linux-stable/drivers/misc/lis3lv02d/lis3lv02d.c
Uwe Kleine-König 4df4946d26 misc: lis3lv02d: Make lis3lv02d_remove_fs() return void
Up to now lis3lv02d_remove_fs() returns zero unconditionally. Make it return
void instead which makes it easier to see in the callers that there is
no error to handle.

Also the return value of i2c and spi remove callbacks is ignored anyway.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20211012153945.2651412-13-u.kleine-koenig@pengutronix.de
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-13 14:35:20 +02:00

1266 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lis3lv02d.c - ST LIS3LV02DL accelerometer driver
*
* Copyright (C) 2007-2008 Yan Burman
* Copyright (C) 2008 Eric Piel
* Copyright (C) 2008-2009 Pavel Machek
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/input.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/freezer.h>
#include <linux/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/pm_runtime.h>
#include <linux/atomic.h>
#include <linux/of_device.h>
#include "lis3lv02d.h"
#define DRIVER_NAME "lis3lv02d"
/* joystick device poll interval in milliseconds */
#define MDPS_POLL_INTERVAL 50
#define MDPS_POLL_MIN 0
#define MDPS_POLL_MAX 2000
#define LIS3_SYSFS_POWERDOWN_DELAY 5000 /* In milliseconds */
#define SELFTEST_OK 0
#define SELFTEST_FAIL -1
#define SELFTEST_IRQ -2
#define IRQ_LINE0 0
#define IRQ_LINE1 1
/*
* The sensor can also generate interrupts (DRDY) but it's pretty pointless
* because they are generated even if the data do not change. So it's better
* to keep the interrupt for the free-fall event. The values are updated at
* 40Hz (at the lowest frequency), but as it can be pretty time consuming on
* some low processor, we poll the sensor only at 20Hz... enough for the
* joystick.
*/
#define LIS3_PWRON_DELAY_WAI_12B (5000)
#define LIS3_PWRON_DELAY_WAI_8B (3000)
/*
* LIS3LV02D spec says 1024 LSBs corresponds 1 G -> 1LSB is 1000/1024 mG
* LIS302D spec says: 18 mG / digit
* LIS3_ACCURACY is used to increase accuracy of the intermediate
* calculation results.
*/
#define LIS3_ACCURACY 1024
/* Sensitivity values for -2G +2G scale */
#define LIS3_SENSITIVITY_12B ((LIS3_ACCURACY * 1000) / 1024)
#define LIS3_SENSITIVITY_8B (18 * LIS3_ACCURACY)
/*
* LIS331DLH spec says 1LSBs corresponds 4G/4096 -> 1LSB is 1000/1024 mG.
* Below macros defines sensitivity values for +/-2G. Dataout bits for
* +/-2G range is 12 bits so 4 bits adjustment must be done to get 12bit
* data from 16bit value. Currently this driver supports only 2G range.
*/
#define LIS3DLH_SENSITIVITY_2G ((LIS3_ACCURACY * 1000) / 1024)
#define SHIFT_ADJ_2G 4
#define LIS3_DEFAULT_FUZZ_12B 3
#define LIS3_DEFAULT_FLAT_12B 3
#define LIS3_DEFAULT_FUZZ_8B 1
#define LIS3_DEFAULT_FLAT_8B 1
struct lis3lv02d lis3_dev = {
.misc_wait = __WAIT_QUEUE_HEAD_INITIALIZER(lis3_dev.misc_wait),
};
EXPORT_SYMBOL_GPL(lis3_dev);
/* just like param_set_int() but does sanity-check so that it won't point
* over the axis array size
*/
static int param_set_axis(const char *val, const struct kernel_param *kp)
{
int ret = param_set_int(val, kp);
if (!ret) {
int val = *(int *)kp->arg;
if (val < 0)
val = -val;
if (!val || val > 3)
return -EINVAL;
}
return ret;
}
static const struct kernel_param_ops param_ops_axis = {
.set = param_set_axis,
.get = param_get_int,
};
#define param_check_axis(name, p) param_check_int(name, p)
module_param_array_named(axes, lis3_dev.ac.as_array, axis, NULL, 0644);
MODULE_PARM_DESC(axes, "Axis-mapping for x,y,z directions");
static s16 lis3lv02d_read_8(struct lis3lv02d *lis3, int reg)
{
s8 lo;
if (lis3->read(lis3, reg, &lo) < 0)
return 0;
return lo;
}
static s16 lis3lv02d_read_12(struct lis3lv02d *lis3, int reg)
{
u8 lo, hi;
lis3->read(lis3, reg - 1, &lo);
lis3->read(lis3, reg, &hi);
/* In "12 bit right justified" mode, bit 6, bit 7, bit 8 = bit 5 */
return (s16)((hi << 8) | lo);
}
/* 12bits for 2G range, 13 bits for 4G range and 14 bits for 8G range */
static s16 lis331dlh_read_data(struct lis3lv02d *lis3, int reg)
{
u8 lo, hi;
int v;
lis3->read(lis3, reg - 1, &lo);
lis3->read(lis3, reg, &hi);
v = (int) ((hi << 8) | lo);
return (s16) v >> lis3->shift_adj;
}
/**
* lis3lv02d_get_axis - For the given axis, give the value converted
* @axis: 1,2,3 - can also be negative
* @hw_values: raw values returned by the hardware
*
* Returns the converted value.
