linux-stable/fs/f2fs/checkpoint.c
Jaegeuk Kim cf779cab14 f2fs: handle EIO not to break fs consistency
There are two rules when EIO is occurred.
1. don't write any checkpoint data to preserve the previous checkpoint
2. don't lose the cached dentry/node/meta pages

So, at first, this patch adds set_page_dirty in f2fs_write_end_io's failure.
Then, writing checkpoint/dentry/node blocks is not allowed.

Note that, for the data pages, we can't just throw away by redirtying them.
Otherwise, kworker can fall into infinite loop to flush them.
(Ref. xfstests/019)

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2014-08-21 13:55:05 -07:00

1048 lines
26 KiB
C

/*
* fs/f2fs/checkpoint.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/f2fs_fs.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *ino_entry_slab;
static struct kmem_cache *inode_entry_slab;
/*
* We guarantee no failure on the returned page.
*/
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page = NULL;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
f2fs_wait_on_page_writeback(page, META);
SetPageUptodate(page);
return page;
}
/*
* We guarantee no failure on the returned page.
*/
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
{
struct address_space *mapping = META_MAPPING(sbi);
struct page *page;
repeat:
page = grab_cache_page(mapping, index);
if (!page) {
cond_resched();
goto repeat;
}
if (PageUptodate(page))
goto out;
if (f2fs_submit_page_bio(sbi, page, index,
READ_SYNC | REQ_META | REQ_PRIO))
goto repeat;
lock_page(page);
if (unlikely(page->mapping != mapping)) {
f2fs_put_page(page, 1);
goto repeat;
}
out:
return page;
}
static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
{
switch (type) {
case META_NAT:
return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
case META_SIT:
return SIT_BLK_CNT(sbi);
case META_SSA:
case META_CP:
return 0;
default:
BUG();
}
}
/*
* Readahead CP/NAT/SIT/SSA pages
*/
int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
{
block_t prev_blk_addr = 0;
struct page *page;
int blkno = start;
int max_blks = get_max_meta_blks(sbi, type);
struct f2fs_io_info fio = {
.type = META,
.rw = READ_SYNC | REQ_META | REQ_PRIO
};
for (; nrpages-- > 0; blkno++) {
block_t blk_addr;
switch (type) {
case META_NAT:
/* get nat block addr */
if (unlikely(blkno >= max_blks))
blkno = 0;
blk_addr = current_nat_addr(sbi,
blkno * NAT_ENTRY_PER_BLOCK);
break;
case META_SIT:
/* get sit block addr */
if (unlikely(blkno >= max_blks))
goto out;
blk_addr = current_sit_addr(sbi,
blkno * SIT_ENTRY_PER_BLOCK);
if (blkno != start && prev_blk_addr + 1 != blk_addr)
goto out;
prev_blk_addr = blk_addr;
break;
case META_SSA:
case META_CP:
/* get ssa/cp block addr */
blk_addr = blkno;
break;
default:
BUG();
}
page = grab_cache_page(META_MAPPING(sbi), blk_addr);
if (!page)
continue;
if (PageUptodate(page)) {
f2fs_put_page(page, 1);
continue;
}
f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
f2fs_put_page(page, 0);
}
out:
f2fs_submit_merged_bio(sbi, META, READ);
return blkno - start;
}
static int f2fs_write_meta_page(struct page *page,
struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
trace_f2fs_writepage(page, META);
if (unlikely(sbi->por_doing))
goto redirty_out;
if (wbc->for_reclaim)
goto redirty_out;
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
f2fs_wait_on_page_writeback(page, META);
write_meta_page(sbi, page);
dec_page_count(sbi, F2FS_DIRTY_META);
unlock_page(page);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_meta_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
long diff, written;
trace_f2fs_writepages(mapping->host, wbc, META);
/* collect a number of dirty meta pages and write together */
if (wbc->for_kupdate ||
get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
goto skip_write;
/* if mounting is failed, skip writing node pages */
mutex_lock(&sbi->cp_mutex);
diff = nr_pages_to_write(sbi, META, wbc);
written = sync_meta_pages(sbi, META, wbc->nr_to_write);
mutex_unlock(&sbi->cp_mutex);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
return 0;
skip_write:
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
return 0;
}
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
long nr_to_write)
{
