mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-29 23:53:32 +00:00
5294ee00a1
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
909 lines
23 KiB
C
909 lines
23 KiB
C
/*
|
|
* S390 version
|
|
* Copyright IBM Corp. 1999
|
|
* Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
|
|
*
|
|
* Derived from "include/asm-i386/bitops.h"
|
|
* Copyright (C) 1992, Linus Torvalds
|
|
*
|
|
*/
|
|
|
|
#ifndef _S390_BITOPS_H
|
|
#define _S390_BITOPS_H
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error only <linux/bitops.h> can be included directly
|
|
#endif
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
/*
|
|
* 32 bit bitops format:
|
|
* bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
|
|
* bit 32 is the LSB of *(addr+4). That combined with the
|
|
* big endian byte order on S390 give the following bit
|
|
* order in memory:
|
|
* 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
|
|
* 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
|
|
* after that follows the next long with bit numbers
|
|
* 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
|
|
* 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
|
|
* The reason for this bit ordering is the fact that
|
|
* in the architecture independent code bits operations
|
|
* of the form "flags |= (1 << bitnr)" are used INTERMIXED
|
|
* with operation of the form "set_bit(bitnr, flags)".
|
|
*
|
|
* 64 bit bitops format:
|
|
* bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
|
|
* bit 64 is the LSB of *(addr+8). That combined with the
|
|
* big endian byte order on S390 give the following bit
|
|
* order in memory:
|
|
* 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
|
|
* 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
|
|
* 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
|
|
* 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
|
|
* after that follows the next long with bit numbers
|
|
* 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
|
|
* 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
|
|
* 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
|
|
* 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
|
|
* The reason for this bit ordering is the fact that
|
|
* in the architecture independent code bits operations
|
|
* of the form "flags |= (1 << bitnr)" are used INTERMIXED
|
|
* with operation of the form "set_bit(bitnr, flags)".
|
|
*/
|
|
|
|
/* bitmap tables from arch/s390/kernel/bitmap.c */
|
|
extern const char _oi_bitmap[];
|
|
extern const char _ni_bitmap[];
|
|
extern const char _zb_findmap[];
|
|
extern const char _sb_findmap[];
|
|
|
|
#ifndef CONFIG_64BIT
|
|
|
|
#define __BITOPS_OR "or"
|
|
#define __BITOPS_AND "nr"
|
|
#define __BITOPS_XOR "xr"
|
|
|
|
#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
|
|
asm volatile( \
|
|
" l %0,%2\n" \
|
|
"0: lr %1,%0\n" \
|
|
__op_string " %1,%3\n" \
|
|
" cs %0,%1,%2\n" \
|
|
" jl 0b" \
|
|
: "=&d" (__old), "=&d" (__new), \
|
|
"=Q" (*(unsigned long *) __addr) \
|
|
: "d" (__val), "Q" (*(unsigned long *) __addr) \
|
|
: "cc");
|
|
|
|
#else /* CONFIG_64BIT */
|
|
|
|
#define __BITOPS_OR "ogr"
|
|
#define __BITOPS_AND "ngr"
|
|
#define __BITOPS_XOR "xgr"
|
|
|
|
#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
|
|
asm volatile( \
|
|
" lg %0,%2\n" \
|
|
"0: lgr %1,%0\n" \
|
|
__op_string " %1,%3\n" \
|
|
" csg %0,%1,%2\n" \
|
|
" jl 0b" \
|
|
: "=&d" (__old), "=&d" (__new), \
|
|
"=Q" (*(unsigned long *) __addr) \
|
|
: "d" (__val), "Q" (*(unsigned long *) __addr) \
|
|
: "cc");
|
|
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* SMP safe set_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make OR mask */
|
|
mask = 1UL << (nr & (BITS_PER_LONG - 1));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
|
|
}
|
|
|
|
/*
|
|
* SMP safe clear_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make AND mask */
|
|
mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
|
|
}
|
|
|
|
/*
|
|
* SMP safe change_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make XOR mask */
|
|
mask = 1UL << (nr & (BITS_PER_LONG - 1));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
|
|
}
|
|
|
|
/*
|
|
* SMP safe test_and_set_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline int
|
|
test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make OR/test mask */
|
|
mask = 1UL << (nr & (BITS_PER_LONG - 1));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
|
|
barrier();
