mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-28 23:24:50 +00:00
c03a6a7ba6
Let the core code allocate and handle the kgdb cleanup with the arch_release_thread_info() function. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: David Howells <dhowells@redhat.com> Link: http://lkml.kernel.org/r/20120505150141.996582377@linutronix.de
501 lines
12 KiB
C
501 lines
12 KiB
C
/* kgdb support for MN10300
|
|
*
|
|
* Copyright (C) 2010 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public Licence
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the Licence, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/uaccess.h>
|
|
#include <unit/leds.h>
|
|
#include <unit/serial.h>
|
|
#include <asm/debugger.h>
|
|
#include <asm/serial-regs.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Software single-stepping breakpoint save (used by __switch_to())
|
|
*/
|
|
static struct thread_info *kgdb_sstep_thread;
|
|
u8 *kgdb_sstep_bp_addr[2];
|
|
u8 kgdb_sstep_bp[2];
|
|
|
|
/*
|
|
* Copy kernel exception frame registers to the GDB register file
|
|
*/
|
|
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
|
{
|
|
unsigned long ssp = (unsigned long) (regs + 1);
|
|
|
|
gdb_regs[GDB_FR_D0] = regs->d0;
|
|
gdb_regs[GDB_FR_D1] = regs->d1;
|
|
gdb_regs[GDB_FR_D2] = regs->d2;
|
|
gdb_regs[GDB_FR_D3] = regs->d3;
|
|
gdb_regs[GDB_FR_A0] = regs->a0;
|
|
gdb_regs[GDB_FR_A1] = regs->a1;
|
|
gdb_regs[GDB_FR_A2] = regs->a2;
|
|
gdb_regs[GDB_FR_A3] = regs->a3;
|
|
gdb_regs[GDB_FR_SP] = (regs->epsw & EPSW_nSL) ? regs->sp : ssp;
|
|
gdb_regs[GDB_FR_PC] = regs->pc;
|
|
gdb_regs[GDB_FR_MDR] = regs->mdr;
|
|
gdb_regs[GDB_FR_EPSW] = regs->epsw;
|
|
gdb_regs[GDB_FR_LIR] = regs->lir;
|
|
gdb_regs[GDB_FR_LAR] = regs->lar;
|
|
gdb_regs[GDB_FR_MDRQ] = regs->mdrq;
|
|
gdb_regs[GDB_FR_E0] = regs->e0;
|
|
gdb_regs[GDB_FR_E1] = regs->e1;
|
|
gdb_regs[GDB_FR_E2] = regs->e2;
|
|
gdb_regs[GDB_FR_E3] = regs->e3;
|
|
gdb_regs[GDB_FR_E4] = regs->e4;
|
|
gdb_regs[GDB_FR_E5] = regs->e5;
|
|
gdb_regs[GDB_FR_E6] = regs->e6;
|
|
gdb_regs[GDB_FR_E7] = regs->e7;
|
|
gdb_regs[GDB_FR_SSP] = ssp;
|
|
gdb_regs[GDB_FR_MSP] = 0;
|
|
gdb_regs[GDB_FR_USP] = regs->sp;
|
|
gdb_regs[GDB_FR_MCRH] = regs->mcrh;
|
|
gdb_regs[GDB_FR_MCRL] = regs->mcrl;
|
|
gdb_regs[GDB_FR_MCVF] = regs->mcvf;
|
|
gdb_regs[GDB_FR_DUMMY0] = 0;
|
|
gdb_regs[GDB_FR_DUMMY1] = 0;
|
|
gdb_regs[GDB_FR_FS0] = 0;
|
|
}
|
|
|
|
/*
|
|
* Extracts kernel SP/PC values understandable by gdb from the values
|
|
* saved by switch_to().