*/
static inline int lis3lv02d_get_axis(s8 axis, int hw_values[3])
{
if (axis > 0)
return hw_values[axis - 1];
else
return -hw_values[-axis - 1];
}
/**
* lis3lv02d_get_xyz - Get X, Y and Z axis values from the accelerometer
* @lis3: pointer to the device struct
* @x: where to store the X axis value
* @y: where to store the Y axis value
* @z: where to store the Z axis value
*
* Note that 40Hz input device can eat up about 10% CPU at 800MHZ
*/
static void lis3lv02d_get_xyz(struct lis3lv02d *lis3, int *x, int *y, int *z)
{
int position[3];
int i;
if (lis3->blkread) {
if (lis3->whoami == WAI_12B) {
u16 data[3];
lis3->blkread(lis3, OUTX_L, 6, (u8 *)data);
for (i = 0; i < 3; i++)
position[i] = (s16)le16_to_cpu(data[i]);
} else {
u8 data[5];
/* Data: x, dummy, y, dummy, z */
lis3->blkread(lis3, OUTX, 5, data);
for (i = 0; i < 3; i++)
position[i] = (s8)data[i * 2];
}
} else {
position[0] = lis3->read_data(lis3, OUTX);
position[1] = lis3->read_data(lis3, OUTY);
position[2] = lis3->read_data(lis3, OUTZ);
}
for (i = 0; i < 3; i++)
position[i] = (position[i] * lis3->scale) / LIS3_ACCURACY;
*x = lis3lv02d_get_axis(lis3->ac.x, position);
*y = lis3lv02d_get_axis(lis3->ac.y, position);
*z = lis3lv02d_get_axis(lis3->ac.z, position);
}
/* conversion btw sampling rate and the register values */
static int lis3_12_rates[4] = {40, 160, 640, 2560};
static int lis3_8_rates[2] = {100, 400};
static int lis3_3dc_rates[16] = {0, 1, 10, 25, 50, 100, 200, 400, 1600, 5000};
static int lis3_3dlh_rates[4] = {50, 100, 400, 1000};
/* ODR is Output Data Rate */
static int lis3lv02d_get_odr_index(struct lis3lv02d *lis3)
{
u8 ctrl;
int shift;
lis3->read(lis3, CTRL_REG1, &ctrl);
ctrl &= lis3->odr_mask;
shift = ffs(lis3->odr_mask) - 1;
return (ctrl >> shift);
}
static int lis3lv02d_get_pwron_wait(struct lis3lv02d *lis3)
{
int odr_idx = lis3lv02d_get_odr_index(lis3);
int div = lis3->odrs[odr_idx];
if (div == 0) {
if (odr_idx == 0) {
/* Power-down mode, not sampling no need to sleep */
return 0;
}
dev_err(&lis3->pdev->dev, "Error unknown odrs-index: %d\n", odr_idx);
return -ENXIO;
}
/* LIS3 power on delay is quite long */
msleep(lis3->pwron_delay / div);
return 0;
}
static int lis3lv02d_set_odr(struct lis3lv02d *lis3, int rate)
{
u8 ctrl;
int i, len, shift;
if (!rate)
return -EINVAL;
lis3->read(lis3, CTRL_REG1, &ctrl);
ctrl &= ~lis3->odr_mask;
len = 1 << hweight_long(lis3->odr_mask); /* # of possible values */
shift = ffs(lis3->odr_mask) - 1;
for (i = 0; i < len; i++)
if (lis3->odrs[i] == rate) {
lis3->write(lis3, CTRL_REG1,
ctrl | (i << shift));
return 0;
}
return -EINVAL;
}
static int lis3lv02d_selftest(struct lis3lv02d *lis3, s16 results[3])
{
u8 ctlreg, reg;
s16 x, y, z;
u8 selftest;
int ret;
u8 ctrl_reg_data;
unsigned char irq_cfg;
mutex_lock(&lis3->mutex);
irq_cfg = lis3->irq_cfg;
if (lis3->whoami == WAI_8B) {
lis3->data_ready_count[IRQ_LINE0] = 0;
lis3->data_ready_count[IRQ_LINE1] = 0;
/* Change interrupt cfg to data ready for selftest */
atomic_inc(&lis3->wake_thread);
lis3->irq_cfg = LIS3_IRQ1_DATA_READY | LIS3_IRQ2_DATA_READY;
lis3->read(lis3, CTRL_REG3, &ctrl_reg_data);
lis3->write(lis3, CTRL_REG3, (ctrl_reg_data &
~(LIS3_IRQ1_MASK | LIS3_IRQ2_MASK)) |
(LIS3_IRQ1_DATA_READY | LIS3_IRQ2_DATA_READY));
}
if ((lis3->whoami == WAI_3DC) || (lis3->whoami == WAI_3DLH)) {
ctlreg = CTRL_REG4;
selftest = CTRL4_ST0;
} else {
ctlreg = CTRL_REG1;
if (lis3->whoami == WAI_12B)
selftest = CTRL1_ST;
else
selftest = CTRL1_STP;
}
lis3->read(lis3, ctlreg, &reg);
lis3->write(lis3, ctlreg, (reg | selftest));
ret = lis3lv02d_get_pwron_wait(lis3);
if (ret)
goto fail;
/* Read directly to avoid axis remap */
x = lis3->read_data(lis3, OUTX);
y = lis3->read_data(lis3, OUTY);
z = lis3->read_data(lis3, OUTZ);
/* back to normal settings */
lis3->write(lis3, ctlreg, reg);
ret = lis3lv02d_get_pwron_wait(lis3);
if (ret)
goto fail;
results[0] = x - lis3->read_data(lis3, OUTX);
results[1] = y - lis3->read_data(lis3, OUTY);
results[2] = z - lis3->read_data(lis3, OUTZ);
ret = 0;
if (lis3->whoami == WAI_8B) {
/* Restore original interrupt configuration */
atomic_dec(&lis3->wake_thread);
lis3->write(lis3, CTRL_REG3, ctrl_reg_data);
lis3->irq_cfg = irq_cfg;
if ((irq_cfg & LIS3_IRQ1_MASK) &&
lis3->data_ready_count[IRQ_LINE0] < 2) {
ret = SELFTEST_IRQ;
goto fail;
}
if ((irq_cfg & LIS3_IRQ2_MASK) &&
lis3->data_ready_count[IRQ_LINE1] < 2) {
ret = SELFTEST_IRQ;
goto fail;
}
}
if (lis3->pdata) {
int i;
for (i = 0; i < 3; i++) {
/* Check against selftest acceptance limits */
if ((results[i] < lis3->pdata->st_min_limits[i]) ||
(results[i] > lis3->pdata->st_max_limits[i])) {
ret = SELFTEST_FAIL;
goto fail;
}
}
}
/* test passed */
fail:
mutex_unlock(&lis3->mutex);
return ret;
}
/*
* Order of registers in the list affects to order of the restore process.