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
/*
|
|
* SMP safe test_and_clear_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline int
|
|
test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make AND/test mask */
|
|
mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
|
|
barrier();
|
|
return (old ^ new) != 0;
|
|
}
|
|
|
|
/*
|
|
* SMP safe test_and_change_bit routine based on compare and swap (CS)
|
|
*/
|
|
static inline int
|
|
test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr, old, new, mask;
|
|
|
|
addr = (unsigned long) ptr;
|
|
/* calculate address for CS */
|
|
addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
|
|
/* make XOR/test mask */
|
|
mask = 1UL << (nr & (BITS_PER_LONG - 1));
|
|
/* Do the atomic update. */
|
|
__BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
|
|
barrier();
|
|
return (old & mask) != 0;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* fast, non-SMP set_bit routine
|
|
*/
|
|
static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
asm volatile(
|
|
" oc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
|
|
}
|
|
|
|
static inline void
|
|
__constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
*(unsigned char *) addr |= 1 << (nr & 7);
|
|
}
|
|
|
|
#define set_bit_simple(nr,addr) \
|
|
(__builtin_constant_p((nr)) ? \
|
|
__constant_set_bit((nr),(addr)) : \
|
|
__set_bit((nr),(addr)) )
|
|
|
|
/*
|
|
* fast, non-SMP clear_bit routine
|
|
*/
|
|
static inline void
|
|
__clear_bit(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
asm volatile(
|
|
" nc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
|
|
}
|
|
|
|
static inline void
|
|
__constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
*(unsigned char *) addr &= ~(1 << (nr & 7));
|
|
}
|
|
|
|
#define clear_bit_simple(nr,addr) \
|
|
(__builtin_constant_p((nr)) ? \
|
|
__constant_clear_bit((nr),(addr)) : \
|
|
__clear_bit((nr),(addr)) )
|
|
|
|
/*
|
|
* fast, non-SMP change_bit routine
|
|
*/
|
|
static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
asm volatile(
|
|
" xc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
|
|
}
|
|
|
|
static inline void
|
|
__constant_change_bit(const unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
*(unsigned char *) addr ^= 1 << (nr & 7);
|
|
}
|
|
|
|
#define change_bit_simple(nr,addr) \
|
|
(__builtin_constant_p((nr)) ? \
|
|
__constant_change_bit((nr),(addr)) : \
|
|
__change_bit((nr),(addr)) )
|
|
|
|
/*
|
|
* fast, non-SMP test_and_set_bit routine
|
|
*/
|
|
static inline int
|
|
test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
unsigned char ch;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
ch = *(unsigned char *) addr;
|
|
asm volatile(
|
|
" oc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
|
|
: "cc", "memory");
|
|
return (ch >> (nr & 7)) & 1;
|
|
}
|
|
#define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
|
|
|
|
/*
|
|
* fast, non-SMP test_and_clear_bit routine
|
|
*/
|
|
static inline int
|
|
test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
unsigned char ch;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
ch = *(unsigned char *) addr;
|
|
asm volatile(
|
|
" nc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7])
|
|
: "cc", "memory");
|
|
return (ch >> (nr & 7)) & 1;
|
|
}
|
|
#define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
|
|
|
|
/*
|
|
* fast, non-SMP test_and_change_bit routine
|
|
*/
|
|
static inline int
|
|
test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
unsigned char ch;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
ch = *(unsigned char *) addr;
|
|
asm volatile(
|
|
" xc %O0(1,%R0),%1"
|
|
: "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
|
|
: "cc", "memory");
|
|
return (ch >> (nr & 7)) & 1;
|
|
}
|
|
#define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define set_bit set_bit_cs
|
|
#define clear_bit clear_bit_cs
|
|
#define change_bit change_bit_cs
|
|
#define test_and_set_bit test_and_set_bit_cs
|
|
#define test_and_clear_bit test_and_clear_bit_cs
|
|
#define test_and_change_bit test_and_change_bit_cs
|
|
#else
|
|
#define set_bit set_bit_simple
|
|
#define clear_bit clear_bit_simple
|
|
#define change_bit change_bit_simple
|
|
#define test_and_set_bit test_and_set_bit_simple
|
|
#define test_and_clear_bit test_and_clear_bit_simple
|
|
#define test_and_change_bit test_and_change_bit_simple
|
|
#endif
|
|
|
|
|
|
/*
|
|
* This routine doesn't need to be atomic.