struct address_space *mapping = META_MAPPING(sbi);
pgoff_t index = 0, end = LONG_MAX;
struct pagevec pvec;
long nwritten = 0;
struct writeback_control wbc = {
.for_reclaim = 0,
};
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (unlikely(nr_pages == 0))
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
lock_page(page);
if (unlikely(page->mapping != mapping)) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
if (f2fs_write_meta_page(page, &wbc)) {
unlock_page(page);
break;
}
nwritten++;
if (unlikely(nwritten >= nr_to_write))
break;
}
pagevec_release(&pvec);
cond_resched();
}
if (nwritten)
f2fs_submit_merged_bio(sbi, type, WRITE);
return nwritten;
}
static int f2fs_set_meta_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
trace_f2fs_set_page_dirty(page, META);
SetPageUptodate(page);
if (!PageDirty(page)) {
__set_page_dirty_nobuffers(page);
inc_page_count(sbi, F2FS_DIRTY_META);
return 1;
}
return 0;
}
const struct address_space_operations f2fs_meta_aops = {
.writepage = f2fs_write_meta_page,
.writepages = f2fs_write_meta_pages,
.set_page_dirty = f2fs_set_meta_page_dirty,
};
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct ino_entry *e;
retry:
spin_lock(&sbi->ino_lock[type]);
e = radix_tree_lookup(&sbi->ino_root[type], ino);
if (!e) {
e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
if (!e) {
spin_unlock(&sbi->ino_lock[type]);
goto retry;
}
if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
spin_unlock(&sbi->ino_lock[type]);
kmem_cache_free(ino_entry_slab, e);
goto retry;
}
memset(e, 0, sizeof(struct ino_entry));
e->ino = ino;
list_add_tail(&e->list, &sbi->ino_list[type]);
}
spin_unlock(&sbi->ino_lock[type]);
}
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
struct ino_entry *e;
spin_lock(&sbi->ino_lock[type]);
e = radix_tree_lookup(&sbi->ino_root[type], ino);
if (e) {
list_del(&e->list);
radix_tree_delete(&sbi->ino_root[type], ino);
if (type == ORPHAN_INO)
sbi->n_orphans--;
spin_unlock(&sbi->ino_lock[type]);
kmem_cache_free(ino_entry_slab, e);
return;
}
spin_unlock(&sbi->ino_lock[type]);
}
void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* add new dirty ino entry into list */
__add_ino_entry(sbi, ino, type);
}
void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
{
/* remove dirty ino entry from list */
__remove_ino_entry(sbi, ino, type);
}
/* mode should be APPEND_INO or UPDATE_INO */
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
{
struct ino_entry *e;
spin_lock(&sbi->ino_lock[mode]);
e = radix_tree_lookup(&sbi->ino_root[mode], ino);
spin_unlock(&sbi->ino_lock[mode]);
return e ? true : false;
}
void release_dirty_inode(struct f2fs_sb_info *sbi)
{
struct ino_entry *e, *tmp;
int i;
for (i = APPEND_INO; i <= UPDATE_INO; i++) {
spin_lock(&sbi->ino_lock[i]);
list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
list_del(&e->list);
radix_tree_delete(&sbi->ino_root[i], e->ino);
kmem_cache_free(ino_entry_slab, e);
}
spin_unlock(&sbi->ino_lock[i]);
}
}
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
{
int err = 0;
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
if (unlikely(sbi->n_orphans >= sbi->max_orphans))
err = -ENOSPC;
else
sbi->n_orphans++;
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
return err;
}
void release_orphan_inode(struct f2fs_sb_info *sbi)
{
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
f2fs_bug_on(sbi->n_orphans == 0);
sbi->n_orphans--;
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
}
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* add new orphan ino entry into list */
__add_ino_entry(sbi, ino, ORPHAN_INO);
}
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
/* remove orphan entry from orphan list */
__remove_ino_entry(sbi, ino, ORPHAN_INO);
}
static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode = f2fs_iget(sbi->sb, ino);
f2fs_bug_on(IS_ERR(inode));
clear_nlink(inode);
/* truncate all the data during iput */
iput(inode);
}
void recover_orphan_inodes(struct f2fs_sb_info *sbi)
{
block_t start_blk, orphan_blkaddr, i, j;
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
return;
sbi->por_doing = true;
start_blk = __start_cp_addr(sbi) + 1 +
le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