* Perhaps it is a good idea to set interrupt enable register as a last one
* after all other configurations
*/
static u8 lis3_wai8_regs[] = { FF_WU_CFG_1, FF_WU_THS_1, FF_WU_DURATION_1,
FF_WU_CFG_2, FF_WU_THS_2, FF_WU_DURATION_2,
CLICK_CFG, CLICK_SRC, CLICK_THSY_X, CLICK_THSZ,
CLICK_TIMELIMIT, CLICK_LATENCY, CLICK_WINDOW,
CTRL_REG1, CTRL_REG2, CTRL_REG3};
static u8 lis3_wai12_regs[] = {FF_WU_CFG, FF_WU_THS_L, FF_WU_THS_H,
FF_WU_DURATION, DD_CFG, DD_THSI_L, DD_THSI_H,
DD_THSE_L, DD_THSE_H,
CTRL_REG1, CTRL_REG3, CTRL_REG2};
static inline void lis3_context_save(struct lis3lv02d *lis3)
{
int i;
for (i = 0; i < lis3->regs_size; i++)
lis3->read(lis3, lis3->regs[i], &lis3->reg_cache[i]);
lis3->regs_stored = true;
}
static inline void lis3_context_restore(struct lis3lv02d *lis3)
{
int i;
if (lis3->regs_stored)
for (i = 0; i < lis3->regs_size; i++)
lis3->write(lis3, lis3->regs[i], lis3->reg_cache[i]);
}
void lis3lv02d_poweroff(struct lis3lv02d *lis3)
{
if (lis3->reg_ctrl)
lis3_context_save(lis3);
/* disable X,Y,Z axis and power down */
lis3->write(lis3, CTRL_REG1, 0x00);
if (lis3->reg_ctrl)
lis3->reg_ctrl(lis3, LIS3_REG_OFF);
}
EXPORT_SYMBOL_GPL(lis3lv02d_poweroff);
int lis3lv02d_poweron(struct lis3lv02d *lis3)
{
int err;
u8 reg;
lis3->init(lis3);
/*
* Common configuration
* BDU: (12 bits sensors only) LSB and MSB values are not updated until
* both have been read. So the value read will always be correct.
* Set BOOT bit to refresh factory tuning values.
*/
if (lis3->pdata) {
lis3->read(lis3, CTRL_REG2, &reg);
if (lis3->whoami == WAI_12B)
reg |= CTRL2_BDU | CTRL2_BOOT;
else if (lis3->whoami == WAI_3DLH)
reg |= CTRL2_BOOT_3DLH;
else
reg |= CTRL2_BOOT_8B;
lis3->write(lis3, CTRL_REG2, reg);
if (lis3->whoami == WAI_3DLH) {
lis3->read(lis3, CTRL_REG4, &reg);
reg |= CTRL4_BDU;
lis3->write(lis3, CTRL_REG4, reg);
}
}
err = lis3lv02d_get_pwron_wait(lis3);
if (err)
return err;
if (lis3->reg_ctrl)
lis3_context_restore(lis3);
return 0;
}
EXPORT_SYMBOL_GPL(lis3lv02d_poweron);
static void lis3lv02d_joystick_poll(struct input_dev *input)
{
struct lis3lv02d *lis3 = input_get_drvdata(input);
int x, y, z;
mutex_lock(&lis3->mutex);
lis3lv02d_get_xyz(lis3, &x, &y, &z);
input_report_abs(input, ABS_X, x);
input_report_abs(input, ABS_Y, y);
input_report_abs(input, ABS_Z, z);
input_sync(input);
mutex_unlock(&lis3->mutex);
}
static int lis3lv02d_joystick_open(struct input_dev *input)
{
struct lis3lv02d *lis3 = input_get_drvdata(input);
if (lis3->pm_dev)
pm_runtime_get_sync(lis3->pm_dev);
if (lis3->pdata && lis3->whoami == WAI_8B && lis3->idev)
atomic_set(&lis3->wake_thread, 1);
/*
* Update coordinates for the case where poll interval is 0 and
* the chip in running purely under interrupt control
*/
lis3lv02d_joystick_poll(input);
return 0;
}
static void lis3lv02d_joystick_close(struct input_dev *input)
{
struct lis3lv02d *lis3 = input_get_drvdata(input);
atomic_set(&lis3->wake_thread, 0);
if (lis3->pm_dev)
pm_runtime_put(lis3->pm_dev);
}
static irqreturn_t lis302dl_interrupt(int irq, void *data)
{
struct lis3lv02d *lis3 = data;
if (!test_bit(0, &lis3->misc_opened))
goto out;
/*
* Be careful: on some HP laptops the bios force DD when on battery and
* the lid is closed. This leads to interrupts as soon as a little move
* is done.