|
|
*/
|
|
|
|
static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
|
|
{
|
|
unsigned long addr;
|
|
unsigned char ch;
|
|
|
|
addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
|
|
ch = *(volatile unsigned char *) addr;
|
|
return (ch >> (nr & 7)) & 1;
|
|
}
|
|
|
|
static inline int
|
|
__constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
|
|
return (((volatile char *) addr)
|
|
[(nr^(BITS_PER_LONG-8))>>3] & (1<<(nr&7))) != 0;
|
|
}
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p((nr)) ? \
|
|
__constant_test_bit((nr),(addr)) : \
|
|
__test_bit((nr),(addr)) )
|
|
|
|
/*
|
|
* Optimized find bit helper functions.
|
|
*/
|
|
|
|
/**
|
|
* __ffz_word_loop - find byte offset of first long != -1UL
|
|
* @addr: pointer to array of unsigned long
|
|
* @size: size of the array in bits
|
|
*/
|
|
static inline unsigned long __ffz_word_loop(const unsigned long *addr,
|
|
unsigned long size)
|
|
{
|
|
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
|
|
unsigned long bytes = 0;
|
|
|
|
asm volatile(
|
|
#ifndef CONFIG_64BIT
|
|
" ahi %1,-1\n"
|
|
" sra %1,5\n"
|
|
" jz 1f\n"
|
|
"0: c %2,0(%0,%3)\n"
|
|
" jne 1f\n"
|
|
" la %0,4(%0)\n"
|
|
" brct %1,0b\n"
|
|
"1:\n"
|
|
#else
|
|
" aghi %1,-1\n"
|
|
" srag %1,%1,6\n"
|
|
" jz 1f\n"
|
|
"0: cg %2,0(%0,%3)\n"
|
|
" jne 1f\n"
|
|
" la %0,8(%0)\n"
|
|
" brct %1,0b\n"
|
|
"1:\n"
|
|
#endif
|
|
: "+&a" (bytes), "+&d" (size)
|
|
: "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
|
|
: "cc" );
|
|
return bytes;
|
|
}
|
|
|
|
/**
|
|
* __ffs_word_loop - find byte offset of first long != 0UL
|
|
* @addr: pointer to array of unsigned long
|
|
* @size: size of the array in bits
|
|
*/
|
|
static inline unsigned long __ffs_word_loop(const unsigned long *addr,
|
|
unsigned long size)
|
|
{
|
|
typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
|
|
unsigned long bytes = 0;
|
|
|
|
asm volatile(
|
|
#ifndef CONFIG_64BIT
|
|
" ahi %1,-1\n"
|
|
" sra %1,5\n"
|
|
" jz 1f\n"
|
|
"0: c %2,0(%0,%3)\n"
|
|
" jne 1f\n"
|
|
" la %0,4(%0)\n"
|
|
" brct %1,0b\n"
|
|
"1:\n"
|
|
#else
|
|
" aghi %1,-1\n"
|
|
" srag %1,%1,6\n"
|
|
" jz 1f\n"
|
|
"0: cg %2,0(%0,%3)\n"
|
|
" jne 1f\n"
|
|
" la %0,8(%0)\n"
|
|
" brct %1,0b\n"
|
|
"1:\n"
|
|
#endif
|
|
: "+&a" (bytes), "+&a" (size)
|
|
: "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
|
|
: "cc" );
|
|
return bytes;
|
|
}
|
|
|
|
/**
|
|
* __ffz_word - add number of the first unset bit
|
|
* @nr: base value the bit number is added to
|
|
* @word: the word that is searched for unset bits
|
|
*/
|
|
static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
if ((word & 0xffffffff) == 0xffffffff) {
|
|
word >>= 32;
|
|
nr += 32;
|
|
}
|
|
#endif
|
|
if ((word & 0xffff) == 0xffff) {
|
|
word >>= 16;
|
|
nr += 16;
|
|
}
|
|
if ((word & 0xff) == 0xff) {
|
|
word >>= 8;
|
|
nr += 8;
|
|
}
|
|
return nr + _zb_findmap[(unsigned char) word];
|
|
}
|
|
|
|
/**
|
|
* __ffs_word - add number of the first set bit
|
|
* @nr: base value the bit number is added to
|
|
* @word: the word that is searched for set bits
|
|
*/
|
|
static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
