;
}
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start <= key.offset && end < extent_end) {
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = end;
btrfs_set_item_key_safe(trans, root, path, &new_key);
extent_offset += end - key.offset;
btrfs_set_file_extent_offset(leaf, fi, extent_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - end);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
inode_sub_bytes(inode, end - key.offset);
*hint_byte = disk_bytenr;
}
break;
}
search_start = extent_end;
/*
* | ---- range to drop ----- |
* | -------- extent -------- |
*/
if (start > key.offset && end >= extent_end) {
BUG_ON(del_nr > 0);
BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
btrfs_set_file_extent_num_bytes(leaf, fi,
start - key.offset);
btrfs_mark_buffer_dirty(leaf);
if (disk_bytenr > 0) {
inode_sub_bytes(inode, extent_end - start);
*hint_byte = disk_bytenr;
}
if (end == extent_end)
break;
path->slots[0]++;
goto next_slot;
}
/*
* | ---- range to drop ----- |
* | ------ extent ------ |
*/
if (start <= key.offset && end >= extent_end) {
if (del_nr == 0) {
del_slot = path->slots[0];
del_nr = 1;
} else {
BUG_ON(del_slot + del_nr != path->slots[0]);
del_nr++;
}
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
inode_sub_bytes(inode,
extent_end - key.offset);
extent_end = ALIGN(extent_end,
root->sectorsize);
} else if (disk_bytenr > 0) {
ret = btrfs_free_extent(trans, root,
disk_bytenr, num_bytes, 0,
root->root_key.objectid,
key.objectid, key.offset -
extent_offset);
BUG_ON(ret);
inode_sub_bytes(inode,
extent_end - key.offset);
*hint_byte = disk_bytenr;
}
if (end == extent_end)
break;
if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
path->slots[0]++;
goto next_slot;
}
ret = btrfs_del_items(trans, root, path, del_slot,
del_nr);
BUG_ON(ret);
del_nr = 0;
del_slot = 0;
btrfs_release_path(root, path);
continue;
}
BUG_ON(1);
}
if (del_nr > 0) {
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
BUG_ON(ret);
}
btrfs_free_path(path);
return ret;
}
static int extent_mergeable(struct extent_buffer *leaf, int slot,
u64 objectid, u64 bytenr, u64 *start, u64 *end)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 extent_end;
if (slot < 0 || slot >= btrfs_header_nritems(leaf))
return 0;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
return 0;
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
if ((*start && *start != key.offset) || (*end && *end != extent_end))
return 0;
*start = key.offset;
*end = extent_end;
return 1;
}
/*
* Mark extent in the range start - end as written.
*
* This changes extent type from 'pre-allocated' to 'regular'. If only
* part of extent is marked as written, the extent will be split into
* two or three.
*/
int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
struct inode *inode, u64 start, u64 end)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct extent_buffer *leaf;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
struct btrfs_key new_key;
u64 bytenr;
u64 num_bytes;
u64 extent_end;
u64 orig_offset;
u64 other_start;
u64 other_end;
u64 split;
int del_nr = 0;
int del_slot = 0;
int ret;
btrfs_drop_extent_cache(inode, start, end - 1, 0);
path = btrfs_alloc_path();
BUG_ON(!path);
again:
split = start;
key.objectid = inode->i_ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = split;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret > 0 && path->slots[0] > 0)
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
BUG_ON(key.objectid != inode->i_ino ||
key.type != BTRFS_EXTENT_DATA_KEY);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
BUG_ON(btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_PREALLOC);
extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
BUG_ON(key.offset > start || extent_end < end);
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
while (start > key.offset || end < extent_end) {
if (key.offset == start)
split = end;
memcpy(&new_key, &key, sizeof(new_key));
new_key.offset = split;
ret = btrfs_duplicate_item(trans, root, path, &new_key);
if (ret == -EAGAIN) {
btrfs_release_path(root, path);
goto again;
}
BUG_ON(ret < 0);
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_num_bytes(leaf, fi,
split - key.offset);
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - split);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
if (split == start) {
key.offset = start;
} else {
BUG_ON(start != key.offset);
path->slots[0]--;
extent_end = end;
}
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
other_start = end;
other_end = 0;
if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
bytenr, &other_start, &other_end)) {
extent_end = other_end;
del_slot = path->slots[0] + 1;
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
}
other_start = 0;
other_end = start;
if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
bytenr, &other_start, &other_end)) {
key.offset = other_start;
del_slot = path->slots[0];
del_nr++;
ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
0, root->root_key.objectid,
inode->i_ino, orig_offset);
BUG_ON(ret);
}
if (del_nr == 0) {
btrfs_set_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG);
btrfs_mark_buffer_dirty(leaf);
goto out;
}
fi = btrfs_item_ptr(leaf, del_slot - 1,
struct btrfs_file_extent_item);
btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_num_bytes(leaf, fi,
extent_end - key.offset);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
BUG_ON(ret);
out:
btrfs_free_path(path);
return 0;
}
/*
* this gets pages into the page cache and locks them down, it also properly
* waits for data=ordered extents to finish before allowing the pages to be
* modified.
