linux-stable/crypto/algif_skcipher.c
Herbert Xu 99bd99d3e3 crypto: algif_skcipher - Fix stream cipher chaining
Unlike algif_aead which is always issued in one go (thus limiting
the maximum size of the request), algif_skcipher has always allowed
unlimited input data by cutting them up as necessary and feeding
the fragments to the underlying algorithm one at a time.

However, because of deficiencies in the API, this has been broken
for most stream ciphers such as arc4 or chacha.  This is because
they have an internal state in addition to the IV that must be
preserved in order to continue processing.

Fix this by using the new skcipher state API.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2023-12-08 11:59:46 +08:00

440 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* algif_skcipher: User-space interface for skcipher algorithms
*
* This file provides the user-space API for symmetric key ciphers.
*
* Copyright (c) 2010 Herbert Xu <herbert@gondor.apana.org.au>
*
* The following concept of the memory management is used:
*
* The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
* filled by user space with the data submitted via sendmsg. Filling up the TX
* SGL does not cause a crypto operation -- the data will only be tracked by
* the kernel. Upon receipt of one recvmsg call, the caller must provide a
* buffer which is tracked with the RX SGL.
*
* During the processing of the recvmsg operation, the cipher request is
* allocated and prepared. As part of the recvmsg operation, the processed
* TX buffers are extracted from the TX SGL into a separate SGL.
*
* After the completion of the crypto operation, the RX SGL and the cipher
* request is released. The extracted TX SGL parts are released together with
* the RX SGL release.
*/
#include <crypto/scatterwalk.h>
#include <crypto/skcipher.h>
#include <crypto/if_alg.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>
static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
size_t size)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct crypto_skcipher *tfm = pask->private;
unsigned ivsize = crypto_skcipher_ivsize(tfm);
return af_alg_sendmsg(sock, msg, size, ivsize);
}
static int algif_skcipher_export(struct sock *sk, struct skcipher_request *req)
{
struct alg_sock *ask = alg_sk(sk);
struct crypto_skcipher *tfm;
struct af_alg_ctx *ctx;
struct alg_sock *pask;
unsigned statesize;
struct sock *psk;
int err;
if (!(req->base.flags & CRYPTO_SKCIPHER_REQ_NOTFINAL))
return 0;
ctx = ask->private;
psk = ask->parent;
pask = alg_sk(psk);
tfm = pask->private;
statesize = crypto_skcipher_statesize(tfm);
ctx->state = sock_kmalloc(sk, statesize, GFP_ATOMIC);
if (!ctx->state)
return -ENOMEM;
err = crypto_skcipher_export(req, ctx->state);
if (err) {
sock_kzfree_s(sk, ctx->state, statesize);
ctx->state = NULL;
}
return err;
}
static void algif_skcipher_done(void *data, int err)
{
struct af_alg_async_req *areq = data;
struct sock *sk = areq->sk;
if (err)
goto out;
err = algif_skcipher_export(sk, &areq->cra_u.skcipher_req);
out:
af_alg_async_cb(data, err);
}
static int _skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct af_alg_ctx *ctx = ask->private;
struct crypto_skcipher *tfm = pask->private;
unsigned int bs = crypto_skcipher_chunksize(tfm);
struct af_alg_async_req *areq;
unsigned cflags = 0;
int err = 0;
size_t len = 0;
if (!ctx->init || (ctx->more && ctx->used < bs)) {
err = af_alg_wait_for_data(sk, flags, bs);
if (err)
return err;
}
/* Allocate cipher request for current operation. */
areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
crypto_skcipher_reqsize(tfm));
if (IS_ERR(areq))
return PTR_ERR(areq);
/* convert iovecs of output buffers into RX SGL */
err = af_alg_get_rsgl(sk, msg, flags, areq, ctx->used, &len);
if (err)
goto free;
/*
* If more buffers are to be expected to be processed, process only
* full block size buffers.
*/
if (ctx->more || len < ctx->used) {
len -= len % bs;
cflags |= CRYPTO_SKCIPHER_REQ_NOTFINAL;
}
/*
* Create a per request TX SGL for this request which tracks the
* SG entries from the global TX SGL.
*/
areq->tsgl_entries = af_alg_count_tsgl(sk, len, 0);
if (!areq->tsgl_entries)
areq->tsgl_entries = 1;
areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
areq->tsgl_entries),
GFP_KERNEL);
if (!areq->tsgl) {
err = -ENOMEM;
goto free;
}
sg_init_table(areq->tsgl, areq->tsgl_entries);
af_alg_pull_tsgl(sk, len, areq->tsgl, 0);
/* Initialize the crypto operation */
skcipher_request_set_tfm(&areq->cra_u.skcipher_req, tfm);
skcipher_request_set_crypt(&areq->cra_u.skcipher_req, areq->tsgl,
areq->first_rsgl.sgl.sgt.sgl, len, ctx->iv);
if (ctx->state) {
err = crypto_skcipher_import(&areq->cra_u.skcipher_req,
ctx->state);
sock_kzfree_s(sk, ctx->state, crypto_skcipher_statesize(tfm));
ctx->state = NULL;
if (err)
goto free;
cflags |= CRYPTO_SKCIPHER_REQ_CONT;
}
if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
/* AIO operation */
sock_hold(sk);
areq->iocb = msg->msg_iocb;
/* Remember output size that will be generated. */
areq->outlen = len;
skcipher_request_set_callback(&areq->cra_u.skcipher_req,
cflags |
CRYPTO_TFM_REQ_MAY_SLEEP,
