linux-stable/lib/test_printf.c
Rasmus Villemoes 9a3bfa01aa lib/test_printf.c: split write-beyond-buffer check in two
Before each invocation of vsnprintf(), do_test() memsets the entire
allocated buffer to a sentinel value. That buffer includes leading and
trailing padding which is never included in the buffer area handed to
vsnprintf (spaces merely for clarity):

  pad  test_buffer      pad
  **** **************** ****

Then vsnprintf() is invoked with a bufsize argument <=
BUF_SIZE. Suppose bufsize=10, then we'd have e.g.

 |pad |   test_buffer    |pad |
  **** pizza0 **** ****** ****
 A    B      C    D           E

where vsnprintf() was given the area from B to D.

It is obviously a bug for vsnprintf to touch anything between A and B
or between D and E. The former is checked for as one would expect. But
for the latter, we are actually a little stricter in that we check the
area between C and E.

Split that check in two, providing a clearer error message in case it
was a genuine buffer overrun and not merely a write within the
provided buffer, but after the end of the generated string.

So far, no part of the vsnprintf() implementation has had any use for
using the whole buffer as scratch space, but it's not unreasonable to
allow that, as long as the result is properly nul-terminated and the
return value is the right one. However, it is somewhat unusual, and
most %<something> won't need this, so keep the [C,D] check, but make
it easy for a later patch to make that part opt-out for certain tests.

Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Tested-by: Jia He <justin.he@arm.com>
Signed-off-by: Jia He <justin.he@arm.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20210615154952.2744-4-justin.he@arm.com
2022-07-11 14:20:03 +02:00

808 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Test cases for printf facility.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/bitmap.h>
#include <linux/dcache.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/property.h>
#include "../tools/testing/selftests/kselftest_module.h"
#define BUF_SIZE 256
#define PAD_SIZE 16
#define FILL_CHAR '$'
KSTM_MODULE_GLOBALS();
static char *test_buffer __initdata;
static char *alloced_buffer __initdata;
extern bool no_hash_pointers;
static int __printf(4, 0) __init
do_test(int bufsize, const char *expect, int elen,
const char *fmt, va_list ap)
{
va_list aq;
int ret, written;
total_tests++;
memset(alloced_buffer, FILL_CHAR, BUF_SIZE + 2*PAD_SIZE);
va_copy(aq, ap);
ret = vsnprintf(test_buffer, bufsize, fmt, aq);
va_end(aq);
if (ret != elen) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) returned %d, expected %d\n",
bufsize, fmt, ret, elen);
return 1;
}
if (memchr_inv(alloced_buffer, FILL_CHAR, PAD_SIZE)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote before buffer\n", bufsize, fmt);
return 1;
}
if (!bufsize) {
if (memchr_inv(test_buffer, FILL_CHAR, BUF_SIZE + PAD_SIZE)) {
pr_warn("vsnprintf(buf, 0, \"%s\", ...) wrote to buffer\n",
fmt);
return 1;
}
return 0;
}
written = min(bufsize-1, elen);
if (test_buffer[written]) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) did not nul-terminate buffer\n",
bufsize, fmt);
return 1;
}
if (memchr_inv(test_buffer + written + 1, FILL_CHAR, bufsize - (written + 1))) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote beyond the nul-terminator\n",
bufsize, fmt);
return 1;
}
if (memchr_inv(test_buffer + bufsize, FILL_CHAR, BUF_SIZE + PAD_SIZE - bufsize)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote beyond buffer\n", bufsize, fmt);
return 1;
}
if (memcmp(test_buffer, expect, written)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote '%s', expected '%.*s'\n",
bufsize, fmt, test_buffer, written, expect);
return 1;
}
return 0;
}
static void __printf(3, 4) __init
__test(const char *expect, int elen, const char *fmt, ...)
{
va_list ap;
int rand;
char *p;
if (elen >= BUF_SIZE) {
pr_err("error in test suite: expected output length %d too long. Format was '%s'.\n",
elen, fmt);
failed_tests++;
return;
}
va_start(ap, fmt);
/*
* Every fmt+args is subjected to four tests: Three where we
* tell vsnprintf varying buffer sizes (plenty, not quite
* enough and 0), and then we also test that kvasprintf would
* be able to print it as expected.
