linux-stable/fs/ext4/migrate.c
Jan Kara 00d873c17e ext4: avoid deadlock in fs reclaim with page writeback
Ext4 has a filesystem wide lock protecting ext4_writepages() calls to
avoid races with switching of journalled data flag or inode format. This
lock can however cause a deadlock like:

CPU0                            CPU1

ext4_writepages()
  percpu_down_read(sbi->s_writepages_rwsem);
                                ext4_change_inode_journal_flag()
                                  percpu_down_write(sbi->s_writepages_rwsem);
                                    - blocks, all readers block from now on
  ext4_do_writepages()
    ext4_init_io_end()
      kmem_cache_zalloc(io_end_cachep, GFP_KERNEL)
        fs_reclaim frees dentry...
          dentry_unlink_inode()
            iput() - last ref =>
              iput_final() - inode dirty =>
                write_inode_now()...
                  ext4_writepages() tries to acquire sbi->s_writepages_rwsem
                    and blocks forever

Make sure we cannot recurse into filesystem reclaim from writeback code
to avoid the deadlock.

Reported-by: syzbot+6898da502aef574c5f8a@syzkaller.appspotmail.com
Link: https://lore.kernel.org/all/0000000000004c66b405fa108e27@google.com
Fixes: c8585c6fca ("ext4: fix races between changing inode journal mode and ext4_writepages")
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230504124723.20205-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2023-05-13 18:05:04 -04:00

671 lines
17 KiB
C

// SPDX-License-Identifier: LGPL-2.1
/*
* Copyright IBM Corporation, 2007
* Author Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
*
*/
#include <linux/slab.h>
#include "ext4_jbd2.h"
#include "ext4_extents.h"
/*
* The contiguous blocks details which can be
* represented by a single extent
*/
struct migrate_struct {
ext4_lblk_t first_block, last_block, curr_block;
ext4_fsblk_t first_pblock, last_pblock;
};
static int finish_range(handle_t *handle, struct inode *inode,
struct migrate_struct *lb)
{
int retval = 0, needed;
struct ext4_extent newext;
struct ext4_ext_path *path;
if (lb->first_pblock == 0)
return 0;
/* Add the extent to temp inode*/
newext.ee_block = cpu_to_le32(lb->first_block);
newext.ee_len = cpu_to_le16(lb->last_block - lb->first_block + 1);
ext4_ext_store_pblock(&newext, lb->first_pblock);
/* Locking only for convenience since we are operating on temp inode */
down_write(&EXT4_I(inode)->i_data_sem);
path = ext4_find_extent(inode, lb->first_block, NULL, 0);
if (IS_ERR(path)) {
retval = PTR_ERR(path);
path = NULL;
goto err_out;
}
/*
* Calculate the credit needed to inserting this extent
* Since we are doing this in loop we may accumulate extra
* credit. But below we try to not accumulate too much
* of them by restarting the journal.
*/
needed = ext4_ext_calc_credits_for_single_extent(inode,
lb->last_block - lb->first_block + 1, path);
retval = ext4_datasem_ensure_credits(handle, inode, needed, needed, 0);
if (retval < 0)
goto err_out;
retval = ext4_ext_insert_extent(handle, inode, &path, &newext, 0);
err_out:
up_write((&EXT4_I(inode)->i_data_sem));
ext4_free_ext_path(path);
lb->first_pblock = 0;
return retval;
}
static int update_extent_range(handle_t *handle, struct inode *inode,
ext4_fsblk_t pblock, struct migrate_struct *lb)
{
int retval;
/*
* See if we can add on to the existing range (if it exists)
*/
if (lb->first_pblock &&
(lb->last_pblock+1 == pblock) &&
(lb->last_block+1 == lb->curr_block)) {
lb->last_pblock = pblock;
lb->last_block = lb->curr_block;
lb->curr_block++;
return 0;
}
/*
* Start a new range.
