linux-stable/arch/riscv/kernel/elf_kexec.c

471 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Load ELF vmlinux file for the kexec_file_load syscall.
*
* Copyright (C) 2021 Huawei Technologies Co, Ltd.
*
* Author: Liao Chang (liaochang1@huawei.com)
*
* Based on kexec-tools' kexec-elf-riscv.c, heavily modified
* for kernel.
*/
#define pr_fmt(fmt) "kexec_image: " fmt
#include <linux/elf.h>
#include <linux/kexec.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/libfdt.h>
#include <linux/types.h>
#include <linux/memblock.h>
#include <asm/setup.h>
int arch_kimage_file_post_load_cleanup(struct kimage *image)
{
kvfree(image->arch.fdt);
image->arch.fdt = NULL;
vfree(image->elf_headers);
image->elf_headers = NULL;
image->elf_headers_sz = 0;
return kexec_image_post_load_cleanup_default(image);
}
static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
struct kexec_elf_info *elf_info, unsigned long old_pbase,
unsigned long new_pbase)
{
int i;
int ret = 0;
size_t size;
struct kexec_buf kbuf;
const struct elf_phdr *phdr;
kbuf.image = image;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &elf_info->proghdrs[i];
if (phdr->p_type != PT_LOAD)
continue;
size = phdr->p_filesz;
if (size > phdr->p_memsz)
size = phdr->p_memsz;
kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
kbuf.bufsz = size;
kbuf.buf_align = phdr->p_align;
kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
kbuf.memsz = phdr->p_memsz;
kbuf.top_down = false;
ret = kexec_add_buffer(&kbuf);
if (ret)
break;
}
return ret;
}
/*
* Go through the available phsyical memory regions and find one that hold
* an image of the specified size.
*/
static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
unsigned long *old_pbase, unsigned long *new_pbase)
{
int i;
int ret;
struct kexec_buf kbuf;
const struct elf_phdr *phdr;
unsigned long lowest_paddr = ULONG_MAX;
unsigned long lowest_vaddr = ULONG_MAX;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &elf_info->proghdrs[i];
if (phdr->p_type != PT_LOAD)
continue;
if (lowest_paddr > phdr->p_paddr)
lowest_paddr = phdr->p_paddr;
if (lowest_vaddr > phdr->p_vaddr)
lowest_vaddr = phdr->p_vaddr;
}
kbuf.image = image;
kbuf.buf_min = lowest_paddr;
kbuf.buf_max = ULONG_MAX;
/*
* Current riscv boot protocol requires 2MB alignment for
* RV64 and 4MB alignment for RV32
*
*/
kbuf.buf_align = PMD_SIZE;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
kbuf.top_down = false;
ret = arch_kexec_locate_mem_hole(&kbuf);
if (!ret) {
*old_pbase = lowest_paddr;
*new_pbase = kbuf.mem;
image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
}
return ret;
}
static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
{
unsigned int *nr_ranges = arg;
(*nr_ranges)++;
return 0;
}
static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
{
struct crash_mem *cmem = arg;
cmem->ranges[cmem->nr_ranges].start = res->start;
cmem->ranges[cmem->nr_ranges].end = res->end;
cmem->nr_ranges++;
return 0;
}
static int prepare_elf_headers(void **addr, unsigned long *sz)
{
struct crash_mem *cmem;
unsigned int nr_ranges;
int ret;
nr_ranges = 1; /* For exclusion of crashkernel region */
walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
if (!cmem)
return -ENOMEM;
cmem->max_nr_ranges = nr_ranges;
cmem->nr_ranges = 0;
ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
if (ret)
goto out;
/* Exclude crashkernel region */
ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
if (!ret)
ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
out:
kfree(cmem);
return ret;
}
static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
unsigned long cmdline_len)
{
int elfcorehdr_strlen;
char *cmdline_ptr;
cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
if (!cmdline_ptr)
return NULL;
elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
image->elf_load_addr);
if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
kfree(cmdline_ptr);
return NULL;
}
memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
/* Ensure it's nul terminated */
cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
return cmdline_ptr;
}
static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len)
{
int ret;
unsigned long old_kernel_pbase = ULONG_MAX;
unsigned long new_kernel_pbase = 0UL;
unsigned long initrd_pbase = 0UL;
unsigned long headers_sz;
unsigned long kernel_start;
void *fdt, *headers;
struct elfhdr ehdr;
struct kexec_buf kbuf;
struct kexec_elf_info elf_info;
char *modified_cmdline = NULL;
ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
if (ret)
return ERR_PTR(ret);
ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
&old_kernel_pbase, &new_kernel_pbase);
if (ret)
goto out;
kernel_start = image->start;
/* Add the kernel binary to the image */
ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
old_kernel_pbase, new_kernel_pbase);
if (ret)
goto out;
kbuf.image = image;
kbuf.buf_min = new_kernel_pbase + kernel_len;
kbuf.buf_max = ULONG_MAX;
/* Add elfcorehdr */
if (image->type == KEXEC_TYPE_CRASH) {
ret = prepare_elf_headers(&headers, &headers_sz);
if (ret) {
pr_err("Preparing elf core header failed\n");
goto out;
}
kbuf.buffer = headers;
kbuf.bufsz = headers_sz;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.memsz = headers_sz;
kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
kbuf.top_down = true;
ret = kexec_add_buffer(&kbuf);
if (ret) {
vfree(headers);
goto out;
}
image->elf_headers = headers;
image->elf_load_addr = kbuf.mem;
image->elf_headers_sz = headers_sz;
kexec_dprintk("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
/* Setup cmdline for kdump kernel case */
modified_cmdline = setup_kdump_cmdline(image, cmdline,
cmdline_len);
if (!modified_cmdline) {