*/
failed_tests += do_test(BUF_SIZE, expect, elen, fmt, ap);
rand = 1 + prandom_u32_max(elen+1);
/* Since elen < BUF_SIZE, we have 1 <= rand <= BUF_SIZE. */
failed_tests += do_test(rand, expect, elen, fmt, ap);
failed_tests += do_test(0, expect, elen, fmt, ap);
p = kvasprintf(GFP_KERNEL, fmt, ap);
if (p) {
total_tests++;
if (memcmp(p, expect, elen+1)) {
pr_warn("kvasprintf(..., \"%s\", ...) returned '%s', expected '%s'\n",
fmt, p, expect);
failed_tests++;
}
kfree(p);
}
va_end(ap);
}
#define test(expect, fmt, ...) \
__test(expect, strlen(expect), fmt, ##__VA_ARGS__)
static void __init
test_basic(void)
{
/* Work around annoying "warning: zero-length gnu_printf format string". */
char nul = '\0';
test("", &nul);
test("100%", "100%%");
test("xxx%yyy", "xxx%cyyy", '%');
__test("xxx\0yyy", 7, "xxx%cyyy", '\0');
}
static void __init
test_number(void)
{
test("0x1234abcd ", "%#-12x", 0x1234abcd);
test(" 0x1234abcd", "%#12x", 0x1234abcd);
test("0|001| 12|+123| 1234|-123|-1234", "%d|%03d|%3d|%+d|% d|%+d|% d", 0, 1, 12, 123, 1234, -123, -1234);
test("0|1|1|128|255", "%hhu|%hhu|%hhu|%hhu|%hhu", 0, 1, 257, 128, -1);
test("0|1|1|-128|-1", "%hhd|%hhd|%hhd|%hhd|%hhd", 0, 1, 257, 128, -1);
test("2015122420151225", "%ho%ho%#ho", 1037, 5282, -11627);
/*
* POSIX/C99: »The result of converting zero with an explicit
* precision of zero shall be no characters.« Hence the output
* from the below test should really be "00|0||| ". However,
* the kernel's printf also produces a single 0 in that
* case. This test case simply documents the current
* behaviour.
*/
test("00|0|0|0|0", "%.2d|%.1d|%.0d|%.*d|%1.0d", 0, 0, 0, 0, 0, 0);
#ifndef __CHAR_UNSIGNED__
{
/*
* Passing a 'char' to a %02x specifier doesn't do
* what was presumably the intention when char is
* signed and the value is negative. One must either &
* with 0xff or cast to u8.
*/
char val = -16;
test("0xfffffff0|0xf0|0xf0", "%#02x|%#02x|%#02x", val, val & 0xff, (u8)val);
}
#endif
}
static void __init
test_string(void)
{
test("", "%s%.0s", "", "123");
test("ABCD|abc|123", "%s|%.3s|%.*s", "ABCD", "abcdef", 3, "123456");
test("1 | 2|3 | 4|5 ", "%-3s|%3s|%-*s|%*s|%*s", "1", "2", 3, "3", 3, "4", -3, "5");
test("1234 ", "%-10.4s", "123456");
test(" 1234", "%10.4s", "123456");
/*
* POSIX and C99 say that a negative precision (which is only
* possible to pass via a * argument) should be treated as if
* the precision wasn't present, and that if the precision is
* omitted (as in %.s), the precision should be taken to be
* 0. However, the kernel's printf behave exactly opposite,
* treating a negative precision as 0 and treating an omitted
* precision specifier as if no precision was given.
*
* These test cases document the current behaviour; should
* anyone ever feel the need to follow the standards more
* closely, this can be revisited.