orphan_blkaddr = __start_sum_addr(sbi) - 1;
ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
for (i = 0; i < orphan_blkaddr; i++) {
struct page *page = get_meta_page(sbi, start_blk + i);
struct f2fs_orphan_block *orphan_blk;
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
recover_orphan_inode(sbi, ino);
}
f2fs_put_page(page, 1);
}
/* clear Orphan Flag */
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
sbi->por_doing = false;
return;
}
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
{
struct list_head *head;
struct f2fs_orphan_block *orphan_blk = NULL;
unsigned int nentries = 0;
unsigned short index;
unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
struct page *page = NULL;
struct ino_entry *orphan = NULL;
for (index = 0; index < orphan_blocks; index++)
grab_meta_page(sbi, start_blk + index);
index = 1;
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
head = &sbi->ino_list[ORPHAN_INO];
/* loop for each orphan inode entry and write them in Jornal block */
list_for_each_entry(orphan, head, list) {
if (!page) {
page = find_get_page(META_MAPPING(sbi), start_blk++);
f2fs_bug_on(!page);
orphan_blk =
(struct f2fs_orphan_block *)page_address(page);
memset(orphan_blk, 0, sizeof(*orphan_blk));
f2fs_put_page(page, 0);
}
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
/*
* an orphan block is full of 1020 entries,
* then we need to flush current orphan blocks
* and bring another one in memory
*/
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
index++;
nentries = 0;
page = NULL;
}
}
if (page) {
orphan_blk->blk_addr = cpu_to_le16(index);
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
orphan_blk->entry_count = cpu_to_le32(nentries);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
}
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
block_t cp_addr, unsigned long long *version)
{
struct page *cp_page_1, *cp_page_2 = NULL;
unsigned long blk_size = sbi->blocksize;
struct f2fs_checkpoint *cp_block;
unsigned long long cur_version = 0, pre_version = 0;
size_t crc_offset;
__u32 crc = 0;
/* Read the 1st cp block in this CP pack */
cp_page_1 = get_meta_page(sbi, cp_addr);
/* get the version number */
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp1;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp1;
pre_version = cur_cp_version(cp_block);
/* Read the 2nd cp block in this CP pack */
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
cp_page_2 = get_meta_page(sbi, cp_addr);
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
crc_offset = le32_to_cpu(cp_block->checksum_offset);
if (crc_offset >= blk_size)
goto invalid_cp2;
crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
goto invalid_cp2;
cur_version = cur_cp_version(cp_block);
if (cur_version == pre_version) {
*version = cur_version;
f2fs_put_page(cp_page_2, 1);
return cp_page_1;
}
invalid_cp2:
f2fs_put_page(cp_page_2, 1);
invalid_cp1:
f2fs_put_page(cp_page_1, 1);
return NULL;
}
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *cp_block;
struct f2fs_super_block *fsb = sbi->raw_super;
struct page *cp1, *cp2, *cur_page;
unsigned long blk_size = sbi->blocksize;
unsigned long long cp1_version = 0, cp2_version = 0;
unsigned long long cp_start_blk_no;
unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
block_t cp_blk_no;
int i;
sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
if (!sbi->ckpt)
return -ENOMEM;
/*
* Finding out valid cp block involves read both
* sets( cp pack1 and cp pack 2)
*/
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
/* The second checkpoint pack should start at the next segment */
cp_start_blk_no += ((unsigned long long)1) <<
le32_to_cpu(fsb->log_blocks_per_seg);
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
if (cp1 && cp2) {
if (ver_after(cp2_version, cp1_version))
cur_page = cp2;
else
cur_page = cp1;
} else if (cp1) {
cur_page = cp1;
} else if (cp2) {
cur_page = cp2;
} else {
goto fail_no_cp;
}
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
memcpy(sbi->ckpt, cp_block, blk_size);
if (cp_blks <= 1)
goto done;
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
if (cur_page == cp2)
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
for (i = 1; i < cp_blks; i++) {