*/
retval = finish_range(handle, inode, lb);
lb->first_pblock = lb->last_pblock = pblock;
lb->first_block = lb->last_block = lb->curr_block;
lb->curr_block++;
return retval;
}
static int update_ind_extent_range(handle_t *handle, struct inode *inode,
ext4_fsblk_t pblock,
struct migrate_struct *lb)
{
struct buffer_head *bh;
__le32 *i_data;
int i, retval = 0;
unsigned long max_entries = inode->i_sb->s_blocksize >> 2;
bh = ext4_sb_bread(inode->i_sb, pblock, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
i_data = (__le32 *)bh->b_data;
for (i = 0; i < max_entries; i++) {
if (i_data[i]) {
retval = update_extent_range(handle, inode,
le32_to_cpu(i_data[i]), lb);
if (retval)
break;
} else {
lb->curr_block++;
}
}
put_bh(bh);
return retval;
}
static int update_dind_extent_range(handle_t *handle, struct inode *inode,
ext4_fsblk_t pblock,
struct migrate_struct *lb)
{
struct buffer_head *bh;
__le32 *i_data;
int i, retval = 0;
unsigned long max_entries = inode->i_sb->s_blocksize >> 2;
bh = ext4_sb_bread(inode->i_sb, pblock, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
i_data = (__le32 *)bh->b_data;
for (i = 0; i < max_entries; i++) {
if (i_data[i]) {
retval = update_ind_extent_range(handle, inode,
le32_to_cpu(i_data[i]), lb);
if (retval)
break;
} else {
/* Only update the file block number */
lb->curr_block += max_entries;
}
}
put_bh(bh);
return retval;
}
static int update_tind_extent_range(handle_t *handle, struct inode *inode,
ext4_fsblk_t pblock,
struct migrate_struct *lb)
{
struct buffer_head *bh;
__le32 *i_data;
int i, retval = 0;
unsigned long max_entries = inode->i_sb->s_blocksize >> 2;
bh = ext4_sb_bread(inode->i_sb, pblock, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
i_data = (__le32 *)bh->b_data;
for (i = 0; i < max_entries; i++) {
if (i_data[i]) {
retval = update_dind_extent_range(handle, inode,
le32_to_cpu(i_data[i]), lb);
if (retval)
break;
} else {
/* Only update the file block number */
lb->curr_block += max_entries * max_entries;
}
}
put_bh(bh);
return retval;
}
static int free_dind_blocks(handle_t *handle,
struct inode *inode, __le32 i_data)
{
int i;
__le32 *tmp_idata;
struct buffer_head *bh;
struct super_block *sb = inode->i_sb;
unsigned long max_entries = inode->i_sb->s_blocksize >> 2;
int err;
bh = ext4_sb_bread(sb, le32_to_cpu(i_data), 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
tmp_idata = (__le32 *)bh->b_data;
for (i = 0; i < max_entries; i++) {
if (tmp_idata[i]) {
err = ext4_journal_ensure_credits(handle,
EXT4_RESERVE_TRANS_BLOCKS,
ext4_free_metadata_revoke_credits(sb, 1));
if (err < 0) {
put_bh(bh);
return err;
}
ext4_free_blocks(handle, inode, NULL,
le32_to_cpu(tmp_idata[i]), 1,
EXT4_FREE_BLOCKS_METADATA |
EXT4_FREE_BLOCKS_FORGET);
}
}
put_bh(bh);
err = ext4_journal_ensure_credits(handle, EXT4_RESERVE_TRANS_BLOCKS,
ext4_free_metadata_revoke_credits(sb, 1));
if (err < 0)
return err;
ext4_free_blocks(handle, inode, NULL, le32_to_cpu(i_data), 1,
EXT4_FREE_BLOCKS_METADATA |
EXT4_FREE_BLOCKS_FORGET);
return 0;
}
static int free_tind_blocks(handle_t *handle,
struct inode *inode, __le32 i_data)
{
int i, retval = 0;
__le32 *tmp_idata;
struct buffer_head *bh;
unsigned long max_entries = inode->i_sb->s_blocksize >> 2;
bh = ext4_sb_bread(inode->i_sb, le32_to_cpu(i_data), 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
tmp_idata = (__le32 *)bh->b_data;
for (i = 0; i < max_entries; i++) {
if (tmp_idata[i]) {
retval = free_dind_blocks(handle,
inode, tmp_idata[i]);
if (retval) {
put_bh(bh);
return retval;
}
}
}
put_bh(bh);
retval = ext4_journal_ensure_credits(handle, EXT4_RESERVE_TRANS_BLOCKS,
ext4_free_metadata_revoke_credits(inode->i_sb, 1));
if (retval < 0)
return retval;
ext4_free_blocks(handle, inode, NULL, le32_to_cpu(i_data), 1,
EXT4_FREE_BLOCKS_METADATA |
EXT4_FREE_BLOCKS_FORGET);
return 0;
}
static int free_ind_block(handle_t *handle, struct inode *inode, __le32 *i_data)
{
int retval;
/* ei->i_data[EXT4_IND_BLOCK] */
if (i_data[0]) {
retval = ext4_journal_ensure_credits(handle,
EXT4_RESERVE_TRANS_BLOCKS,