*/
test(" ", "%4.*s", -5, "123456");
test("123456", "%.s", "123456");
test("a||", "%.s|%.0s|%.*s", "a", "b", 0, "c");
test("a | | ", "%-3.s|%-3.0s|%-3.*s", "a", "b", 0, "c");
}
#define PLAIN_BUF_SIZE 64 /* leave some space so we don't oops */
#if BITS_PER_LONG == 64
#define PTR_WIDTH 16
#define PTR ((void *)0xffff0123456789abUL)
#define PTR_STR "ffff0123456789ab"
#define PTR_VAL_NO_CRNG "(____ptrval____)"
#define ZEROS "00000000" /* hex 32 zero bits */
#define ONES "ffffffff" /* hex 32 one bits */
static int __init
plain_format(void)
{
char buf[PLAIN_BUF_SIZE];
int nchars;
nchars = snprintf(buf, PLAIN_BUF_SIZE, "%p", PTR);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
if (strncmp(buf, ZEROS, strlen(ZEROS)) != 0)
return -1;
return 0;
}
#else
#define PTR_WIDTH 8
#define PTR ((void *)0x456789ab)
#define PTR_STR "456789ab"
#define PTR_VAL_NO_CRNG "(ptrval)"
#define ZEROS ""
#define ONES ""
static int __init
plain_format(void)
{
/* Format is implicitly tested for 32 bit machines by plain_hash() */
return 0;
}
#endif /* BITS_PER_LONG == 64 */
static int __init
plain_hash_to_buffer(const void *p, char *buf, size_t len)
{
int nchars;
nchars = snprintf(buf, len, "%p", p);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
return 0;
}
static int __init
plain_hash(void)
{
char buf[PLAIN_BUF_SIZE];
int ret;
ret = plain_hash_to_buffer(PTR, buf, PLAIN_BUF_SIZE);
if (ret)
return ret;
if (strncmp(buf, PTR_STR, PTR_WIDTH) == 0)
return -1;
return 0;
}
/*
* We can't use test() to test %p because we don't know what output to expect
* after an address is hashed.
*/
static void __init
plain(void)
{
int err;
if (no_hash_pointers) {
pr_warn("skipping plain 'p' tests");
skipped_tests += 2;
return;
}
err = plain_hash();
if (err) {
pr_warn("plain 'p' does not appear to be hashed\n");
failed_tests++;
return;
}
err = plain_format();
if (err) {
pr_warn("hashing plain 'p' has unexpected format\n");
failed_tests++;
}
}
static void __init
test_hashed(const char *fmt, const void *p)
{
char buf[PLAIN_BUF_SIZE];
int ret;
/*
* No need to increase failed test counter since this is assumed
* to be called after plain().
*/
ret = plain_hash_to_buffer(p, buf, PLAIN_BUF_SIZE);
if (ret)
return;
test(buf, fmt, p);
}
/*
* NULL pointers aren't hashed.
*/
static void __init
null_pointer(void)
{
test(ZEROS "00000000", "%p", NULL);
test(ZEROS "00000000", "%px", NULL);
test("(null)", "%pE", NULL);
}
/*
* Error pointers aren't hashed.
*/
static void __init
error_pointer(void)
{
test(ONES "fffffff5", "%p", ERR_PTR(-11));
test(ONES "fffffff5", "%px", ERR_PTR(-11));
test("(efault)", "%pE", ERR_PTR(-11));
}
#define PTR_INVALID ((void *)0x000000ab)
static void __init
invalid_pointer(void)
{
test_hashed("%p", PTR_INVALID);
test(ZEROS "000000ab", "%px", PTR_INVALID);
test("(efault)", "%pE", PTR_INVALID);
}
static void __init
symbol_ptr(void)
{
}
static void __init
kernel_ptr(void)
{
/* We can't test this without access to kptr_restrict. */
}
static void __init
struct_resource(void)
{
}
static void __init
addr(void)
{
}
static void __init
escaped_str(void)
{
}
static void __init
hex_string(void)
{
const char buf[3] = {0xc0, 0xff, 0xee};