*/
static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
struct page **pages, size_t num_pages,
loff_t pos, unsigned long first_index,
unsigned long last_index, size_t write_bytes)
{
int i;
unsigned long index = pos >> PAGE_CACHE_SHIFT;
struct inode *inode = fdentry(file)->d_inode;
int err = 0;
u64 start_pos;
u64 last_pos;
start_pos = pos & ~((u64)root->sectorsize - 1);
last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
if (start_pos > inode->i_size) {
err = btrfs_cont_expand(inode, start_pos);
if (err)
return err;
}
memset(pages, 0, num_pages * sizeof(struct page *));
again:
for (i = 0; i < num_pages; i++) {
pages[i] = grab_cache_page(inode->i_mapping, index + i);
if (!pages[i]) {
err = -ENOMEM;
BUG_ON(1);
}
wait_on_page_writeback(pages[i]);
}
if (start_pos < inode->i_size) {
struct btrfs_ordered_extent *ordered;
lock_extent(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1, GFP_NOFS);
ordered = btrfs_lookup_first_ordered_extent(inode,
last_pos - 1);
if (ordered &&
ordered->file_offset + ordered->len > start_pos &&
ordered->file_offset < last_pos) {
btrfs_put_ordered_extent(ordered);
unlock_extent(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1, GFP_NOFS);
for (i = 0; i < num_pages; i++) {
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
btrfs_wait_ordered_range(inode, start_pos,
last_pos - start_pos);
goto again;
}
if (ordered)
btrfs_put_ordered_extent(ordered);
clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
EXTENT_DO_ACCOUNTING,
GFP_NOFS);
unlock_extent(&BTRFS_I(inode)->io_tree,
start_pos, last_pos - 1, GFP_NOFS);
}
for (i = 0; i < num_pages; i++) {
clear_page_dirty_for_io(pages[i]);
set_page_extent_mapped(pages[i]);
WARN_ON(!PageLocked(pages[i]));
}
return 0;
}
static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
loff_t pos;
loff_t start_pos;
ssize_t num_written = 0;
ssize_t err = 0;
int ret = 0;
struct inode *inode = fdentry(file)->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct page **pages = NULL;
int nrptrs;
struct page *pinned[2];
unsigned long first_index;
unsigned long last_index;
int will_write;
will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
(file->f_flags & O_DIRECT));
nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
PAGE_CACHE_SIZE / (sizeof(struct page *)));
pinned[0] = NULL;
pinned[1] = NULL;
pos = *ppos;
start_pos = pos;
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
/* do the reserve before the mutex lock in case we have to do some
* flushing. We wouldn't deadlock, but this is more polite.
