linux-stable/include/linux/mmu_context.h
Will Deacon 9ae606bc74 sched: Introduce task_cpu_possible_mask() to limit fallback rq selection
Asymmetric systems may not offer the same level of userspace ISA support
across all CPUs, meaning that some applications cannot be executed by
some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do
not feature support for 32-bit applications on both clusters.

On such a system, we must take care not to migrate a task to an
unsupported CPU when forcefully moving tasks in select_fallback_rq()
in response to a CPU hot-unplug operation.

Introduce a task_cpu_possible_mask() hook which, given a task argument,
allows an architecture to return a cpumask of CPUs that are capable of
executing that task. The default implementation returns the
cpu_possible_mask, since sane machines do not suffer from per-cpu ISA
limitations that affect scheduling. The new mask is used when selecting
the fallback runqueue as a last resort before forcing a migration to the
first active CPU.

Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210730112443.23245-2-will@kernel.org
2021-08-20 12:32:58 +02:00

31 lines
855 B
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MMU_CONTEXT_H
#define _LINUX_MMU_CONTEXT_H
#include <asm/mmu_context.h>
#include <asm/mmu.h>
/* Architectures that care about IRQ state in switch_mm can override this. */
#ifndef switch_mm_irqs_off
# define switch_mm_irqs_off switch_mm
#endif
#ifndef leave_mm
static inline void leave_mm(int cpu) { }
#endif
/*
* CPUs that are capable of running user task @p. Must contain at least one
* active CPU. It is assumed that the kernel can run on all CPUs, so calling
* this for a kernel thread is pointless.
*
* By default, we assume a sane, homogeneous system.
*/
#ifndef task_cpu_possible_mask
# define task_cpu_possible_mask(p) cpu_possible_mask
# define task_cpu_possible(cpu, p) true
#else
# define task_cpu_possible(cpu, p) cpumask_test_cpu((cpu), task_cpu_possible_mask(p))
#endif
#endif