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%3ph|%3phC|%3phD|%3phN", buf, buf, buf, buf);
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%*ph|%*phC|%*phD|%*phN", 3, buf, 3, buf, 3, buf, 3, buf);
}
static void __init
mac(void)
{
const u8 addr[6] = {0x2d, 0x48, 0xd6, 0xfc, 0x7a, 0x05};
test("2d:48:d6:fc:7a:05", "%pM", addr);
test("05:7a:fc:d6:48:2d", "%pMR", addr);
test("2d-48-d6-fc-7a-05", "%pMF", addr);
test("2d48d6fc7a05", "%pm", addr);
test("057afcd6482d", "%pmR", addr);
}
static void __init
ip4(void)
{
struct sockaddr_in sa;
sa.sin_family = AF_INET;
sa.sin_port = cpu_to_be16(12345);
sa.sin_addr.s_addr = cpu_to_be32(0x7f000001);
test("127.000.000.001|127.0.0.1", "%pi4|%pI4", &sa.sin_addr, &sa.sin_addr);
test("127.000.000.001|127.0.0.1", "%piS|%pIS", &sa, &sa);
sa.sin_addr.s_addr = cpu_to_be32(0x01020304);
test("001.002.003.004:12345|1.2.3.4:12345", "%piSp|%pISp", &sa, &sa);
}
static void __init
ip6(void)
{
}
static void __init
ip(void)
{
ip4();
ip6();
}
static void __init
uuid(void)
{
const char uuid[16] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf};
test("00010203-0405-0607-0809-0a0b0c0d0e0f", "%pUb", uuid);
test("00010203-0405-0607-0809-0A0B0C0D0E0F", "%pUB", uuid);
test("03020100-0504-0706-0809-0a0b0c0d0e0f", "%pUl", uuid);
test("03020100-0504-0706-0809-0A0B0C0D0E0F", "%pUL", uuid);
}
static struct dentry test_dentry[4] __initdata = {
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[0].d_iname, 3),
.d_iname = "foo" },
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[1].d_iname, 5),
.d_iname = "bravo" },
{ .d_parent = &test_dentry[1],
.d_name = QSTR_INIT(test_dentry[2].d_iname, 4),
.d_iname = "alfa" },
{ .d_parent = &test_dentry[2],
.d_name = QSTR_INIT(test_dentry[3].d_iname, 5),
.d_iname = "romeo" },
};
static void __init
dentry(void)
{
test("foo", "%pd", &test_dentry[0]);
test("foo", "%pd2", &test_dentry[0]);
test("(null)", "%pd", NULL);
test("(efault)", "%pd", PTR_INVALID);
test("(null)", "%pD", NULL);
test("(efault)", "%pD", PTR_INVALID);
test("romeo", "%pd", &test_dentry[3]);
test("alfa/romeo", "%pd2", &test_dentry[3]);
test("bravo/alfa/romeo", "%pd3", &test_dentry[3]);
test("/bravo/alfa/romeo", "%pd4", &test_dentry[3]);
test("/bravo/alfa", "%pd4", &test_dentry[2]);
test("bravo/alfa |bravo/alfa ", "%-12pd2|%*pd2", &test_dentry[2], -12, &test_dentry[2]);
test(" bravo/alfa| bravo/alfa", "%12pd2|%*pd2", &test_dentry[2], 12, &test_dentry[2]);
}
static void __init
struct_va_format(void)
{
}
static void __init
time_and_date(void)
{
/* 1543210543 */
const struct rtc_time tm = {
.tm_sec = 43,
.tm_min = 35,
.tm_hour = 5,
.tm_mday = 26,
.tm_mon = 10,
.tm_year = 118,
};
/* 2019-01-04T15:32:23 */
time64_t t = 1546615943;
test("(%pt?)", "%pt", &tm);
test("2018-11-26T05:35:43", "%ptR", &tm);
test("0118-10-26T05:35:43", "%ptRr", &tm);
test("05:35:43|2018-11-26", "%ptRt|%ptRd", &tm, &tm);
test("05:35:43|0118-10-26", "%ptRtr|%ptRdr", &tm, &tm);
test("05:35:43|2018-11-26", "%ptRttr|%ptRdtr", &tm, &tm);
test("05:35:43 tr|2018-11-26 tr", "%ptRt tr|%ptRd tr", &tm, &tm);
test("2019-01-04T15:32:23", "%ptT", &t);
test("0119-00-04T15:32:23", "%ptTr", &t);
test("15:32:23|2019-01-04", "%ptTt|%ptTd", &t, &t);