*/
atomic_inc(&lis3->count);
wake_up_interruptible(&lis3->misc_wait);
kill_fasync(&lis3->async_queue, SIGIO, POLL_IN);
out:
if (atomic_read(&lis3->wake_thread))
return IRQ_WAKE_THREAD;
return IRQ_HANDLED;
}
static void lis302dl_interrupt_handle_click(struct lis3lv02d *lis3)
{
struct input_dev *dev = lis3->idev;
u8 click_src;
mutex_lock(&lis3->mutex);
lis3->read(lis3, CLICK_SRC, &click_src);
if (click_src & CLICK_SINGLE_X) {
input_report_key(dev, lis3->mapped_btns[0], 1);
input_report_key(dev, lis3->mapped_btns[0], 0);
}
if (click_src & CLICK_SINGLE_Y) {
input_report_key(dev, lis3->mapped_btns[1], 1);
input_report_key(dev, lis3->mapped_btns[1], 0);
}
if (click_src & CLICK_SINGLE_Z) {
input_report_key(dev, lis3->mapped_btns[2], 1);
input_report_key(dev, lis3->mapped_btns[2], 0);
}
input_sync(dev);
mutex_unlock(&lis3->mutex);
}
static inline void lis302dl_data_ready(struct lis3lv02d *lis3, int index)
{
int dummy;
/* Dummy read to ack interrupt */
lis3lv02d_get_xyz(lis3, &dummy, &dummy, &dummy);
lis3->data_ready_count[index]++;
}
static irqreturn_t lis302dl_interrupt_thread1_8b(int irq, void *data)
{
struct lis3lv02d *lis3 = data;
u8 irq_cfg = lis3->irq_cfg & LIS3_IRQ1_MASK;
if (irq_cfg == LIS3_IRQ1_CLICK)
lis302dl_interrupt_handle_click(lis3);
else if (unlikely(irq_cfg == LIS3_IRQ1_DATA_READY))
lis302dl_data_ready(lis3, IRQ_LINE0);
else
lis3lv02d_joystick_poll(lis3->idev);
return IRQ_HANDLED;
}
static irqreturn_t lis302dl_interrupt_thread2_8b(int irq, void *data)
{
struct lis3lv02d *lis3 = data;
u8 irq_cfg = lis3->irq_cfg & LIS3_IRQ2_MASK;
if (irq_cfg == LIS3_IRQ2_CLICK)
lis302dl_interrupt_handle_click(lis3);
else if (unlikely(irq_cfg == LIS3_IRQ2_DATA_READY))
lis302dl_data_ready(lis3, IRQ_LINE1);
else
lis3lv02d_joystick_poll(lis3->idev);
return IRQ_HANDLED;
}
static int lis3lv02d_misc_open(struct inode *inode, struct file *file)
{
struct lis3lv02d *lis3 = container_of(file->private_data,
struct lis3lv02d, miscdev);
if (test_and_set_bit(0, &lis3->misc_opened))
return -EBUSY; /* already open */
if (lis3->pm_dev)
pm_runtime_get_sync(lis3->pm_dev);
atomic_set(&lis3->count, 0);
return 0;
}
static int lis3lv02d_misc_release(struct inode *inode, struct file *file)
{
struct lis3lv02d *lis3 = container_of(file->private_data,
struct lis3lv02d, miscdev);
clear_bit(0, &lis3->misc_opened); /* release the device */
if (lis3->pm_dev)
pm_runtime_put(lis3->pm_dev);
return 0;
}
static ssize_t lis3lv02d_misc_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct lis3lv02d *lis3 = container_of(file->private_data,
struct lis3lv02d, miscdev);
DECLARE_WAITQUEUE(wait, current);
u32 data;
unsigned char byte_data;
ssize_t retval = 1;
if (count < 1)
return -EINVAL;
add_wait_queue(&lis3->misc_wait, &wait);
while (true) {
set_current_state(TASK_INTERRUPTIBLE);
data = atomic_xchg(&lis3->count, 0);
if (data)
break;
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto out;
}
if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto out;
}
schedule();
}
if (data < 255)
byte_data = data;
else
byte_data = 255;
/* make sure we are not going into copy_to_user() with
* TASK_INTERRUPTIBLE state */
set_current_state(TASK_RUNNING);
if (copy_to_user(buf, &byte_data, sizeof(byte_data)))
retval = -EFAULT;
out:
__set_current_state(TASK_RUNNING);
remove_wait_queue(&lis3->misc_wait, &wait);
return retval;
}
static __poll_t lis3lv02d_misc_poll(struct file *file, poll_table *wait)
{
struct lis3lv02d *lis3 = container_of(file->private_data,
struct lis3lv02d, miscdev);
poll_wait(file, &lis3->misc_wait, wait);
if (atomic_read(&lis3->count))
return EPOLLIN | EPOLLRDNORM;
return 0;
}
static int lis3lv02d_misc_fasync(int fd, struct file *file, int on)
{
struct lis3lv02d *lis3 = container_of(file->private_data,
struct lis3lv02d, miscdev);
return fasync_helper(fd, file, on, &lis3->async_queue);
}
static const struct file_operations lis3lv02d_misc_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = lis3lv02d_misc_read,
.open = lis3lv02d_misc_open,
.release = lis3lv02d_misc_release,
.poll = lis3lv02d_misc_poll,
.fasync = lis3lv02d_misc_fasync,
};
int lis3lv02d_joystick_enable(struct lis3lv02d *lis3)
{
struct input_dev *input_dev;