ext4_free_metadata_revoke_credits(inode->i_sb, 1));
if (retval < 0)
return retval;
ext4_free_blocks(handle, inode, NULL,
le32_to_cpu(i_data[0]), 1,
EXT4_FREE_BLOCKS_METADATA |
EXT4_FREE_BLOCKS_FORGET);
}
/* ei->i_data[EXT4_DIND_BLOCK] */
if (i_data[1]) {
retval = free_dind_blocks(handle, inode, i_data[1]);
if (retval)
return retval;
}
/* ei->i_data[EXT4_TIND_BLOCK] */
if (i_data[2]) {
retval = free_tind_blocks(handle, inode, i_data[2]);
if (retval)
return retval;
}
return 0;
}
static int ext4_ext_swap_inode_data(handle_t *handle, struct inode *inode,
struct inode *tmp_inode)
{
int retval, retval2 = 0;
__le32 i_data[3];
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_inode_info *tmp_ei = EXT4_I(tmp_inode);
/*
* One credit accounted for writing the
* i_data field of the original inode
*/
retval = ext4_journal_ensure_credits(handle, 1, 0);
if (retval < 0)
goto err_out;
i_data[0] = ei->i_data[EXT4_IND_BLOCK];
i_data[1] = ei->i_data[EXT4_DIND_BLOCK];
i_data[2] = ei->i_data[EXT4_TIND_BLOCK];
down_write(&EXT4_I(inode)->i_data_sem);
/*
* if EXT4_STATE_EXT_MIGRATE is cleared a block allocation
* happened after we started the migrate. We need to
* fail the migrate
*/
if (!ext4_test_inode_state(inode, EXT4_STATE_EXT_MIGRATE)) {
retval = -EAGAIN;
up_write(&EXT4_I(inode)->i_data_sem);
goto err_out;
} else
ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
/*
* We have the extent map build with the tmp inode.
* Now copy the i_data across
*/
ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
memcpy(ei->i_data, tmp_ei->i_data, sizeof(ei->i_data));
/*
* Update i_blocks with the new blocks that got
* allocated while adding extents for extent index
* blocks.
*
* While converting to extents we need not
* update the original inode i_blocks for extent blocks
* via quota APIs. The quota update happened via tmp_inode already.
*/
spin_lock(&inode->i_lock);
inode->i_blocks += tmp_inode->i_blocks;
spin_unlock(&inode->i_lock);
up_write(&EXT4_I(inode)->i_data_sem);
/*
* We mark the inode dirty after, because we decrement the
* i_blocks when freeing the indirect meta-data blocks
*/
retval = free_ind_block(handle, inode, i_data);
retval2 = ext4_mark_inode_dirty(handle, inode);
if (unlikely(retval2 && !retval))
retval = retval2;
err_out:
return retval;
}
static int free_ext_idx(handle_t *handle, struct inode *inode,
struct ext4_extent_idx *ix)
{
int i, retval = 0;
ext4_fsblk_t block;
struct buffer_head *bh;
struct ext4_extent_header *eh;
block = ext4_idx_pblock(ix);
bh = ext4_sb_bread(inode->i_sb, block, 0);
if (IS_ERR(bh))
return PTR_ERR(bh);
eh = (struct ext4_extent_header *)bh->b_data;
if (eh->eh_depth != 0) {
ix = EXT_FIRST_INDEX(eh);
for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ix++) {
retval = free_ext_idx(handle, inode, ix);
if (retval) {
put_bh(bh);
return retval;
}
}
}
put_bh(bh);
retval = ext4_journal_ensure_credits(handle, EXT4_RESERVE_TRANS_BLOCKS,
ext4_free_metadata_revoke_credits(inode->i_sb, 1));
if (retval < 0)
return retval;
ext4_free_blocks(handle, inode, NULL, block, 1,
EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
return 0;
}
/*
* Free the extent meta data blocks only
*/
static int free_ext_block(handle_t *handle, struct inode *inode)
{
int i, retval = 0;
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_extent_header *eh = (struct ext4_extent_header *)ei->i_data;
struct ext4_extent_idx *ix;
if (eh->eh_depth == 0)
/*
* No extra blocks allocated for extent meta data
*/
return 0;
ix = EXT_FIRST_INDEX(eh);
for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ix++) {
retval = free_ext_idx(handle, inode, ix);
if (retval)
return retval;
}
return retval;
}
int ext4_ext_migrate(struct inode *inode)
{
handle_t *handle;
int retval = 0, i;
__le32 *i_data;
struct ext4_inode_info *ei;
struct inode *tmp_inode = NULL;
struct migrate_struct lb;
unsigned long max_entries;
__u32 goal, tmp_csum_seed;
uid_t owner[2];
int alloc_ctx;
/*
* If the filesystem does not support extents, or the inode
* already is extent-based, error out.