|
|
*/
|
|
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
|
|
{
|
|
gdb_regs[GDB_FR_SSP] = p->thread.sp;
|
|
gdb_regs[GDB_FR_PC] = p->thread.pc;
|
|
gdb_regs[GDB_FR_A3] = p->thread.a3;
|
|
gdb_regs[GDB_FR_USP] = p->thread.usp;
|
|
gdb_regs[GDB_FR_FPCR] = p->thread.fpu_state.fpcr;
|
|
}
|
|
|
|
/*
|
|
* Fill kernel exception frame registers from the GDB register file
|
|
*/
|
|
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
|
{
|
|
regs->d0 = gdb_regs[GDB_FR_D0];
|
|
regs->d1 = gdb_regs[GDB_FR_D1];
|
|
regs->d2 = gdb_regs[GDB_FR_D2];
|
|
regs->d3 = gdb_regs[GDB_FR_D3];
|
|
regs->a0 = gdb_regs[GDB_FR_A0];
|
|
regs->a1 = gdb_regs[GDB_FR_A1];
|
|
regs->a2 = gdb_regs[GDB_FR_A2];
|
|
regs->a3 = gdb_regs[GDB_FR_A3];
|
|
regs->sp = gdb_regs[GDB_FR_SP];
|
|
regs->pc = gdb_regs[GDB_FR_PC];
|
|
regs->mdr = gdb_regs[GDB_FR_MDR];
|
|
regs->epsw = gdb_regs[GDB_FR_EPSW];
|
|
regs->lir = gdb_regs[GDB_FR_LIR];
|
|
regs->lar = gdb_regs[GDB_FR_LAR];
|
|
regs->mdrq = gdb_regs[GDB_FR_MDRQ];
|
|
regs->e0 = gdb_regs[GDB_FR_E0];
|
|
regs->e1 = gdb_regs[GDB_FR_E1];
|
|
regs->e2 = gdb_regs[GDB_FR_E2];
|
|
regs->e3 = gdb_regs[GDB_FR_E3];
|
|
regs->e4 = gdb_regs[GDB_FR_E4];
|
|
regs->e5 = gdb_regs[GDB_FR_E5];
|
|
regs->e6 = gdb_regs[GDB_FR_E6];
|
|
regs->e7 = gdb_regs[GDB_FR_E7];
|
|
regs->sp = gdb_regs[GDB_FR_SSP];
|
|
/* gdb_regs[GDB_FR_MSP]; */
|
|
// regs->usp = gdb_regs[GDB_FR_USP];
|
|
regs->mcrh = gdb_regs[GDB_FR_MCRH];
|
|
regs->mcrl = gdb_regs[GDB_FR_MCRL];
|
|
regs->mcvf = gdb_regs[GDB_FR_MCVF];
|
|
/* gdb_regs[GDB_FR_DUMMY0]; */
|
|
/* gdb_regs[GDB_FR_DUMMY1]; */
|
|
|
|
// regs->fpcr = gdb_regs[GDB_FR_FPCR];
|
|
// regs->fs0 = gdb_regs[GDB_FR_FS0];
|
|
}
|
|
|
|
struct kgdb_arch arch_kgdb_ops = {
|
|
.gdb_bpt_instr = { 0xff },
|
|
.flags = KGDB_HW_BREAKPOINT,
|
|
};
|
|
|
|
static const unsigned char mn10300_kgdb_insn_sizes[256] =
|
|
{
|
|
/* 1 2 3 4 5 6 7 8 9 a b c d e f */
|
|
1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, /* 0 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
|
|
2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
|
|
1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
|
|
2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
|
|
0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1 /* f */
|
|
};
|
|
|
|
/*
|
|
* Attempt to emulate single stepping by means of breakpoint instructions.
|
|
* Although there is a single-step trace flag in EPSW, its use is not
|
|
* sufficiently documented and is only intended for use with the JTAG debugger.
|
|
*/
|
|
static int kgdb_arch_do_singlestep(struct pt_regs *regs)
|
|
{
|
|
unsigned long arg;
|
|
unsigned size;
|
|
u8 *pc = (u8 *)regs->pc, *sp = (u8 *)(regs + 1), cur;
|
|
u8 *x = NULL, *y = NULL;
|
|
int ret;
|
|
|
|
ret = probe_kernel_read(&cur, pc, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
size = mn10300_kgdb_insn_sizes[cur];
|
|
if (size > 0) {
|
|
x = pc + size;
|
|
goto set_x;
|
|
}
|
|
|
|
switch (cur) {
|
|
/* Bxx (d8,PC) */
|
|
case 0xc0 ... 0xca:
|
|
ret = probe_kernel_read(&arg, pc + 1, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + 2;
|
|
if (arg >= 0 && arg <= 2)
|
|
goto set_x;
|
|
y = pc + (s8)arg;
|
|
goto set_x_and_y;
|
|
|
|
/* LXX (d8,PC) */
|
|
case 0xd0 ... 0xda:
|
|
x = pc + 1;
|
|
if (regs->pc == regs->lar)
|
|
goto set_x;
|
|
y = (u8 *)regs->lar;
|
|
goto set_x_and_y;
|
|
|
|
/* SETLB - loads the next four bytes into the LIR register
|
|
* (which mustn't include a breakpoint instruction) */
|
|
case 0xdb:
|
|
x = pc + 5;
|
|
goto set_x;
|
|
|
|