int err;
int max_val, fuzz, flat;
int btns[] = {BTN_X, BTN_Y, BTN_Z};
if (lis3->idev)
return -EINVAL;
input_dev = input_allocate_device();
if (!input_dev)
return -ENOMEM;
input_dev->name = "ST LIS3LV02DL Accelerometer";
input_dev->phys = DRIVER_NAME "/input0";
input_dev->id.bustype = BUS_HOST;
input_dev->id.vendor = 0;
input_dev->dev.parent = &lis3->pdev->dev;
input_dev->open = lis3lv02d_joystick_open;
input_dev->close = lis3lv02d_joystick_close;
max_val = (lis3->mdps_max_val * lis3->scale) / LIS3_ACCURACY;
if (lis3->whoami == WAI_12B) {
fuzz = LIS3_DEFAULT_FUZZ_12B;
flat = LIS3_DEFAULT_FLAT_12B;
} else {
fuzz = LIS3_DEFAULT_FUZZ_8B;
flat = LIS3_DEFAULT_FLAT_8B;
}
fuzz = (fuzz * lis3->scale) / LIS3_ACCURACY;
flat = (flat * lis3->scale) / LIS3_ACCURACY;
input_set_abs_params(input_dev, ABS_X, -max_val, max_val, fuzz, flat);
input_set_abs_params(input_dev, ABS_Y, -max_val, max_val, fuzz, flat);
input_set_abs_params(input_dev, ABS_Z, -max_val, max_val, fuzz, flat);
input_set_drvdata(input_dev, lis3);
lis3->idev = input_dev;
err = input_setup_polling(input_dev, lis3lv02d_joystick_poll);
if (err)
goto err_free_input;
input_set_poll_interval(input_dev, MDPS_POLL_INTERVAL);
input_set_min_poll_interval(input_dev, MDPS_POLL_MIN);
input_set_max_poll_interval(input_dev, MDPS_POLL_MAX);
lis3->mapped_btns[0] = lis3lv02d_get_axis(abs(lis3->ac.x), btns);
lis3->mapped_btns[1] = lis3lv02d_get_axis(abs(lis3->ac.y), btns);
lis3->mapped_btns[2] = lis3lv02d_get_axis(abs(lis3->ac.z), btns);
err = input_register_device(lis3->idev);
if (err)
goto err_free_input;
return 0;
err_free_input:
input_free_device(input_dev);
lis3->idev = NULL;
return err;
}
EXPORT_SYMBOL_GPL(lis3lv02d_joystick_enable);
void lis3lv02d_joystick_disable(struct lis3lv02d *lis3)
{
if (lis3->irq)
free_irq(lis3->irq, lis3);
if (lis3->pdata && lis3->pdata->irq2)
free_irq(lis3->pdata->irq2, lis3);
if (!lis3->idev)
return;
if (lis3->irq)
misc_deregister(&lis3->miscdev);
input_unregister_device(lis3->idev);
lis3->idev = NULL;
}
EXPORT_SYMBOL_GPL(lis3lv02d_joystick_disable);
/* Sysfs stuff */
static void lis3lv02d_sysfs_poweron(struct lis3lv02d *lis3)
{
/*
* SYSFS functions are fast visitors so put-call
* immediately after the get-call. However, keep
* chip running for a while and schedule delayed
* suspend. This way periodic sysfs calls doesn't
* suffer from relatively long power up time.
*/
if (lis3->pm_dev) {
pm_runtime_get_sync(lis3->pm_dev);
pm_runtime_put_noidle(lis3->pm_dev);
pm_schedule_suspend(lis3->pm_dev, LIS3_SYSFS_POWERDOWN_DELAY);
}
}
static ssize_t lis3lv02d_selftest_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis3lv02d *lis3 = dev_get_drvdata(dev);
s16 values[3];
static const char ok[] = "OK";
static const char fail[] = "FAIL";
static const char irq[] = "FAIL_IRQ";
const char *res;
lis3lv02d_sysfs_poweron(lis3);
switch (lis3lv02d_selftest(lis3, values)) {
case SELFTEST_FAIL:
res = fail;
break;
case SELFTEST_IRQ:
res = irq;
break;
case SELFTEST_OK:
default:
res = ok;
break;
}
return sprintf(buf, "%s %d %d %d\n", res,
values[0], values[1], values[2]);
}
static ssize_t lis3lv02d_position_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis3lv02d *lis3 = dev_get_drvdata(dev);
int x, y, z;
lis3lv02d_sysfs_poweron(lis3);
mutex_lock(&lis3->mutex);
lis3lv02d_get_xyz(lis3, &x, &y, &z);
mutex_unlock(&lis3->mutex);
return sprintf(buf, "(%d,%d,%d)\n", x, y, z);
}
static ssize_t lis3lv02d_rate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lis3lv02d *lis3 = dev_get_drvdata(dev);
int odr_idx;
lis3lv02d_sysfs_poweron(lis3);
odr_idx = lis3lv02d_get_odr_index(lis3);
return sprintf(buf, "%d\n", lis3->odrs[odr_idx]);
}
static ssize_t lis3lv02d_rate_set(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct lis3lv02d *lis3 = dev_get_drvdata(dev);
unsigned long rate;
int ret;
ret = kstrtoul(buf, 0, &rate);
if (ret)
return ret;
lis3lv02d_sysfs_poweron(lis3);
if (lis3lv02d_set_odr(lis3, rate))
return -EINVAL;
return count;
}
static DEVICE_ATTR(selftest, S_IRUSR, lis3lv02d_selftest_show, NULL);
static DEVICE_ATTR(position, S_IRUGO, lis3lv02d_position_show, NULL);
static DEVICE_ATTR(rate, S_IRUGO | S_IWUSR, lis3lv02d_rate_show,