*/
if (!ext4_has_feature_extents(inode->i_sb) ||
ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
ext4_has_inline_data(inode))
return -EINVAL;
if (S_ISLNK(inode->i_mode) && inode->i_blocks == 0)
/*
* don't migrate fast symlink
*/
return retval;
alloc_ctx = ext4_writepages_down_write(inode->i_sb);
/*
* Worst case we can touch the allocation bitmaps and a block
* group descriptor block. We do need to worry about
* credits for modifying the quota inode.
*/
handle = ext4_journal_start(inode, EXT4_HT_MIGRATE,
3 + EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
goto out_unlock;
}
goal = (((inode->i_ino - 1) / EXT4_INODES_PER_GROUP(inode->i_sb)) *
EXT4_INODES_PER_GROUP(inode->i_sb)) + 1;
owner[0] = i_uid_read(inode);
owner[1] = i_gid_read(inode);
tmp_inode = ext4_new_inode(handle, d_inode(inode->i_sb->s_root),
S_IFREG, NULL, goal, owner, 0);
if (IS_ERR(tmp_inode)) {
retval = PTR_ERR(tmp_inode);
ext4_journal_stop(handle);
goto out_unlock;
}
/*
* Use the correct seed for checksum (i.e. the seed from 'inode'). This
* is so that the metadata blocks will have the correct checksum after
* the migration.
*/
ei = EXT4_I(inode);
tmp_csum_seed = EXT4_I(tmp_inode)->i_csum_seed;
EXT4_I(tmp_inode)->i_csum_seed = ei->i_csum_seed;
i_size_write(tmp_inode, i_size_read(inode));
/*
* Set the i_nlink to zero so it will be deleted later
* when we drop inode reference.
*/
clear_nlink(tmp_inode);
ext4_ext_tree_init(handle, tmp_inode);
ext4_journal_stop(handle);
/*
* start with one credit accounted for
* superblock modification.
*
* For the tmp_inode we already have committed the
* transaction that created the inode. Later as and
* when we add extents we extent the journal
*/
/*
* Even though we take i_rwsem we can still cause block
* allocation via mmap write to holes. If we have allocated
* new blocks we fail migrate. New block allocation will
* clear EXT4_STATE_EXT_MIGRATE flag. The flag is updated
* with i_data_sem held to prevent racing with block
* allocation.