if ((word & 0xffffffff) == 0) {
|
|
word >>= 32;
|
|
nr += 32;
|
|
}
|
|
#endif
|
|
if ((word & 0xffff) == 0) {
|
|
word >>= 16;
|
|
nr += 16;
|
|
}
|
|
if ((word & 0xff) == 0) {
|
|
word >>= 8;
|
|
nr += 8;
|
|
}
|
|
return nr + _sb_findmap[(unsigned char) word];
|
|
}
|
|
|
|
|
|
/**
|
|
* __load_ulong_be - load big endian unsigned long
|
|
* @p: pointer to array of unsigned long
|
|
* @offset: byte offset of source value in the array
|
|
*/
|
|
static inline unsigned long __load_ulong_be(const unsigned long *p,
|
|
unsigned long offset)
|
|
{
|
|
p = (unsigned long *)((unsigned long) p + offset);
|
|
return *p;
|
|
}
|
|
|
|
/**
|
|
* __load_ulong_le - load little endian unsigned long
|
|
* @p: pointer to array of unsigned long
|
|
* @offset: byte offset of source value in the array
|
|
*/
|
|
static inline unsigned long __load_ulong_le(const unsigned long *p,
|
|
unsigned long offset)
|
|
{
|
|
unsigned long word;
|
|
|
|
p = (unsigned long *)((unsigned long) p + offset);
|
|
#ifndef CONFIG_64BIT
|
|
asm volatile(
|
|
" ic %0,%O1(%R1)\n"
|
|
" icm %0,2,%O1+1(%R1)\n"
|
|
" icm %0,4,%O1+2(%R1)\n"
|
|
" icm %0,8,%O1+3(%R1)"
|
|
: "=&d" (word) : "Q" (*p) : "cc");
|
|
#else
|
|
asm volatile(
|
|
" lrvg %0,%1"
|
|
: "=d" (word) : "m" (*p) );
|
|
#endif
|
|
return word;
|
|
}
|
|
|
|
/*
|
|
* The various find bit functions.
|
|
*/
|
|
|
|
/*
|
|
* ffz - find first zero in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
|
*/
|
|
static inline unsigned long ffz(unsigned long word)
|
|
{
|
|
return __ffz_word(0, word);
|
|
}
|
|
|
|
/**
|
|
* __ffs - find first bit in word.
|
|
* @word: The word to search
|
|
*
|
|
* Undefined if no bit exists, so code should check against 0 first.
|
|
*/
|
|
static inline unsigned long __ffs (unsigned long word)
|
|
{
|
|
return __ffs_word(0, word);
|
|
}
|
|
|
|
/**
|
|
* ffs - find first bit set
|
|
* @x: the word to search
|
|
*
|
|
* This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
static inline int ffs(int x)
|
|
{
|
|
if (!x)
|
|
return 0;
|
|
return __ffs_word(1, x);
|
|
}
|
|
|
|
/**
|
|
* find_first_zero_bit - find the first zero bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
static inline unsigned long find_first_zero_bit(const unsigned long *addr,
|
|
unsigned long size)
|
|
{
|
|
unsigned long bytes, bits;
|
|
|
|
if (!size)
|
|
return 0;
|
|
bytes = __ffz_word_loop(addr, size);
|
|
bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
|
|
return (bits < size) ? bits : size;
|
|
}
|
|
#define find_first_zero_bit find_first_zero_bit
|
|
|
|
/**
|
|
* find_first_bit - find the first set bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
static inline unsigned long find_first_bit(const unsigned long * addr,
|
|
unsigned long size)
|
|
{
|
|
unsigned long bytes, bits;
|
|
|
|
if (!size)
|
|
return 0;
|
|
bytes = __ffs_word_loop(addr, size);
|
|
bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
|
|
return (bits < size) ? bits : size;
|
|
}
|
|
#define find_first_bit find_first_bit
|
|
|
|
/*
|
|
* Big endian variant whichs starts bit counting from left using
|
|
* the flogr (find leftmost one) instruction.