lis3lv02d_rate_set);
static struct attribute *lis3lv02d_attributes[] = {
&dev_attr_selftest.attr,
&dev_attr_position.attr,
&dev_attr_rate.attr,
NULL
};
static const struct attribute_group lis3lv02d_attribute_group = {
.attrs = lis3lv02d_attributes
};
static int lis3lv02d_add_fs(struct lis3lv02d *lis3)
{
lis3->pdev = platform_device_register_simple(DRIVER_NAME, -1, NULL, 0);
if (IS_ERR(lis3->pdev))
return PTR_ERR(lis3->pdev);
platform_set_drvdata(lis3->pdev, lis3);
return sysfs_create_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group);
}
void lis3lv02d_remove_fs(struct lis3lv02d *lis3)
{
sysfs_remove_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group);
platform_device_unregister(lis3->pdev);
if (lis3->pm_dev) {
/* Barrier after the sysfs remove */
pm_runtime_barrier(lis3->pm_dev);
/* SYSFS may have left chip running. Turn off if necessary */
if (!pm_runtime_suspended(lis3->pm_dev))
lis3lv02d_poweroff(lis3);
pm_runtime_disable(lis3->pm_dev);
pm_runtime_set_suspended(lis3->pm_dev);
}
kfree(lis3->reg_cache);
}
EXPORT_SYMBOL_GPL(lis3lv02d_remove_fs);
static void lis3lv02d_8b_configure(struct lis3lv02d *lis3,
struct lis3lv02d_platform_data *p)
{
int err;
int ctrl2 = p->hipass_ctrl;
if (p->click_flags) {
lis3->write(lis3, CLICK_CFG, p->click_flags);
lis3->write(lis3, CLICK_TIMELIMIT, p->click_time_limit);
lis3->write(lis3, CLICK_LATENCY, p->click_latency);
lis3->write(lis3, CLICK_WINDOW, p->click_window);
lis3->write(lis3, CLICK_THSZ, p->click_thresh_z & 0xf);
lis3->write(lis3, CLICK_THSY_X,
(p->click_thresh_x & 0xf) |
(p->click_thresh_y << 4));
if (lis3->idev) {
input_set_capability(lis3->idev, EV_KEY, BTN_X);
input_set_capability(lis3->idev, EV_KEY, BTN_Y);
input_set_capability(lis3->idev, EV_KEY, BTN_Z);
}
}
if (p->wakeup_flags) {
lis3->write(lis3, FF_WU_CFG_1, p->wakeup_flags);
lis3->write(lis3, FF_WU_THS_1, p->wakeup_thresh & 0x7f);
/* pdata value + 1 to keep this backward compatible*/
lis3->write(lis3, FF_WU_DURATION_1, p->duration1 + 1);
ctrl2 ^= HP_FF_WU1; /* Xor to keep compatible with old pdata*/
}
if (p->wakeup_flags2) {
lis3->write(lis3, FF_WU_CFG_2, p->wakeup_flags2);
lis3->write(lis3, FF_WU_THS_2, p->wakeup_thresh2 & 0x7f);
/* pdata value + 1 to keep this backward compatible*/
lis3->write(lis3, FF_WU_DURATION_2, p->duration2 + 1);
ctrl2 ^= HP_FF_WU2; /* Xor to keep compatible with old pdata*/
}
/* Configure hipass filters */
lis3->write(lis3, CTRL_REG2, ctrl2);
if (p->irq2) {
err = request_threaded_irq(p->irq2,
NULL,
lis302dl_interrupt_thread2_8b,
IRQF_TRIGGER_RISING | IRQF_ONESHOT |
(p->irq_flags2 & IRQF_TRIGGER_MASK),
DRIVER_NAME, lis3);
if (err < 0)
pr_err("No second IRQ. Limited functionality\n");
}
}
#ifdef CONFIG_OF
int lis3lv02d_init_dt(struct lis3lv02d *lis3)
{
struct lis3lv02d_platform_data *pdata;
struct device_node *np = lis3->of_node;
u32 val;
s32 sval;
if (!lis3->of_node)
return 0;
pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
if (of_get_property(np, "st,click-single-x", NULL))
pdata->click_flags |= LIS3_CLICK_SINGLE_X;
if (of_get_property(np, "st,click-double-x", NULL))
pdata->click_flags |= LIS3_CLICK_DOUBLE_X;
if (of_get_property(np, "st,click-single-y", NULL))
pdata->click_flags |= LIS3_CLICK_SINGLE_Y;
if (of_get_property(np, "st,click-double-y", NULL))
pdata->click_flags |= LIS3_CLICK_DOUBLE_Y;
if (of_get_property(np, "st,click-single-z", NULL))
pdata->click_flags |= LIS3_CLICK_SINGLE_Z;
if (of_get_property(np, "st,click-double-z", NULL))
pdata->click_flags |= LIS3_CLICK_DOUBLE_Z;
if (!of_property_read_u32(np, "st,click-threshold-x", &val))
pdata->click_thresh_x = val;
if (!of_property_read_u32(np, "st,click-threshold-y", &val))
pdata->click_thresh_y = val;
if (!of_property_read_u32(np, "st,click-threshold-z", &val))
pdata->click_thresh_z = val;
if (!of_property_read_u32(np, "st,click-time-limit", &val))
pdata->click_time_limit = val;
if (!of_property_read_u32(np, "st,click-latency", &val))
pdata->click_latency = val;
if (!of_property_read_u32(np, "st,click-window", &val))
pdata->click_window = val;
if (of_get_property(np, "st,irq1-disable", NULL))
pdata->irq_cfg |= LIS3_IRQ1_DISABLE;