pr_err("Setting up cmdline for kdump kernel failed\n");
ret = -EINVAL;
goto out;
}
cmdline = modified_cmdline;
}
#ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
/* Add purgatory to the image */
kbuf.top_down = true;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
ret = kexec_load_purgatory(image, &kbuf);
if (ret) {
pr_err("Error loading purgatory ret=%d\n", ret);
goto out;
}
kexec_dprintk("Loaded purgatory at 0x%lx\n", kbuf.mem);
ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
&kernel_start,
sizeof(kernel_start), 0);
if (ret)
pr_err("Error update purgatory ret=%d\n", ret);
#endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
/* Add the initrd to the image */
if (initrd != NULL) {
kbuf.buffer = initrd;
kbuf.bufsz = kbuf.memsz = initrd_len;
kbuf.buf_align = PAGE_SIZE;
kbuf.top_down = true;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
ret = kexec_add_buffer(&kbuf);
if (ret)
goto out;
initrd_pbase = kbuf.mem;
kexec_dprintk("Loaded initrd at 0x%lx\n", initrd_pbase);
}
/* Add the DTB to the image */
fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
initrd_len, cmdline, 0);
if (!fdt) {
pr_err("Error setting up the new device tree.\n");
ret = -EINVAL;
goto out;
}
fdt_pack(fdt);
kbuf.buffer = fdt;
kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
kbuf.buf_align = PAGE_SIZE;
kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
kbuf.top_down = true;
ret = kexec_add_buffer(&kbuf);
if (ret) {
pr_err("Error add DTB kbuf ret=%d\n", ret);
goto out_free_fdt;
}
/* Cache the fdt buffer address for memory cleanup */
image->arch.fdt = fdt;
kexec_dprintk("Loaded device tree at 0x%lx\n", kbuf.mem);
goto out;
out_free_fdt:
kvfree(fdt);
out:
kfree(modified_cmdline);
kexec_free_elf_info(&elf_info);
return ret ? ERR_PTR(ret) : NULL;
}
#define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
#define RISCV_IMM_BITS 12
#define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
#define RISCV_CONST_HIGH_PART(x) \
(((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
#define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
#define ENCODE_ITYPE_IMM(x) \
(RV_X(x, 0, 12) << 20)
#define ENCODE_BTYPE_IMM(x) \
((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
(RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
#define ENCODE_UTYPE_IMM(x) \
(RV_X(x, 12, 20) << 12)
#define ENCODE_JTYPE_IMM(x) \
((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
(RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
#define ENCODE_CBTYPE_IMM(x) \
((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
(RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
#define ENCODE_CJTYPE_IMM(x) \
((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
(RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
(RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
#define ENCODE_UJTYPE_IMM(x) \
(ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
(ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
#define ENCODE_UITYPE_IMM(x) \
(ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
#define CLEAN_IMM(type, x) \
((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
Elf_Shdr *section,
const Elf_Shdr *relsec,
const Elf_Shdr *symtab)
{
const char *strtab, *name, *shstrtab;
const Elf_Shdr *sechdrs;
Elf64_Rela *relas;
int i, r_type;
/* String & section header string table */
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
relas = (void *)pi->ehdr + relsec->sh_offset;
for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
const Elf_Sym *sym; /* symbol to relocate */
unsigned long addr; /* final location after relocation */
unsigned long val; /* relocated symbol value */
unsigned long sec_base; /* relocated symbol value */
void *loc; /* tmp location to modify */
sym = (void *)pi->ehdr + symtab->sh_offset;
sym += ELF64_R_SYM(relas[i].r_info);
if (sym->st_name)
name = strtab + sym->st_name;
else
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
loc = pi->purgatory_buf;
loc += section->sh_offset;
loc += relas[i].r_offset;
if (sym->st_shndx == SHN_ABS)
sec_base = 0;
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
pr_err("Invalid section %d for symbol %s\n",
sym->st_shndx, name);
return -ENOEXEC;
} else
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
val = sym->st_value;
val += sec_base;
val += relas[i].r_addend;
addr = section->sh_addr + relas[i].r_offset;
r_type = ELF64_R_TYPE(relas[i].r_info);
switch (r_type) {
case R_RISCV_BRANCH:
*(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
ENCODE_BTYPE_IMM(val - addr);
break;
case R_RISCV_JAL:
*(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
ENCODE_JTYPE_IMM(val - addr);
break;
/*
* With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
* sym is expected to be next to R_RISCV_PCREL_HI20
* in purgatory relsec. Handle it like R_RISCV_CALL
* sym, instead of searching the whole relsec.
*/
case R_RISCV_PCREL_HI20:
case R_RISCV_CALL_PLT:
case R_RISCV_CALL:
*(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
ENCODE_UJTYPE_IMM(val - addr);
break;
case R_RISCV_RVC_BRANCH:
*(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
ENCODE_CBTYPE_IMM(val - addr);
break;
case R_RISCV_RVC_JUMP:
*(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
ENCODE_CJTYPE_IMM(val - addr);
break;
case R_RISCV_ADD32:
*(u32 *)loc += val;
break;
case R_RISCV_SUB32:
*(u32 *)loc -= val;
break;
/* It has been applied by R_RISCV_PCREL_HI20 sym */
case R_RISCV_PCREL_LO12_I:
case R_RISCV_ALIGN:
case R_RISCV_RELAX:
break;
default:
pr_err("Unknown rela relocation: %d\n", r_type);
return -ENOEXEC;
}
}
return 0;
}
const struct kexec_file_ops elf_kexec_ops = {
.probe = kexec_elf_probe,
.load = elf_kexec_load,
};