void *sit_bitmap_ptr;
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
cur_page = get_meta_page(sbi, cp_blk_no + i);
sit_bitmap_ptr = page_address(cur_page);
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
f2fs_put_page(cur_page, 1);
}
done:
f2fs_put_page(cp1, 1);
f2fs_put_page(cp2, 1);
return 0;
fail_no_cp:
kfree(sbi->ckpt);
return -EINVAL;
}
static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
return -EEXIST;
set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
F2FS_I(inode)->dirty_dir = new;
list_add_tail(&new->list, &sbi->dir_inode_list);
stat_inc_dirty_dir(sbi);
return 0;
}
void set_dirty_dir_page(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct dir_inode_entry *new;
int ret = 0;
if (!S_ISDIR(inode->i_mode))
return;
new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
ret = __add_dirty_inode(inode, new);
inode_inc_dirty_dents(inode);
SetPagePrivate(page);
spin_unlock(&sbi->dir_inode_lock);
if (ret)
kmem_cache_free(inode_entry_slab, new);
}
void add_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct dir_inode_entry *new =
f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
int ret = 0;
new->inode = inode;
INIT_LIST_HEAD(&new->list);
spin_lock(&sbi->dir_inode_lock);
ret = __add_dirty_inode(inode, new);
spin_unlock(&sbi->dir_inode_lock);
if (ret)
kmem_cache_free(inode_entry_slab, new);
}
void remove_dirty_dir_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
struct dir_inode_entry *entry;
if (!S_ISDIR(inode->i_mode))
return;
spin_lock(&sbi->dir_inode_lock);
if (get_dirty_dents(inode) ||
!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = F2FS_I(inode)->dirty_dir;
list_del(&entry->list);
F2FS_I(inode)->dirty_dir = NULL;
clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
stat_dec_dirty_dir(sbi);
spin_unlock(&sbi->dir_inode_lock);
kmem_cache_free(inode_entry_slab, entry);
/* Only from the recovery routine */
if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
iput(inode);
}
}
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
{
struct list_head *head;
struct dir_inode_entry *entry;
struct inode *inode;
retry:
spin_lock(&sbi->dir_inode_lock);
head = &sbi->dir_inode_list;
if (list_empty(head)) {
spin_unlock(&sbi->dir_inode_lock);
return;
}
entry = list_entry(head->next, struct dir_inode_entry, list);
inode = igrab(entry->inode);
spin_unlock(&sbi->dir_inode_lock);
if (inode) {
filemap_fdatawrite(inode->i_mapping);
iput(inode);
} else {
/*
* We should submit bio, since it exists several
* wribacking dentry pages in the freeing inode.
*/
f2fs_submit_merged_bio(sbi, DATA, WRITE);
}
goto retry;
}
/*
* Freeze all the FS-operations for checkpoint.
*/
static int block_operations(struct f2fs_sb_info *sbi)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = LONG_MAX,
.for_reclaim = 0,
};
struct blk_plug plug;
int err = 0;
blk_start_plug(&plug);
retry_flush_dents:
f2fs_lock_all(sbi);
/* write all the dirty dentry pages */
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
f2fs_unlock_all(sbi);
sync_dirty_dir_inodes(sbi);
if (unlikely(f2fs_cp_error(sbi))) {
err = -EIO;
goto out;
}
goto retry_flush_dents;
}
/*
* POR: we should ensure that there are no dirty node pages
* until finishing nat/sit flush.
*/
retry_flush_nodes:
down_write(&sbi->node_write);
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
up_write(&sbi->node_write);
sync_node_pages(sbi, 0, &wbc);
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_unlock_all(sbi);
err = -EIO;
goto out;
}
goto retry_flush_nodes;
}
out:
blk_finish_plug(&plug);
return err;
}
static void unblock_operations(struct f2fs_sb_info *sbi)
{
up_write(&sbi->node_write);
f2fs_unlock_all(sbi);
}
static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
if (!get_pages(sbi, F2FS_WRITEBACK))
break;
io_schedule();
}
finish_wait(&sbi->cp_wait, &wait);
}
static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
nid_t last_nid = 0;
block_t start_blk;
struct page *cp_page;
unsigned int data_sum_blocks, orphan_blocks;
__u32 crc32 = 0;
void *kaddr;
int i;
int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
/*
* This avoids to conduct wrong roll-forward operations and uses
* metapages, so should be called prior to sync_meta_pages below.