if (of_get_property(np, "st,irq1-ff-wu-1", NULL))
pdata->irq_cfg |= LIS3_IRQ1_FF_WU_1;
if (of_get_property(np, "st,irq1-ff-wu-2", NULL))
pdata->irq_cfg |= LIS3_IRQ1_FF_WU_2;
if (of_get_property(np, "st,irq1-data-ready", NULL))
pdata->irq_cfg |= LIS3_IRQ1_DATA_READY;
if (of_get_property(np, "st,irq1-click", NULL))
pdata->irq_cfg |= LIS3_IRQ1_CLICK;
if (of_get_property(np, "st,irq2-disable", NULL))
pdata->irq_cfg |= LIS3_IRQ2_DISABLE;
if (of_get_property(np, "st,irq2-ff-wu-1", NULL))
pdata->irq_cfg |= LIS3_IRQ2_FF_WU_1;
if (of_get_property(np, "st,irq2-ff-wu-2", NULL))
pdata->irq_cfg |= LIS3_IRQ2_FF_WU_2;
if (of_get_property(np, "st,irq2-data-ready", NULL))
pdata->irq_cfg |= LIS3_IRQ2_DATA_READY;
if (of_get_property(np, "st,irq2-click", NULL))
pdata->irq_cfg |= LIS3_IRQ2_CLICK;
if (of_get_property(np, "st,irq-open-drain", NULL))
pdata->irq_cfg |= LIS3_IRQ_OPEN_DRAIN;
if (of_get_property(np, "st,irq-active-low", NULL))
pdata->irq_cfg |= LIS3_IRQ_ACTIVE_LOW;
if (!of_property_read_u32(np, "st,wu-duration-1", &val))
pdata->duration1 = val;
if (!of_property_read_u32(np, "st,wu-duration-2", &val))
pdata->duration2 = val;
if (of_get_property(np, "st,wakeup-x-lo", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_X_LO;
if (of_get_property(np, "st,wakeup-x-hi", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_X_HI;
if (of_get_property(np, "st,wakeup-y-lo", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_Y_LO;
if (of_get_property(np, "st,wakeup-y-hi", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_Y_HI;
if (of_get_property(np, "st,wakeup-z-lo", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_Z_LO;
if (of_get_property(np, "st,wakeup-z-hi", NULL))
pdata->wakeup_flags |= LIS3_WAKEUP_Z_HI;
if (of_get_property(np, "st,wakeup-threshold", &val))
pdata->wakeup_thresh = val;
if (of_get_property(np, "st,wakeup2-x-lo", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_X_LO;
if (of_get_property(np, "st,wakeup2-x-hi", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_X_HI;
if (of_get_property(np, "st,wakeup2-y-lo", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_LO;
if (of_get_property(np, "st,wakeup2-y-hi", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_HI;
if (of_get_property(np, "st,wakeup2-z-lo", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_LO;
if (of_get_property(np, "st,wakeup2-z-hi", NULL))
pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_HI;
if (of_get_property(np, "st,wakeup2-threshold", &val))
pdata->wakeup_thresh2 = val;
if (!of_property_read_u32(np, "st,highpass-cutoff-hz", &val)) {
switch (val) {
case 1:
pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_1HZ;
break;
case 2:
pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_2HZ;
break;
case 4:
pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_4HZ;
break;
case 8:
pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_8HZ;
break;
}
}
if (of_get_property(np, "st,hipass1-disable", NULL))
pdata->hipass_ctrl |= LIS3_HIPASS1_DISABLE;
if (of_get_property(np, "st,hipass2-disable", NULL))
pdata->hipass_ctrl |= LIS3_HIPASS2_DISABLE;
if (of_property_read_s32(np, "st,axis-x", &sval) == 0)
pdata->axis_x = sval;
if (of_property_read_s32(np, "st,axis-y", &sval) == 0)
pdata->axis_y = sval;
if (of_property_read_s32(np, "st,axis-z", &sval) == 0)
pdata->axis_z = sval;
if (of_get_property(np, "st,default-rate", NULL))
pdata->default_rate = val;
if (of_property_read_s32(np, "st,min-limit-x", &sval) == 0)
pdata->st_min_limits[0] = sval;
if (of_property_read_s32(np, "st,min-limit-y", &sval) == 0)
pdata->st_min_limits[1] = sval;
if (of_property_read_s32(np, "st,min-limit-z", &sval) == 0)
pdata->st_min_limits[2] = sval;
if (of_property_read_s32(np, "st,max-limit-x", &sval) == 0)
pdata->st_max_limits[0] = sval;
if (of_property_read_s32(np, "st,max-limit-y", &sval) == 0)
pdata->st_max_limits[1] = sval;
if (of_property_read_s32(np, "st,max-limit-z", &sval) == 0)
pdata->st_max_limits[2] = sval;
lis3->pdata = pdata;
return 0;
}
#else
int lis3lv02d_init_dt(struct lis3lv02d *lis3)
{
return 0;
}
#endif
EXPORT_SYMBOL_GPL(lis3lv02d_init_dt);
/*
* Initialise the accelerometer and the various subsystems.