/* JMP (d16,PC) or CALL (d16,PC) */
|
|
case 0xcc:
|
|
case 0xcd:
|
|
ret = probe_kernel_read(&arg, pc + 1, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + (s16)arg;
|
|
goto set_x;
|
|
|
|
/* JMP (d32,PC) or CALL (d32,PC) */
|
|
case 0xdc:
|
|
case 0xdd:
|
|
ret = probe_kernel_read(&arg, pc + 1, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + (s32)arg;
|
|
goto set_x;
|
|
|
|
/* RETF */
|
|
case 0xde:
|
|
x = (u8 *)regs->mdr;
|
|
goto set_x;
|
|
|
|
/* RET */
|
|
case 0xdf:
|
|
ret = probe_kernel_read(&arg, pc + 2, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = probe_kernel_read(&x, sp + (s8)arg, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
goto set_x;
|
|
|
|
case 0xf0:
|
|
ret = probe_kernel_read(&cur, pc + 1, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cur >= 0xf0 && cur <= 0xf7) {
|
|
/* JMP (An) / CALLS (An) */
|
|
switch (cur & 3) {
|
|
case 0: x = (u8 *)regs->a0; break;
|
|
case 1: x = (u8 *)regs->a1; break;
|
|
case 2: x = (u8 *)regs->a2; break;
|
|
case 3: x = (u8 *)regs->a3; break;
|
|
}
|
|
goto set_x;
|
|
} else if (cur == 0xfc) {
|
|
/* RETS */
|
|
ret = probe_kernel_read(&x, sp, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
goto set_x;
|
|
} else if (cur == 0xfd) {
|
|
/* RTI */
|
|
ret = probe_kernel_read(&x, sp + 4, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
goto set_x;
|
|
} else {
|
|
x = pc + 2;
|
|
goto set_x;
|
|
}
|
|
break;
|
|
|
|
/* potential 3-byte conditional branches */
|
|
case 0xf8:
|
|
ret = probe_kernel_read(&cur, pc + 1, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + 3;
|
|
|
|
if (cur >= 0xe8 && cur <= 0xeb) {
|
|
ret = probe_kernel_read(&arg, pc + 2, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (arg >= 0 && arg <= 3)
|
|
goto set_x;
|
|
y = pc + (s8)arg;
|
|
goto set_x_and_y;
|
|
}
|
|
goto set_x;
|
|
|
|
case 0xfa:
|
|
ret = probe_kernel_read(&cur, pc + 1, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cur == 0xff) {
|
|
/* CALLS (d16,PC) */
|
|
ret = probe_kernel_read(&arg, pc + 2, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + (s16)arg;
|
|
goto set_x;
|
|
}
|
|
|
|
x = pc + 4;
|
|
goto set_x;
|
|
|
|
case 0xfc:
|
|
ret = probe_kernel_read(&cur, pc + 1, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (cur == 0xff) {
|
|
/* CALLS (d32,PC) */
|
|
ret = probe_kernel_read(&arg, pc + 2, 4);
|
|
if (ret < 0)
|
|
return ret;
|
|
x = pc + (s32)arg;
|
|
goto set_x;
|
|
}
|
|
|
|
x = pc + 6;
|
|
goto set_x;
|
|
}
|
|
|
|
return 0;
|
|
|
|
set_x:
|
|
kgdb_sstep_bp_addr[0] = x;
|
|
kgdb_sstep_bp_addr[1] = NULL;
|
|
ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
kgdb_sstep_thread = current_thread_info();
|
|
debugger_local_cache_flushinv_one(x);
|
|
return ret;
|
|
|
|
set_x_and_y:
|
|
kgdb_sstep_bp_addr[0] = x;
|
|
kgdb_sstep_bp_addr[1] = y;
|
|
ret = probe_kernel_read(&kgdb_sstep_bp[0], x, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = probe_kernel_read(&kgdb_sstep_bp[1], y, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = probe_kernel_write(x, &arch_kgdb_ops.gdb_bpt_instr, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = probe_kernel_write(y, &arch_kgdb_ops.gdb_bpt_instr, 1);
|
|
if (ret < 0) {
|
|
probe_kernel_write(kgdb_sstep_bp_addr[0],
|
|
&kgdb_sstep_bp[0], 1);
|
|
} else {
|
|
kgdb_sstep_thread = current_thread_info();
|
|
}
|
|
debugger_local_cache_flushinv_one(x);
|
|
debugger_local_cache_flushinv_one(y);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove emplaced single-step breakpoints, returning true if we hit one of
|
|
* them.