*/
err = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
if (err)
goto out_nolock;
mutex_lock(&inode->i_mutex);
current->backing_dev_info = inode->i_mapping->backing_dev_info;
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err)
goto out;
if (count == 0)
goto out;
err = file_remove_suid(file);
if (err)
goto out;
file_update_time(file);
pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
/* generic_write_checks can change our pos */
start_pos = pos;
BTRFS_I(inode)->sequence++;
first_index = pos >> PAGE_CACHE_SHIFT;
last_index = (pos + count) >> PAGE_CACHE_SHIFT;
/*
* there are lots of better ways to do this, but this code
* makes sure the first and last page in the file range are
* up to date and ready for cow
*/
if ((pos & (PAGE_CACHE_SIZE - 1))) {
pinned[0] = grab_cache_page(inode->i_mapping, first_index);
if (!PageUptodate(pinned[0])) {
ret = btrfs_readpage(NULL, pinned[0]);
BUG_ON(ret);
wait_on_page_locked(pinned[0]);
} else {
unlock_page(pinned[0]);
}
}
if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
pinned[1] = grab_cache_page(inode->i_mapping, last_index);
if (!PageUptodate(pinned[1])) {
ret = btrfs_readpage(NULL, pinned[1]);
BUG_ON(ret);
wait_on_page_locked(pinned[1]);
} else {
unlock_page(pinned[1]);
}
}
while (count > 0) {
size_t offset = pos & (PAGE_CACHE_SIZE - 1);
size_t write_bytes = min(count, nrptrs *
(size_t)PAGE_CACHE_SIZE -
offset);
size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
WARN_ON(num_pages > nrptrs);
memset(pages, 0, sizeof(struct page *) * nrptrs);
ret = btrfs_check_data_free_space(root, inode, write_bytes);
if (ret)
goto out;
ret = prepare_pages(root, file, pages, num_pages,
pos, first_index, last_index,
write_bytes);
if (ret) {
btrfs_free_reserved_data_space(root, inode,
write_bytes);
goto out;
}
ret = btrfs_copy_from_user(pos, num_pages,
write_bytes, pages, buf);
if (ret) {
btrfs_free_reserved_data_space(root, inode,
write_bytes);
btrfs_drop_pages(pages, num_pages);
goto out;
}
ret = dirty_and_release_pages(NULL, root, file, pages,
num_pages, pos, write_bytes);
btrfs_drop_pages(pages, num_pages);
if (ret) {
btrfs_free_reserved_data_space(root, inode,
write_bytes);
goto out;
}
if (will_write) {
filemap_fdatawrite_range(inode->i_mapping, pos,
pos + write_bytes - 1);
} else {
balance_dirty_pages_ratelimited_nr(inode->i_mapping,
num_pages);
if (num_pages <
(root->leafsize >> PAGE_CACHE_SHIFT) + 1)
btrfs_btree_balance_dirty(root, 1);
btrfs_throttle(root);
}
buf += write_bytes;
count -= write_bytes;
pos += write_bytes;
num_written += write_bytes;
cond_resched();
}
out:
mutex_unlock(&inode->i_mutex);
if (ret)
err = ret;
btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
out_nolock:
kfree(pages);
if (pinned[0])
page_cache_release(pinned[0]);
if (pinned[1])
page_cache_release(pinned[1]);
*ppos = pos;
/*
* we want to make sure fsync finds this change
* but we haven't joined a transaction running right now.
*
* Later on, someone is sure to update the inode and get the
* real transid recorded.
*
* We set last_trans now to the fs_info generation + 1,
* this will either be one more than the running transaction
* or the generation used for the next transaction if there isn't
* one running right now.
*/
BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
if (num_written > 0 && will_write) {
struct btrfs_trans_handle *trans;
err = btrfs_wait_ordered_range(inode, start_pos, num_written);
if (err)
num_written = err;
if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
trans = btrfs_start_transaction(root, 1);
ret = btrfs_log_dentry_safe(trans, root,
file->f_dentry);
if (ret == 0) {
ret = btrfs_sync_log(trans, root);
if (ret == 0)
btrfs_end_transaction(trans, root);
else
btrfs_commit_transaction(trans, root);
} else if (ret != BTRFS_NO_LOG_SYNC) {
btrfs_commit_transaction(trans, root);
} else {
btrfs_end_transaction(trans, root);
}
}
if (file->f_flags & O_DIRECT) {
invalidate_mapping_pages(inode->i_mapping,
start_pos >> PAGE_CACHE_SHIFT,
(start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
}
}
current->backing_dev_info = NULL;
return num_written ? num_written : err;
}
int btrfs_release_file(struct inode *inode, struct file *filp)
{
/*
* ordered_data_close is set by settattr when we are about to truncate
* a file from a non-zero size to a zero size. This tries to
* flush down new bytes that may have been written if the
* application were using truncate to replace a file in place.
