linux-stable/drivers/crypto/nx/nx-aes-xcbc.c
Thomas Gleixner 64d85cc999 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 299
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation version 2 only this program is
  distributed in the hope that it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation inc 675 mass ave cambridge ma 02139 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 15 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141902.274594435@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:59 +02:00

379 lines
9.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/**
* AES XCBC routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
struct xcbc_state {
u8 state[AES_BLOCK_SIZE];
unsigned int count;
u8 buffer[AES_BLOCK_SIZE];
};
static int nx_xcbc_set_key(struct crypto_shash *desc,
const u8 *in_key,
unsigned int key_len)
{
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
switch (key_len) {
case AES_KEYSIZE_128:
nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
break;
default:
return -EINVAL;
}
memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
return 0;
}
/*
* Based on RFC 3566, for a zero-length message:
*
* n = 1
* K1 = E(K, 0x01010101010101010101010101010101)
* K3 = E(K, 0x03030303030303030303030303030303)
* E[0] = 0x00000000000000000000000000000000
* M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
* E[1] = (K1, M[1] ^ E[0] ^ K3)
* Tag = M[1]
*/
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u8 keys[2][AES_BLOCK_SIZE];
u8 key[32];
int rc = 0;
int len;
/* Change to ECB mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
/* K1 and K3 base patterns */
memset(keys[0], 0x01, sizeof(keys[0]));
memset(keys[1], 0x03, sizeof(keys[1]));
len = sizeof(keys);
/* Generate K1 and K3 encrypting the patterns */
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys))
return -EINVAL;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys))
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* XOr K3 with the padding for a 0 length message */
keys[1][0] ^= 0x80;
len = sizeof(keys[1]);
/* Encrypt the final result */
memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
nx_ctx->ap->sglen);
if (len != sizeof(keys[1]))
return -EINVAL;
len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
nx_ctx->ap->sglen);
if (len != AES_BLOCK_SIZE)
return -EINVAL;
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
out:
/* Restore XCBC mode */
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
return rc;
}
static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
int err;
err = nx_crypto_ctx_aes_xcbc_init(tfm);
if (err)
return err;
nx_ctx_init(nx_ctx, HCOP_FC_AES);
NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
return 0;
}
static int nx_xcbc_init(struct shash_desc *desc)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
memset(sctx, 0, sizeof *sctx);
return 0;
}
static int nx_xcbc_update(struct shash_desc *desc,
const u8 *data,
unsigned int len)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg;
struct nx_sg *out_sg;
u32 to_process = 0, leftover, total;
unsigned int max_sg_len;
unsigned long irq_flags;
int rc = 0;
int data_len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
total = sctx->count + len;
/* 2 cases for total data len:
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
*/
if (total <= AES_BLOCK_SIZE) {
memcpy(sctx->buffer + sctx->count, data, len);
sctx->count += len;
goto out;
}
in_sg = nx_ctx->in_sg;
max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
nx_ctx->ap->sglen);
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
data_len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
&len, nx_ctx->ap->sglen);
if (data_len != AES_BLOCK_SIZE) {
rc = -EINVAL;
goto out;
}
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
do {
to_process = total - to_process;
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
leftover = total - to_process;
/* the hardware will not accept a 0 byte operation for this
* algorithm and the operation MUST be finalized to be correct.
* So if we happen to get an update that falls on a block sized
* boundary, we must save off the last block to finalize with
* later. */
if (!leftover) {
to_process -= AES_BLOCK_SIZE;
leftover = AES_BLOCK_SIZE;
}
if (sctx->count) {
data_len = sctx->count;
in_sg = nx_build_sg_list(nx_ctx->in_sg,
(u8 *) sctx->buffer,
&data_len,
max_sg_len);
if (data_len != sctx->count) {
rc = -EINVAL;
goto out;
}
}
data_len = to_process - sctx->count;
in_sg = nx_build_sg_list(in_sg,
(u8 *) data,
&data_len,
max_sg_len);
if (data_len != to_process - sctx->count) {
rc = -EINVAL;
goto out;
}
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac,
AES_BLOCK_SIZE);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
total -= to_process;
data += to_process - sctx->count;
sctx->count = 0;
in_sg = nx_ctx->in_sg;
} while (leftover > AES_BLOCK_SIZE);
/* copy the leftover back into the state struct */
memcpy(sctx->buffer, data, leftover);
sctx->count = leftover;
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
{
struct xcbc_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
unsigned long irq_flags;
int rc = 0;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.aes_xcbc.cv,
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
} else if (sctx->count == 0) {
/*
* we've never seen an update, so this is a 0 byte op. The
* hardware cannot handle a 0 byte op, so just ECB to
* generate the hash.
*/
rc = nx_xcbc_empty(desc, out);
goto out;
}
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
len = sctx->count;
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
&len, nx_ctx->ap->sglen);
if (len != sctx->count) {
rc = -EINVAL;
goto out;
}
len = AES_BLOCK_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
nx_ctx->ap->sglen);
if (len != AES_BLOCK_SIZE) {
rc = -EINVAL;
goto out;
}
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->aes_ops));
memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
struct shash_alg nx_shash_aes_xcbc_alg = {
.digestsize = AES_BLOCK_SIZE,
.init = nx_xcbc_init,
.update = nx_xcbc_update,
.final = nx_xcbc_final,
.setkey = nx_xcbc_set_key,
.descsize = sizeof(struct xcbc_state),
.statesize = sizeof(struct xcbc_state),
.base = {
.cra_name = "xcbc(aes)",
.cra_driver_name = "xcbc-aes-nx",
.cra_priority = 300,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_aes_xcbc_init2,
.cra_exit = nx_crypto_ctx_exit,
}
};