|
|
*/
|
|
static inline unsigned long __flo_word(unsigned long nr, unsigned long val)
|
|
{
|
|
register unsigned long bit asm("2") = val;
|
|
register unsigned long out asm("3");
|
|
|
|
asm volatile (
|
|
" .insn rre,0xb9830000,%[bit],%[bit]\n"
|
|
: [bit] "+d" (bit), [out] "=d" (out) : : "cc");
|
|
return nr + bit;
|
|
}
|
|
|
|
/*
|
|
* 64 bit special left bitops format:
|
|
* order in memory:
|
|
* 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
|
|
* 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
|
|
* 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
|
|
* 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
|
|
* after that follows the next long with bit numbers
|
|
* 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
|
|
* 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
|
|
* 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
|
|
* 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
|
|
* The reason for this bit ordering is the fact that
|
|
* the hardware sets bits in a bitmap starting at bit 0
|
|
* and we don't want to scan the bitmap from the 'wrong
|
|
* end'.
|
|
*/
|
|
static inline unsigned long find_first_bit_left(const unsigned long *addr,
|
|
unsigned long size)
|
|
{
|
|
unsigned long bytes, bits;
|
|
|
|
if (!size)
|
|
return 0;
|
|
bytes = __ffs_word_loop(addr, size);
|
|
bits = __flo_word(bytes * 8, __load_ulong_be(addr, bytes));
|
|
return (bits < size) ? bits : size;
|
|
}
|
|
|
|
static inline int find_next_bit_left(const unsigned long *addr,
|
|
unsigned long size,
|
|
unsigned long offset)
|
|
{
|
|
const unsigned long *p;
|
|
unsigned long bit, set;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
bit = offset & (BITS_PER_LONG - 1);
|
|
offset -= bit;
|
|
size -= offset;
|
|
p = addr + offset / BITS_PER_LONG;
|
|
if (bit) {
|
|
set = __flo_word(0, *p & (~0UL << bit));
|
|
if (set >= size)
|
|
return size + offset;
|
|
if (set < BITS_PER_LONG)
|
|
return set + offset;
|
|
offset += BITS_PER_LONG;
|
|
size -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
return offset + find_first_bit_left(p, size);
|
|
}
|
|
|
|
#define for_each_set_bit_left(bit, addr, size) \
|
|
for ((bit) = find_first_bit_left((addr), (size)); \
|
|
(bit) < (size); \
|
|
(bit) = find_next_bit_left((addr), (size), (bit) + 1))
|
|
|
|
/* same as for_each_set_bit() but use bit as value to start with */
|
|
#define for_each_set_bit_left_cont(bit, addr, size) \
|
|
for ((bit) = find_next_bit_left((addr), (size), (bit)); \
|
|
(bit) < (size); \
|
|
(bit) = find_next_bit_left((addr), (size), (bit) + 1))
|
|
|
|
/**
|
|
* find_next_zero_bit - find the first zero bit in a memory region
|
|
* @addr: The address to base the search on
|
|
* @offset: The bitnumber to start searching at
|
|
* @size: The maximum size to search
|
|
*/
|
|
static inline int find_next_zero_bit (const unsigned long * addr,
|
|
unsigned long size,
|
|
unsigned long offset)
|
|
{
|
|
const unsigned long *p;
|
|
unsigned long bit, set;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
bit = offset & (BITS_PER_LONG - 1);
|
|
offset -= bit;
|
|
size -= offset;
|
|
p = addr + offset / BITS_PER_LONG;
|
|
if (bit) {
|
|
/*
|
|
* __ffz_word returns BITS_PER_LONG
|
|
* if no zero bit is present in the word.
|
|
*/
|
|
set = __ffz_word(bit, *p >> bit);
|
|
if (set >= size)
|
|
return size + offset;
|
|
if (set < BITS_PER_LONG)
|
|
return set + offset;
|
|
offset += BITS_PER_LONG;
|
|
size -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
return offset + find_first_zero_bit(p, size);
|
|
}
|
|
#define find_next_zero_bit find_next_zero_bit
|
|
|
|
/**
|
|
* find_next_bit - find the first set bit in a memory region
|
|
* @addr: The address to base the search on
|
|
* @offset: The bitnumber to start searching at
|
|
* @size: The maximum size to search
|
|
*/
|
|
static inline int find_next_bit (const unsigned long * addr,
|
|
unsigned long size,
|
|
unsigned long offset)
|
|
{
|
|
const unsigned long *p;
|
|
unsigned long bit, set;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
bit = offset & (BITS_PER_LONG - 1);
|
|
offset -= bit;
|
|
size -= offset;
|
|
p = addr + offset / BITS_PER_LONG;
|
|
if (bit) {
|
|
/*
|
|
* __ffs_word returns BITS_PER_LONG
|
|
* if no one bit is present in the word.