*/
discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
/* Flush all the NAT/SIT pages */
while (get_pages(sbi, F2FS_DIRTY_META)) {
sync_meta_pages(sbi, META, LONG_MAX);
if (unlikely(f2fs_cp_error(sbi)))
return;
}
next_free_nid(sbi, &last_nid);
/*
* modify checkpoint
* version number is already updated
*/
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
for (i = 0; i < 3; i++) {
ckpt->cur_node_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
ckpt->cur_node_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
}
for (i = 0; i < 3; i++) {
ckpt->cur_data_segno[i] =
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
ckpt->cur_data_blkoff[i] =
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
}
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
ckpt->next_free_nid = cpu_to_le32(last_nid);
/* 2 cp + n data seg summary + orphan inode blocks */
data_sum_blocks = npages_for_summary_flush(sbi);
if (data_sum_blocks < 3)
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
else
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
/ F2FS_ORPHANS_PER_BLOCK;
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
orphan_blocks);
if (is_umount) {
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
cp_payload_blks + data_sum_blocks +
orphan_blocks + NR_CURSEG_NODE_TYPE);
} else {
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
cp_payload_blks + data_sum_blocks +
orphan_blocks);
}
if (sbi->n_orphans)
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
else
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
/* update SIT/NAT bitmap */
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
*((__le32 *)((unsigned char *)ckpt +
le32_to_cpu(ckpt->checksum_offset)))
= cpu_to_le32(crc32);
start_blk = __start_cp_addr(sbi);
/* write out checkpoint buffer at block 0 */
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
for (i = 1; i < 1 + cp_payload_blks; i++) {
cp_page = grab_meta_page(sbi, start_blk++);
kaddr = page_address(cp_page);
memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
(1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
}
if (sbi->n_orphans) {
write_orphan_inodes(sbi, start_blk);
start_blk += orphan_blocks;
}
write_data_summaries(sbi, start_blk);
start_blk += data_sum_blocks;
if (is_umount) {
write_node_summaries(sbi, start_blk);
start_blk += NR_CURSEG_NODE_TYPE;
}
/* writeout checkpoint block */
cp_page = grab_meta_page(sbi, start_blk);
kaddr = page_address(cp_page);
memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
set_page_dirty(cp_page);
f2fs_put_page(cp_page, 1);
/* wait for previous submitted node/meta pages writeback */
wait_on_all_pages_writeback(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return;
filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
/* update user_block_counts */
sbi->last_valid_block_count = sbi->total_valid_block_count;
sbi->alloc_valid_block_count = 0;
/* Here, we only have one bio having CP pack */
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
release_dirty_inode(sbi);
if (unlikely(f2fs_cp_error(sbi)))
return;
clear_prefree_segments(sbi);
F2FS_RESET_SB_DIRT(sbi);
}
/*
* We guarantee that this checkpoint procedure will not fail.
*/
void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
unsigned long long ckpt_ver;
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
mutex_lock(&sbi->cp_mutex);
if (!sbi->s_dirty)
goto out;
if (unlikely(f2fs_cp_error(sbi)))
goto out;
if (block_operations(sbi))
goto out;
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
f2fs_submit_merged_bio(sbi, DATA, WRITE);
f2fs_submit_merged_bio(sbi, NODE, WRITE);
f2fs_submit_merged_bio(sbi, META, WRITE);
/*
* update checkpoint pack index
* Increase the version number so that
* SIT entries and seg summaries are written at correct place
*/
ckpt_ver = cur_cp_version(ckpt);
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
/* write cached NAT/SIT entries to NAT/SIT area */
flush_nat_entries(sbi);
flush_sit_entries(sbi);
/* unlock all the fs_lock[] in do_checkpoint() */
do_checkpoint(sbi, is_umount);
unblock_operations(sbi);
stat_inc_cp_count(sbi->stat_info);
out:
mutex_unlock(&sbi->cp_mutex);
trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
}
void init_ino_entry_info(struct f2fs_sb_info *sbi)
{
int i;
for (i = 0; i < MAX_INO_ENTRY; i++) {
INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
spin_lock_init(&sbi->ino_lock[i]);
INIT_LIST_HEAD(&sbi->ino_list[i]);
}
/*
* considering 512 blocks in a segment 8 blocks are needed for cp
* and log segment summaries. Remaining blocks are used to keep
* orphan entries with the limitation one reserved segment
* for cp pack we can have max 1020*504 orphan entries
*/
sbi->n_orphans = 0;
sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
* F2FS_ORPHANS_PER_BLOCK;
}
int __init create_checkpoint_caches(void)
{
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
sizeof(struct ino_entry));
if (!ino_entry_slab)
return -ENOMEM;
inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
sizeof(struct dir_inode_entry));
if (!inode_entry_slab) {
kmem_cache_destroy(ino_entry_slab);
return -ENOMEM;
}
return 0;
}
void destroy_checkpoint_caches(void)
{
kmem_cache_destroy(ino_entry_slab);
kmem_cache_destroy(inode_entry_slab);
}