algif_skcipher_done, areq);
err = ctx->enc ?
crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
crypto_skcipher_decrypt(&areq->cra_u.skcipher_req);
/* AIO operation in progress */
if (err == -EINPROGRESS)
return -EIOCBQUEUED;
sock_put(sk);
} else {
/* Synchronous operation */
skcipher_request_set_callback(&areq->cra_u.skcipher_req,
cflags |
CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &ctx->wait);
err = crypto_wait_req(ctx->enc ?
crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
crypto_skcipher_decrypt(&areq->cra_u.skcipher_req),
&ctx->wait);
if (!err)
err = algif_skcipher_export(
sk, &areq->cra_u.skcipher_req);
}
free:
af_alg_free_resources(areq);
return err ? err : len;
}
static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
struct sock *sk = sock->sk;
int ret = 0;
lock_sock(sk);
while (msg_data_left(msg)) {
int err = _skcipher_recvmsg(sock, msg, ignored, flags);
/*
* This error covers -EIOCBQUEUED which implies that we can
* only handle one AIO request. If the caller wants to have
* multiple AIO requests in parallel, he must make multiple
* separate AIO calls.
*
* Also return the error if no data has been processed so far.
*/
if (err <= 0) {
if (err == -EIOCBQUEUED || !ret)
ret = err;
goto out;
}
ret += err;
}
out:
af_alg_wmem_wakeup(sk);
release_sock(sk);
return ret;
}
static struct proto_ops algif_skcipher_ops = {
.family = PF_ALG,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.mmap = sock_no_mmap,
.bind = sock_no_bind,
.accept = sock_no_accept,
.release = af_alg_release,
.sendmsg = skcipher_sendmsg,
.recvmsg = skcipher_recvmsg,
.poll = af_alg_poll,
};
static int skcipher_check_key(struct socket *sock)
{
int err = 0;
struct sock *psk;
struct alg_sock *pask;
struct crypto_skcipher *tfm;
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
lock_sock(sk);
if (!atomic_read(&ask->nokey_refcnt))
goto unlock_child;
psk = ask->parent;
pask = alg_sk(ask->parent);
tfm = pask->private;
err = -ENOKEY;
lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
goto unlock;
atomic_dec(&pask->nokey_refcnt);
atomic_set(&ask->nokey_refcnt, 0);
err = 0;
unlock:
release_sock(psk);
unlock_child:
release_sock(sk);
return err;
}
static int skcipher_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
size_t size)
{
int err;
err = skcipher_check_key(sock);
if (err)
return err;
return skcipher_sendmsg(sock, msg, size);
}
static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
int err;
err = skcipher_check_key(sock);
if (err)
return err;
return skcipher_recvmsg(sock, msg, ignored, flags);
}
static struct proto_ops algif_skcipher_ops_nokey = {
.family = PF_ALG,
.connect = sock_no_connect,
.socketpair = sock_no_socketpair,
.getname = sock_no_getname,
.ioctl = sock_no_ioctl,
.listen = sock_no_listen,
.shutdown = sock_no_shutdown,
.mmap = sock_no_mmap,
.bind = sock_no_bind,
.accept = sock_no_accept,
.release = af_alg_release,
.sendmsg = skcipher_sendmsg_nokey,
.recvmsg = skcipher_recvmsg_nokey,
.poll = af_alg_poll,
};
static void *skcipher_bind(const char *name, u32 type, u32 mask)
{
return crypto_alloc_skcipher(name, type, mask);
}
static void skcipher_release(void *private)
{
crypto_free_skcipher(private);
}
static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen)
{
return crypto_skcipher_setkey(private, key, keylen);
}
static void skcipher_sock_destruct(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct crypto_skcipher *tfm = pask->private;
af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm));
if (ctx->state)
sock_kzfree_s(sk, ctx->state, crypto_skcipher_statesize(tfm));
sock_kfree_s(sk, ctx, ctx->len);
af_alg_release_parent(sk);
}
static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
{
struct af_alg_ctx *ctx;
struct alg_sock *ask = alg_sk(sk);
struct crypto_skcipher *tfm = private;
unsigned int len = sizeof(*ctx);
ctx = sock_kmalloc(sk, len, GFP_KERNEL);
if (!ctx)
return -ENOMEM;
memset(ctx, 0, len);
ctx->iv = sock_kmalloc(sk, crypto_skcipher_ivsize(tfm),
GFP_KERNEL);
if (!ctx->iv) {
sock_kfree_s(sk, ctx, len);
return -ENOMEM;
}
memset(ctx->iv, 0, crypto_skcipher_ivsize(tfm));
INIT_LIST_HEAD(&ctx->tsgl_list);
ctx->len = len;
crypto_init_wait(&ctx->wait);
ask->private = ctx;
sk->sk_destruct = skcipher_sock_destruct;
return 0;
}
static int skcipher_accept_parent(void *private, struct sock *sk)
{
struct crypto_skcipher *tfm = private;
if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
return -ENOKEY;
return skcipher_accept_parent_nokey(private, sk);
}
static const struct af_alg_type algif_type_skcipher = {
.bind = skcipher_bind,
.release = skcipher_release,
.setkey = skcipher_setkey,
.accept = skcipher_accept_parent,
.accept_nokey = skcipher_accept_parent_nokey,
.ops = &algif_skcipher_ops,
.ops_nokey = &algif_skcipher_ops_nokey,
.name = "skcipher",
.owner = THIS_MODULE
};
static int __init algif_skcipher_init(void)
{
return af_alg_register_type(&algif_type_skcipher);
}
static void __exit algif_skcipher_exit(void)
{
int err = af_alg_unregister_type(&algif_type_skcipher);
BUG_ON(err);
}
module_init(algif_skcipher_init);
module_exit(algif_skcipher_exit);
MODULE_LICENSE("GPL");