|
|
*/
|
|
static bool kgdb_arch_undo_singlestep(struct pt_regs *regs)
|
|
{
|
|
bool hit = false;
|
|
u8 *x = kgdb_sstep_bp_addr[0], *y = kgdb_sstep_bp_addr[1];
|
|
u8 opcode;
|
|
|
|
if (kgdb_sstep_thread == current_thread_info()) {
|
|
if (x) {
|
|
if (x == (u8 *)regs->pc)
|
|
hit = true;
|
|
if (probe_kernel_read(&opcode, x,
|
|
1) < 0 ||
|
|
opcode != 0xff)
|
|
BUG();
|
|
probe_kernel_write(x, &kgdb_sstep_bp[0], 1);
|
|
debugger_local_cache_flushinv_one(x);
|
|
}
|
|
if (y) {
|
|
if (y == (u8 *)regs->pc)
|
|
hit = true;
|
|
if (probe_kernel_read(&opcode, y,
|
|
1) < 0 ||
|
|
opcode != 0xff)
|
|
BUG();
|
|
probe_kernel_write(y, &kgdb_sstep_bp[1], 1);
|
|
debugger_local_cache_flushinv_one(y);
|
|
}
|
|
}
|
|
|
|
kgdb_sstep_bp_addr[0] = NULL;
|
|
kgdb_sstep_bp_addr[1] = NULL;
|
|
kgdb_sstep_thread = NULL;
|
|
return hit;
|
|
}
|
|
|
|
/*
|
|
* Catch a single-step-pending thread being deleted and make sure the global
|
|
* single-step state is cleared. At this point the breakpoints should have
|
|
* been removed by __switch_to().
|
|
*/
|
|
void arch_release_thread_info(struct thread_info *ti)
|
|
{
|
|
if (kgdb_sstep_thread == ti) {
|
|
kgdb_sstep_thread = NULL;
|
|
|
|
/* However, we may now be running in degraded mode, with most
|
|
* of the CPUs disabled until such a time as KGDB is reentered,
|
|
* so force immediate reentry */
|
|
kgdb_breakpoint();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle unknown packets and [CcsDk] packets
|
|
* - at this point breakpoints have been installed
|
|
*/
|
|
int kgdb_arch_handle_exception(int vector, int signo, int err_code,
|
|
char *remcom_in_buffer, char *remcom_out_buffer,
|
|
struct pt_regs *regs)
|
|
{
|
|
long addr;
|
|
char *ptr;
|
|
|
|
switch (remcom_in_buffer[0]) {
|
|
case 'c':
|
|
case 's':
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
ptr = &remcom_in_buffer[1];
|
|
if (kgdb_hex2long(&ptr, &addr))
|
|
regs->pc = addr;
|
|
case 'D':
|
|
case 'k':
|
|
atomic_set(&kgdb_cpu_doing_single_step, -1);
|
|
|
|
if (remcom_in_buffer[0] == 's') {
|
|
kgdb_arch_do_singlestep(regs);
|
|
kgdb_single_step = 1;
|
|
atomic_set(&kgdb_cpu_doing_single_step,
|
|
raw_smp_processor_id());
|
|
}
|
|
return 0;
|
|
}
|
|
return -1; /* this means that we do not want to exit from the handler */
|
|
}
|
|
|
|
/*
|
|
* Handle event interception
|
|
* - returns 0 if the exception should be skipped, -ERROR otherwise.
|
|
*/
|
|
int debugger_intercept(enum exception_code excep, int signo, int si_code,
|
|
struct pt_regs *regs)
|
|
{
|
|
int ret;
|
|
|
|
if (kgdb_arch_undo_singlestep(regs)) {
|
|
excep = EXCEP_TRAP;
|
|
signo = SIGTRAP;
|
|
si_code = TRAP_TRACE;
|
|
}
|
|
|
|
ret = kgdb_handle_exception(excep, signo, si_code, regs);
|
|
|
|
debugger_local_cache_flushinv();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Determine if we've hit a debugger special breakpoint
|
|
*/
|
|
int at_debugger_breakpoint(struct pt_regs *regs)
|
|
{
|
|
return regs->pc == (unsigned long)&__arch_kgdb_breakpoint;
|
|
}
|
|
|
|
/*
|
|
* Initialise kgdb
|
|
*/
|
|
int kgdb_arch_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do something, perhaps, but don't know what.
|
|
*/
|
|
void kgdb_arch_exit(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
void debugger_nmi_interrupt(struct pt_regs *regs, enum exception_code code)
|
|
{
|
|
kgdb_nmicallback(arch_smp_processor_id(), regs);
|
|
debugger_local_cache_flushinv();
|
|
}
|
|
|
|
void kgdb_roundup_cpus(unsigned long flags)
|
|
{
|
|
smp_jump_to_debugger();
|
|
}
|
|
#endif
|