linux-stable/mm/mempool.c
Peter Collingbourne 7a3b835371 kasan: use separate (un)poison implementation for integrated init
Currently with integrated init page_alloc.c needs to know whether
kasan_alloc_pages() will zero initialize memory, but this will start
becoming more complicated once we start adding tag initialization
support for user pages. To avoid page_alloc.c needing to know more
details of what integrated init will do, move the unpoisoning logic
for integrated init into the HW tags implementation. Currently the
logic is identical but it will diverge in subsequent patches.

For symmetry do the same for poisoning although this logic will
be unaffected by subsequent patches.

Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://linux-review.googlesource.com/id/I2c550234c6c4a893c48c18ff0c6ce658c7c67056
Link: https://lore.kernel.org/r/20210602235230.3928842-3-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
2021-06-04 19:32:21 +01:00

557 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/mempool.c
*
* memory buffer pool support. Such pools are mostly used
* for guaranteed, deadlock-free memory allocations during
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
* debugging by David Rientjes, Copyright (C) 2015
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include "slab.h"
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
static void poison_error(mempool_t *pool, void *element, size_t size,
size_t byte)
{
const int nr = pool->curr_nr;
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
int i;
pr_err("BUG: mempool element poison mismatch\n");
pr_err("Mempool %p size %zu\n", pool, size);
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
for (i = start; i < end; i++)
pr_cont("%x ", *(u8 *)(element + i));
pr_cont("%s\n", end < size ? "..." : "");
dump_stack();
}
static void __check_element(mempool_t *pool, void *element, size_t size)
{
u8 *obj = element;
size_t i;
for (i = 0; i < size; i++) {
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
if (obj[i] != exp) {
poison_error(pool, element, size, i);
return;
}
}
memset(obj, POISON_INUSE, size);
}
static void check_element(mempool_t *pool, void *element)
{
/* Mempools backed by slab allocator */
if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
__check_element(pool, element, ksize(element));
} else if (pool->free == mempool_free_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
void *addr = kmap_atomic((struct page *)element);
__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
kunmap_atomic(addr);
}
}
static void __poison_element(void *element, size_t size)
{
u8 *obj = element;
memset(obj, POISON_FREE, size - 1);
obj[size - 1] = POISON_END;
}
static void poison_element(mempool_t *pool, void *element)
{
/* Mempools backed by slab allocator */
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
__poison_element(element, ksize(element));
} else if (pool->alloc == mempool_alloc_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
void *addr = kmap_atomic((struct page *)element);
__poison_element(addr, 1UL << (PAGE_SHIFT + order));
kunmap_atomic(addr);
}
}
#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
static inline void check_element(mempool_t *pool, void *element)
{
}
static inline void poison_element(mempool_t *pool, void *element)
{
}
#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
{
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
kasan_slab_free_mempool(element);
else if (pool->alloc == mempool_alloc_pages)
kasan_poison_pages(element, (unsigned long)pool->pool_data,
false);
}
static void kasan_unpoison_element(mempool_t *pool, void *element)
{
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
kasan_unpoison_range(element, __ksize(element));
else if (pool->alloc == mempool_alloc_pages)
kasan_unpoison_pages(element, (unsigned long)pool->pool_data,
false);
}
static __always_inline void add_element(mempool_t *pool, void *element)
{
BUG_ON(pool->curr_nr >= pool->min_nr);
poison_element(pool, element);
kasan_poison_element(pool, element);
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(mempool_t *pool)
{
void *element = pool->elements[--pool->curr_nr];
BUG_ON(pool->curr_nr < 0);
kasan_unpoison_element(pool, element);
check_element(pool, element);
return element;
}
/**
* mempool_exit - exit a mempool initialized with mempool_init()
* @pool: pointer to the memory pool which was initialized with
* mempool_init().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*
* May be called on a zeroed but uninitialized mempool (i.e. allocated with
* kzalloc()).
*/
void mempool_exit(mempool_t *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
pool->elements = NULL;
}
EXPORT_SYMBOL(mempool_exit);
/**
* mempool_destroy - deallocate a memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*/
void mempool_destroy(mempool_t *pool)
{
if (unlikely(!pool))
return;
mempool_exit(pool);
kfree(pool);
}
EXPORT_SYMBOL(mempool_destroy);
int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data,
gfp_t gfp_mask, int node_id)
{
spin_lock_init(&pool->lock);
pool->min_nr = min_nr;
pool->pool_data = pool_data;
pool->alloc = alloc_fn;
pool->free = free_fn;
init_waitqueue_head(&pool->wait);
pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
gfp_mask, node_id);
if (!pool->elements)
return -ENOMEM;
/*
* First pre-allocate the guaranteed number of buffers.
*/
while (pool->curr_nr < pool->min_nr) {
void *element;
element = pool->alloc(gfp_mask, pool->pool_data);
if (unlikely(!element)) {
mempool_exit(pool);
return -ENOMEM;
}
add_element(pool, element);
}
return 0;
}
EXPORT_SYMBOL(mempool_init_node);
/**
* mempool_init - initialize a memory pool
* @pool: pointer to the memory pool that should be initialized
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* Like mempool_create(), but initializes the pool in (i.e. embedded in another
* structure).
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
pool_data, GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_init);
/**
* mempool_create - create a memory pool
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* this function creates and allocates a guaranteed size, preallocated
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
* functions might sleep - as long as the mempool_alloc() function is not called
* from IRQ contexts.
*
* Return: pointer to the created memory pool object or %NULL on error.
*/
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_create);
mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data,