test("15:32:23|0119-00-04", "%ptTtr|%ptTdr", &t, &t);
test("2019-01-04 15:32:23", "%ptTs", &t);
test("0119-00-04 15:32:23", "%ptTsr", &t);
test("15:32:23|2019-01-04", "%ptTts|%ptTds", &t, &t);
test("15:32:23|0119-00-04", "%ptTtrs|%ptTdrs", &t, &t);
}
static void __init
struct_clk(void)
{
}
static void __init
large_bitmap(void)
{
const int nbits = 1 << 16;
unsigned long *bits = bitmap_zalloc(nbits, GFP_KERNEL);
if (!bits)
return;
bitmap_set(bits, 1, 20);
bitmap_set(bits, 60000, 15);
test("1-20,60000-60014", "%*pbl", nbits, bits);
bitmap_free(bits);
}
static void __init
bitmap(void)
{
DECLARE_BITMAP(bits, 20);
const int primes[] = {2,3,5,7,11,13,17,19};
int i;
bitmap_zero(bits, 20);
test("00000|00000", "%20pb|%*pb", bits, 20, bits);
test("|", "%20pbl|%*pbl", bits, 20, bits);
for (i = 0; i < ARRAY_SIZE(primes); ++i)
set_bit(primes[i], bits);
test("a28ac|a28ac", "%20pb|%*pb", bits, 20, bits);
test("2-3,5,7,11,13,17,19|2-3,5,7,11,13,17,19", "%20pbl|%*pbl", bits, 20, bits);
bitmap_fill(bits, 20);
test("fffff|fffff", "%20pb|%*pb", bits, 20, bits);
test("0-19|0-19", "%20pbl|%*pbl", bits, 20, bits);
large_bitmap();
}
static void __init
netdev_features(void)
{
}
struct page_flags_test {
int width;
int shift;
int mask;
const char *fmt;
const char *name;
};
static const struct page_flags_test pft[] = {
{SECTIONS_WIDTH, SECTIONS_PGSHIFT, SECTIONS_MASK,
"%d", "section"},
{NODES_WIDTH, NODES_PGSHIFT, NODES_MASK,
"%d", "node"},
{ZONES_WIDTH, ZONES_PGSHIFT, ZONES_MASK,
"%d", "zone"},
{LAST_CPUPID_WIDTH, LAST_CPUPID_PGSHIFT, LAST_CPUPID_MASK,
"%#x", "lastcpupid"},
{KASAN_TAG_WIDTH, KASAN_TAG_PGSHIFT, KASAN_TAG_MASK,
"%#x", "kasantag"},
};
static void __init
page_flags_test(int section, int node, int zone, int last_cpupid,
int kasan_tag, unsigned long flags, const char *name,
char *cmp_buf)
{
unsigned long values[] = {section, node, zone, last_cpupid, kasan_tag};
unsigned long size;
bool append = false;
int i;
for (i = 0; i < ARRAY_SIZE(values); i++)
flags |= (values[i] & pft[i].mask) << pft[i].shift;
size = scnprintf(cmp_buf, BUF_SIZE, "%#lx(", flags);
if (flags & PAGEFLAGS_MASK) {
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s", name);
append = true;
}
for (i = 0; i < ARRAY_SIZE(pft); i++) {
if (!pft[i].width)
continue;
if (append)
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "|");
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s=",
pft[i].name);
size += scnprintf(cmp_buf + size, BUF_SIZE - size, pft[i].fmt,
values[i] & pft[i].mask);
append = true;
}
snprintf(cmp_buf + size, BUF_SIZE - size, ")");
test(cmp_buf, "%pGp", &flags);
}
static void __init
flags(void)
{
unsigned long flags;
char *cmp_buffer;
gfp_t gfp;
cmp_buffer = kmalloc(BUF_SIZE, GFP_KERNEL);
if (!cmp_buffer)
return;
flags = 0;
page_flags_test(0, 0, 0, 0, 0, flags, "", cmp_buffer);
flags = 1UL << NR_PAGEFLAGS;
page_flags_test(0, 0, 0, 0, 0, flags, "", cmp_buffer);
flags |= 1UL << PG_uptodate | 1UL << PG_dirty | 1UL << PG_lru
| 1UL << PG_active | 1UL << PG_swapbacked;
page_flags_test(1, 1, 1, 0x1fffff, 1, flags,
"uptodate|dirty|lru|active|swapbacked",
cmp_buffer);
flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
test("read|exec|mayread|maywrite|mayexec", "%pGv", &flags);