* Should be rather independent of the bus system.
*/
int lis3lv02d_init_device(struct lis3lv02d *lis3)
{
int err;
irq_handler_t thread_fn;
int irq_flags = 0;
lis3->whoami = lis3lv02d_read_8(lis3, WHO_AM_I);
switch (lis3->whoami) {
case WAI_12B:
pr_info("12 bits sensor found\n");
lis3->read_data = lis3lv02d_read_12;
lis3->mdps_max_val = 2048;
lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_12B;
lis3->odrs = lis3_12_rates;
lis3->odr_mask = CTRL1_DF0 | CTRL1_DF1;
lis3->scale = LIS3_SENSITIVITY_12B;
lis3->regs = lis3_wai12_regs;
lis3->regs_size = ARRAY_SIZE(lis3_wai12_regs);
break;
case WAI_8B:
pr_info("8 bits sensor found\n");
lis3->read_data = lis3lv02d_read_8;
lis3->mdps_max_val = 128;
lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B;
lis3->odrs = lis3_8_rates;
lis3->odr_mask = CTRL1_DR;
lis3->scale = LIS3_SENSITIVITY_8B;
lis3->regs = lis3_wai8_regs;
lis3->regs_size = ARRAY_SIZE(lis3_wai8_regs);
break;
case WAI_3DC:
pr_info("8 bits 3DC sensor found\n");
lis3->read_data = lis3lv02d_read_8;
lis3->mdps_max_val = 128;
lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B;
lis3->odrs = lis3_3dc_rates;
lis3->odr_mask = CTRL1_ODR0|CTRL1_ODR1|CTRL1_ODR2|CTRL1_ODR3;
lis3->scale = LIS3_SENSITIVITY_8B;
break;
case WAI_3DLH:
pr_info("16 bits lis331dlh sensor found\n");
lis3->read_data = lis331dlh_read_data;
lis3->mdps_max_val = 2048; /* 12 bits for 2G */
lis3->shift_adj = SHIFT_ADJ_2G;
lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B;
lis3->odrs = lis3_3dlh_rates;
lis3->odr_mask = CTRL1_DR0 | CTRL1_DR1;
lis3->scale = LIS3DLH_SENSITIVITY_2G;
break;
default:
pr_err("unknown sensor type 0x%X\n", lis3->whoami);
return -ENODEV;
}
lis3->reg_cache = kzalloc(max(sizeof(lis3_wai8_regs),
sizeof(lis3_wai12_regs)), GFP_KERNEL);
if (lis3->reg_cache == NULL)
return -ENOMEM;
mutex_init(&lis3->mutex);
atomic_set(&lis3->wake_thread, 0);
lis3lv02d_add_fs(lis3);
err = lis3lv02d_poweron(lis3);
if (err) {
lis3lv02d_remove_fs(lis3);
return err;
}
if (lis3->pm_dev) {
pm_runtime_set_active(lis3->pm_dev);
pm_runtime_enable(lis3->pm_dev);
}
if (lis3lv02d_joystick_enable(lis3))
pr_err("joystick initialization failed\n");
/* passing in platform specific data is purely optional and only
* used by the SPI transport layer at the moment */
if (lis3->pdata) {
struct lis3lv02d_platform_data *p = lis3->pdata;
if (lis3->whoami == WAI_8B)
lis3lv02d_8b_configure(lis3, p);
irq_flags = p->irq_flags1 & IRQF_TRIGGER_MASK;
lis3->irq_cfg = p->irq_cfg;
if (p->irq_cfg)
lis3->write(lis3, CTRL_REG3, p->irq_cfg);
if (p->default_rate)
lis3lv02d_set_odr(lis3, p->default_rate);
}
/* bail if we did not get an IRQ from the bus layer */
if (!lis3->irq) {
pr_debug("No IRQ. Disabling /dev/freefall\n");
goto out;
}
/*
* The sensor can generate interrupts for free-fall and direction
* detection (distinguishable with FF_WU_SRC and DD_SRC) but to keep
* the things simple and _fast_ we activate it only for free-fall, so
* no need to read register (very slow with ACPI). For the same reason,
* we forbid shared interrupts.
*
* IRQF_TRIGGER_RISING seems pointless on HP laptops because the
* io-apic is not configurable (and generates a warning) but I keep it
* in case of support for other hardware.
*/
if (lis3->pdata && lis3->whoami == WAI_8B)
thread_fn = lis302dl_interrupt_thread1_8b;
else
thread_fn = NULL;
err = request_threaded_irq(lis3->irq, lis302dl_interrupt,
thread_fn,
IRQF_TRIGGER_RISING | IRQF_ONESHOT |
irq_flags,
DRIVER_NAME, lis3);
if (err < 0) {
pr_err("Cannot get IRQ\n");
goto out;
}
lis3->miscdev.minor = MISC_DYNAMIC_MINOR;
lis3->miscdev.name = "freefall";
lis3->miscdev.fops = &lis3lv02d_misc_fops;
if (misc_register(&lis3->miscdev))
pr_err("misc_register failed\n");
out:
return 0;
}
EXPORT_SYMBOL_GPL(lis3lv02d_init_device);
MODULE_DESCRIPTION("ST LIS3LV02Dx three-axis digital accelerometer driver");
MODULE_AUTHOR("Yan Burman, Eric Piel, Pavel Machek");
MODULE_LICENSE("GPL");