*/
if (BTRFS_I(inode)->ordered_data_close) {
BTRFS_I(inode)->ordered_data_close = 0;
btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
filemap_flush(inode->i_mapping);
}
if (filp->private_data)
btrfs_ioctl_trans_end(filp);
return 0;
}
/*
* fsync call for both files and directories. This logs the inode into
* the tree log instead of forcing full commits whenever possible.
*
* It needs to call filemap_fdatawait so that all ordered extent updates are
* in the metadata btree are up to date for copying to the log.
*
* It drops the inode mutex before doing the tree log commit. This is an
* important optimization for directories because holding the mutex prevents
* new operations on the dir while we write to disk.
*/
int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
{
struct inode *inode = dentry->d_inode;
struct btrfs_root *root = BTRFS_I(inode)->root;
int ret = 0;
struct btrfs_trans_handle *trans;
/* we wait first, since the writeback may change the inode */
root->log_batch++;
/* the VFS called filemap_fdatawrite for us */
btrfs_wait_ordered_range(inode, 0, (u64)-1);
root->log_batch++;
/*
* check the transaction that last modified this inode
* and see if its already been committed
*/
if (!BTRFS_I(inode)->last_trans)
goto out;
/*
* if the last transaction that changed this file was before
* the current transaction, we can bail out now without any
* syncing
*/
mutex_lock(&root->fs_info->trans_mutex);
if (BTRFS_I(inode)->last_trans <=
root->fs_info->last_trans_committed) {
BTRFS_I(inode)->last_trans = 0;
mutex_unlock(&root->fs_info->trans_mutex);
goto out;
}
mutex_unlock(&root->fs_info->trans_mutex);
/*
* ok we haven't committed the transaction yet, lets do a commit
*/
if (file && file->private_data)
btrfs_ioctl_trans_end(file);
trans = btrfs_start_transaction(root, 1);
if (!trans) {
ret = -ENOMEM;
goto out;
}
ret = btrfs_log_dentry_safe(trans, root, dentry);
if (ret < 0)
goto out;
/* we've logged all the items and now have a consistent
* version of the file in the log. It is possible that
* someone will come in and modify the file, but that's
* fine because the log is consistent on disk, and we
* have references to all of the file's extents
*
* It is possible that someone will come in and log the
* file again, but that will end up using the synchronization
* inside btrfs_sync_log to keep things safe.
*/
mutex_unlock(&dentry->d_inode->i_mutex);
if (ret != BTRFS_NO_LOG_SYNC) {
if (ret > 0) {
ret = btrfs_commit_transaction(trans, root);
} else {
ret = btrfs_sync_log(trans, root);
if (ret == 0)
ret = btrfs_end_transaction(trans, root);
else
ret = btrfs_commit_transaction(trans, root);
}
} else {
ret = btrfs_end_transaction(trans, root);
}
mutex_lock(&dentry->d_inode->i_mutex);
out:
return ret > 0 ? EIO : ret;
}
static const struct vm_operations_struct btrfs_file_vm_ops = {
.fault = filemap_fault,
.page_mkwrite = btrfs_page_mkwrite,
};
static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
vma->vm_ops = &btrfs_file_vm_ops;
file_accessed(filp);
return 0;
}
const struct file_operations btrfs_file_operations = {
.llseek = generic_file_llseek,
.read = do_sync_read,
.aio_read = generic_file_aio_read,
.splice_read = generic_file_splice_read,
.write = btrfs_file_write,
.mmap = btrfs_file_mmap,
.open = generic_file_open,
.release = btrfs_release_file,
.fsync = btrfs_sync_file,
.unlocked_ioctl = btrfs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = btrfs_ioctl,
#endif
};