gfp = GFP_TRANSHUGE;
test("GFP_TRANSHUGE", "%pGg", &gfp);
gfp = GFP_ATOMIC|__GFP_DMA;
test("GFP_ATOMIC|GFP_DMA", "%pGg", &gfp);
gfp = __GFP_ATOMIC;
test("__GFP_ATOMIC", "%pGg", &gfp);
/* Any flags not translated by the table should remain numeric */
gfp = ~__GFP_BITS_MASK;
snprintf(cmp_buffer, BUF_SIZE, "%#lx", (unsigned long) gfp);
test(cmp_buffer, "%pGg", &gfp);
snprintf(cmp_buffer, BUF_SIZE, "__GFP_ATOMIC|%#lx",
(unsigned long) gfp);
gfp |= __GFP_ATOMIC;
test(cmp_buffer, "%pGg", &gfp);
kfree(cmp_buffer);
}
static void __init fwnode_pointer(void)
{
const struct software_node softnodes[] = {
{ .name = "first", },
{ .name = "second", .parent = &softnodes[0], },
{ .name = "third", .parent = &softnodes[1], },
{ NULL /* Guardian */ }
};
const char * const full_name = "first/second/third";
const char * const full_name_second = "first/second";
const char * const second_name = "second";
const char * const third_name = "third";
int rval;
rval = software_node_register_nodes(softnodes);
if (rval) {
pr_warn("cannot register softnodes; rval %d\n", rval);
return;
}
test(full_name_second, "%pfw", software_node_fwnode(&softnodes[1]));
test(full_name, "%pfw", software_node_fwnode(&softnodes[2]));
test(full_name, "%pfwf", software_node_fwnode(&softnodes[2]));
test(second_name, "%pfwP", software_node_fwnode(&softnodes[1]));
test(third_name, "%pfwP", software_node_fwnode(&softnodes[2]));
software_node_unregister_nodes(softnodes);
}
static void __init fourcc_pointer(void)
{
struct {
u32 code;
char *str;
} const try[] = {
{ 0x3231564e, "NV12 little-endian (0x3231564e)", },
{ 0xb231564e, "NV12 big-endian (0xb231564e)", },
{ 0x10111213, ".... little-endian (0x10111213)", },
{ 0x20303159, "Y10 little-endian (0x20303159)", },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(try); i++)
test(try[i].str, "%p4cc", &try[i].code);
}
static void __init
errptr(void)
{
test("-1234", "%pe", ERR_PTR(-1234));
/* Check that %pe with a non-ERR_PTR gets treated as ordinary %p. */
BUILD_BUG_ON(IS_ERR(PTR));
test_hashed("%pe", PTR);
#ifdef CONFIG_SYMBOLIC_ERRNAME
test("(-ENOTSOCK)", "(%pe)", ERR_PTR(-ENOTSOCK));
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EAGAIN));
BUILD_BUG_ON(EAGAIN != EWOULDBLOCK);
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EWOULDBLOCK));
test("[-EIO ]", "[%-8pe]", ERR_PTR(-EIO));
test("[ -EIO]", "[%8pe]", ERR_PTR(-EIO));
test("-EPROBE_DEFER", "%pe", ERR_PTR(-EPROBE_DEFER));
#endif
}
static void __init
test_pointer(void)
{
plain();
null_pointer();
error_pointer();
invalid_pointer();
symbol_ptr();
kernel_ptr();
struct_resource();
addr();
escaped_str();
hex_string();
mac();
ip();
uuid();
dentry();
struct_va_format();
time_and_date();
struct_clk();
bitmap();
netdev_features();
flags();
errptr();
fwnode_pointer();
fourcc_pointer();
}
static void __init selftest(void)
{
alloced_buffer = kmalloc(BUF_SIZE + 2*PAD_SIZE, GFP_KERNEL);
if (!alloced_buffer)
return;
test_buffer = alloced_buffer + PAD_SIZE;
test_basic();
test_number();
test_string();
test_pointer();
kfree(alloced_buffer);
}
KSTM_MODULE_LOADERS(test_printf);
MODULE_AUTHOR("Rasmus Villemoes <linux@rasmusvillemoes.dk>");
MODULE_LICENSE("GPL");