|
|
*/
|
|
set = __ffs_word(0, *p & (~0UL << bit));
|
|
if (set >= size)
|
|
return size + offset;
|
|
if (set < BITS_PER_LONG)
|
|
return set + offset;
|
|
offset += BITS_PER_LONG;
|
|
size -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
return offset + find_first_bit(p, size);
|
|
}
|
|
#define find_next_bit find_next_bit
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
static inline int sched_find_first_bit(unsigned long *b)
|
|
{
|
|
return find_first_bit(b, 140);
|
|
}
|
|
|
|
#include <asm-generic/bitops/fls.h>
|
|
#include <asm-generic/bitops/__fls.h>
|
|
#include <asm-generic/bitops/fls64.h>
|
|
|
|
#include <asm-generic/bitops/hweight.h>
|
|
#include <asm-generic/bitops/lock.h>
|
|
|
|
/*
|
|
* ATTENTION: intel byte ordering convention for ext2 and minix !!
|
|
* bit 0 is the LSB of addr; bit 31 is the MSB of addr;
|
|
* bit 32 is the LSB of (addr+4).
|
|
* That combined with the little endian byte order of Intel gives the
|
|
* following bit order in memory:
|
|
* 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
|
|
* 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
|
|
*/
|
|
|
|
static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
|
|
{
|
|
unsigned long bytes, bits;
|
|
|
|
if (!size)
|
|
return 0;
|
|
bytes = __ffz_word_loop(vaddr, size);
|
|
bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
|
|
return (bits < size) ? bits : size;
|
|
}
|
|
#define find_first_zero_bit_le find_first_zero_bit_le
|
|
|
|
static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
|
|
unsigned long offset)
|
|
{
|
|
unsigned long *addr = vaddr, *p;
|
|
unsigned long bit, set;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
bit = offset & (BITS_PER_LONG - 1);
|
|
offset -= bit;
|
|
size -= offset;
|
|
p = addr + offset / BITS_PER_LONG;
|
|
if (bit) {
|
|
/*
|
|
* s390 version of ffz returns BITS_PER_LONG
|
|
* if no zero bit is present in the word.
|
|
*/
|
|
set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
|
|
if (set >= size)
|
|
return size + offset;
|
|
if (set < BITS_PER_LONG)
|
|
return set + offset;
|
|
offset += BITS_PER_LONG;
|
|
size -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
return offset + find_first_zero_bit_le(p, size);
|
|
}
|
|
#define find_next_zero_bit_le find_next_zero_bit_le
|
|
|
|
static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
|
|
{
|
|
unsigned long bytes, bits;
|
|
|
|
if (!size)
|
|
return 0;
|
|
bytes = __ffs_word_loop(vaddr, size);
|
|
bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
|
|
return (bits < size) ? bits : size;
|
|
}
|
|
#define find_first_bit_le find_first_bit_le
|
|
|
|
static inline int find_next_bit_le(void *vaddr, unsigned long size,
|
|
unsigned long offset)
|
|
{
|
|
unsigned long *addr = vaddr, *p;
|
|
unsigned long bit, set;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
bit = offset & (BITS_PER_LONG - 1);
|
|
offset -= bit;
|
|
size -= offset;
|
|
p = addr + offset / BITS_PER_LONG;
|
|
if (bit) {
|
|
/*
|
|
* s390 version of ffz returns BITS_PER_LONG
|
|
* if no zero bit is present in the word.
|
|
*/
|
|
set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
|
|
if (set >= size)
|
|
return size + offset;
|
|
if (set < BITS_PER_LONG)
|
|
return set + offset;
|
|
offset += BITS_PER_LONG;
|
|
size -= BITS_PER_LONG;
|
|
p++;
|
|
}
|
|
return offset + find_first_bit_le(p, size);
|
|
}
|
|
#define find_next_bit_le find_next_bit_le
|
|
|
|
#include <asm-generic/bitops/le.h>
|
|
|
|
#include <asm-generic/bitops/ext2-atomic-setbit.h>
|
|
|
|
#endif /* _S390_BITOPS_H */
|