*/
down_read(&EXT4_I(inode)->i_data_sem);
ext4_set_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
up_read((&EXT4_I(inode)->i_data_sem));
handle = ext4_journal_start(inode, EXT4_HT_MIGRATE, 1);
if (IS_ERR(handle)) {
retval = PTR_ERR(handle);
goto out_tmp_inode;
}
i_data = ei->i_data;
memset(&lb, 0, sizeof(lb));
/* 32 bit block address 4 bytes */
max_entries = inode->i_sb->s_blocksize >> 2;
for (i = 0; i < EXT4_NDIR_BLOCKS; i++) {
if (i_data[i]) {
retval = update_extent_range(handle, tmp_inode,
le32_to_cpu(i_data[i]), &lb);
if (retval)
goto err_out;
} else
lb.curr_block++;
}
if (i_data[EXT4_IND_BLOCK]) {
retval = update_ind_extent_range(handle, tmp_inode,
le32_to_cpu(i_data[EXT4_IND_BLOCK]), &lb);
if (retval)
goto err_out;
} else
lb.curr_block += max_entries;
if (i_data[EXT4_DIND_BLOCK]) {
retval = update_dind_extent_range(handle, tmp_inode,
le32_to_cpu(i_data[EXT4_DIND_BLOCK]), &lb);
if (retval)
goto err_out;
} else
lb.curr_block += max_entries * max_entries;
if (i_data[EXT4_TIND_BLOCK]) {
retval = update_tind_extent_range(handle, tmp_inode,
le32_to_cpu(i_data[EXT4_TIND_BLOCK]), &lb);
if (retval)
goto err_out;
}
/*
* Build the last extent
*/
retval = finish_range(handle, tmp_inode, &lb);
err_out:
if (retval)
/*
* Failure case delete the extent information with the
* tmp_inode
*/
free_ext_block(handle, tmp_inode);
else {
retval = ext4_ext_swap_inode_data(handle, inode, tmp_inode);
if (retval)
/*
* if we fail to swap inode data free the extent
* details of the tmp inode
*/
free_ext_block(handle, tmp_inode);
}
/* We mark the tmp_inode dirty via ext4_ext_tree_init. */
retval = ext4_journal_ensure_credits(handle, 1, 0);
if (retval < 0)
goto out_stop;
/*
* Mark the tmp_inode as of size zero
*/
i_size_write(tmp_inode, 0);
/*
* set the i_blocks count to zero
* so that the ext4_evict_inode() does the
* right job
*
* We don't need to take the i_lock because
* the inode is not visible to user space.
*/
tmp_inode->i_blocks = 0;
EXT4_I(tmp_inode)->i_csum_seed = tmp_csum_seed;
/* Reset the extent details */
ext4_ext_tree_init(handle, tmp_inode);
out_stop:
ext4_journal_stop(handle);
out_tmp_inode:
unlock_new_inode(tmp_inode);
iput(tmp_inode);
out_unlock:
ext4_writepages_up_write(inode->i_sb, alloc_ctx);
return retval;
}
/*
* Migrate a simple extent-based inode to use the i_blocks[] array
*/
int ext4_ind_migrate(struct inode *inode)
{
struct ext4_extent_header *eh;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_super_block *es = sbi->s_es;
struct ext4_inode_info *ei = EXT4_I(inode);
struct ext4_extent *ex;
unsigned int i, len;
ext4_lblk_t start, end;
ext4_fsblk_t blk;
handle_t *handle;
int ret, ret2 = 0;
int alloc_ctx;
if (!ext4_has_feature_extents(inode->i_sb) ||
(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
return -EINVAL;
if (ext4_has_feature_bigalloc(inode->i_sb))
return -EOPNOTSUPP;
/*
* In order to get correct extent info, force all delayed allocation
* blocks to be allocated, otherwise delayed allocation blocks may not
* be reflected and bypass the checks on extent header.
*/
if (test_opt(inode->i_sb, DELALLOC))
ext4_alloc_da_blocks(inode);
alloc_ctx = ext4_writepages_down_write(inode->i_sb);
handle = ext4_journal_start(inode, EXT4_HT_MIGRATE, 1);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out_unlock;
}
down_write(&EXT4_I(inode)->i_data_sem);
ret = ext4_ext_check_inode(inode);
if (ret)
goto errout;
eh = ext_inode_hdr(inode);
ex = EXT_FIRST_EXTENT(eh);
if (ext4_blocks_count(es) > EXT4_MAX_BLOCK_FILE_PHYS ||
eh->eh_depth != 0 || le16_to_cpu(eh->eh_entries) > 1) {
ret = -EOPNOTSUPP;
goto errout;
}
if (eh->eh_entries == 0)
blk = len = start = end = 0;
else {
len = le16_to_cpu(ex->ee_len);
blk = ext4_ext_pblock(ex);
start = le32_to_cpu(ex->ee_block);
end = start + len - 1;
if (end >= EXT4_NDIR_BLOCKS) {
ret = -EOPNOTSUPP;
goto errout;
}
}
ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
memset(ei->i_data, 0, sizeof(ei->i_data));
for (i = start; i <= end; i++)
ei->i_data[i] = cpu_to_le32(blk++);
ret2 = ext4_mark_inode_dirty(handle, inode);
if (unlikely(ret2 && !ret))
ret = ret2;
errout:
ext4_journal_stop(handle);
up_write(&EXT4_I(inode)->i_data_sem);
out_unlock:
ext4_writepages_up_write(inode->i_sb, alloc_ctx);
return ret;
}