gfp_t gfp_mask, int node_id)
{
mempool_t *pool;
pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
if (!pool)
return NULL;
if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
gfp_mask, node_id)) {
kfree(pool);
return NULL;
}
return pool;
}
EXPORT_SYMBOL(mempool_create_node);
/**
* mempool_resize - resize an existing memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
* This function may sleep.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_resize(mempool_t *pool, int new_min_nr)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
might_sleep();
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
}
pool->min_nr = new_min_nr;
goto out_unlock;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
GFP_KERNEL);
if (!new_elements)
return -ENOMEM;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(new_min_nr <= pool->min_nr)) {
/* Raced, other resize will do our work */
spin_unlock_irqrestore(&pool->lock, flags);
kfree(new_elements);
goto out;
}
memcpy(new_elements, pool->elements,
pool->curr_nr * sizeof(*new_elements));
kfree(pool->elements);
pool->elements = new_elements;
pool->min_nr = new_min_nr;
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
} else {
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data); /* Raced */
goto out;
}
}
out_unlock:
spin_unlock_irqrestore(&pool->lock, flags);
out:
return 0;
}
EXPORT_SYMBOL(mempool_resize);
/**
* mempool_alloc - allocate an element from a specific memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @gfp_mask: the usual allocation bitmask.
*
* this function only sleeps if the alloc_fn() function sleeps or
* returns NULL. Note that due to preallocation, this function
* *never* fails when called from process contexts. (it might
* fail if called from an IRQ context.)
* Note: using __GFP_ZERO is not supported.
*
* Return: pointer to the allocated element or %NULL on error.
*/
void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
{
void *element;
unsigned long flags;
wait_queue_entry_t wait;
gfp_t gfp_temp;
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
gfp_mask |= __GFP_NOWARN; /* failures are OK */
gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
repeat_alloc:
element = pool->alloc(gfp_temp, pool->pool_data);
if (likely(element != NULL))
return element;
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr)) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
/* paired with rmb in mempool_free(), read comment there */
smp_wmb();
/*
* Update the allocation stack trace as this is more useful
* for debugging.
*/
kmemleak_update_trace(element);
return element;
}
/*
* We use gfp mask w/o direct reclaim or IO for the first round. If
* alloc failed with that and @pool was empty, retry immediately.
*/
if (gfp_temp != gfp_mask) {
spin_unlock_irqrestore(&pool->lock, flags);
gfp_temp = gfp_mask;
goto repeat_alloc;
}
/* We must not sleep if !__GFP_DIRECT_RECLAIM */
if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
spin_unlock_irqrestore(&pool->lock, flags);
return NULL;
}
/* Let's wait for someone else to return an element to @pool */
init_wait(&wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&pool->lock, flags);
/*
* FIXME: this should be io_schedule(). The timeout is there as a
* workaround for some DM problems in 2.6.18.
*/
io_schedule_timeout(5*HZ);
finish_wait(&pool->wait, &wait);
goto repeat_alloc;
}
EXPORT_SYMBOL(mempool_alloc);
/**
* mempool_free - return an element to the pool.
* @element: pool element pointer.
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* this function only sleeps if the free_fn() function sleeps.
*/
void mempool_free(void *element, mempool_t *pool)
{
unsigned long flags;
if (unlikely(element == NULL))
return;
/*
* Paired with the wmb in mempool_alloc(). The preceding read is
* for @element and the following @pool->curr_nr. This ensures
* that the visible value of @pool->curr_nr is from after the
* allocation of @element. This is necessary for fringe cases
* where @element was passed to this task without going through
* barriers.
*
* For example, assume @p is %NULL at the beginning and one task
* performs "p = mempool_alloc(...);" while another task is doing
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
* may end up using curr_nr value which is from before allocation
* of @p without the following rmb.
*/
smp_rmb();
/*
* For correctness, we need a test which is guaranteed to trigger
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
* without locking achieves that and refilling as soon as possible
* is desirable.
*
* Because curr_nr visible here is always a value after the
* allocation of @element, any task which decremented curr_nr below
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
* incremented to min_nr afterwards. If curr_nr gets incremented
* to min_nr after the allocation of @element, the elements
* allocated after that are subject to the same guarantee.
*
* Waiters happen iff curr_nr is 0 and the above guarantee also
* ensures that there will be frees which return elements to the
* pool waking up the waiters.
*/
if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr < pool->min_nr)) {
add_element(pool, element);
spin_unlock_irqrestore(&pool->lock, flags);
wake_up(&pool->wait);
return;
}
spin_unlock_irqrestore(&pool->lock, flags);
}
pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);
/*
* A commonly used alloc and free fn.
*/
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
struct kmem_cache *mem = pool_data;
VM_BUG_ON(mem->ctor);
return kmem_cache_alloc(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
void mempool_free_slab(void *element, void *pool_data)
{
struct kmem_cache *mem = pool_data;
kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);
/*
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
* specified by pool_data
*/
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t)pool_data;
return kmalloc(size, gfp_mask);
}
EXPORT_SYMBOL(mempool_kmalloc);
void mempool_kfree(void *element, void *pool_data)
{
kfree(element);
}
EXPORT_SYMBOL(mempool_kfree);
/*
* A simple mempool-backed page allocator that allocates pages
* of the order specified by pool_data.
*/
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
{
int order = (int)(long)pool_data;
return alloc_pages(gfp_mask, order);
}
EXPORT_SYMBOL(mempool_alloc_pages);
void mempool_free_pages(void *element, void *pool_data)
{
int order = (int)(long)pool_data;
__free_pages(element, order);
}
EXPORT_SYMBOL(mempool_free_pages);