linux-stable/drivers/crypto/caam/caamrng.c
Jason A. Donenfeld 16bdbae394 hwrng: core - treat default_quality as a maximum and default to 1024
Most hw_random devices return entropy which is assumed to be of full
quality, but driver authors don't bother setting the quality knob. Some
hw_random devices return less than full quality entropy, and then driver
authors set the quality knob. Therefore, the entropy crediting should be
opt-out rather than opt-in per-driver, to reflect the actual reality on
the ground.

For example, the two Raspberry Pi RNG drivers produce full entropy
randomness, and both EDK2 and U-Boot's drivers for these treat them as
such. The result is that EFI then uses these numbers and passes the to
Linux, and Linux credits them as boot, thereby initializing the RNG.
Yet, in Linux, the quality knob was never set to anything, and so on the
chance that Linux is booted without EFI, nothing is ever credited.
That's annoying.

The same pattern appears to repeat itself throughout various drivers. In
fact, very very few drivers have bothered setting quality=1024.

Looking at the git history of existing drivers and corresponding mailing
list discussion, this conclusion tracks. There's been a decent amount of
discussion about drivers that set quality < 1024 -- somebody read and
interepreted a datasheet, or made some back of the envelope calculation
somehow. But there's been very little, if any, discussion about most
drivers where the quality is just set to 1024 or unset (or set to 1000
when the authors misunderstood the API and assumed it was base-10 rather
than base-2); in both cases the intent was fairly clear of, "this is a
hardware random device; it's fine."

So let's invert this logic. A hw_random struct's quality knob now
controls the maximum quality a driver can produce, or 0 to specify 1024.
Then, the module-wide switch called "default_quality" is changed to
represent the maximum quality of any driver. By default it's 1024, and
the quality of any particular driver is then given by:

    min(default_quality, rng->quality ?: 1024);

This way, the user can still turn this off for weird reasons (and we can
replace whatever driver-specific disabling hacks existed in the past),
yet we get proper crediting for relevant RNGs.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-11-18 16:59:34 +08:00

260 lines
5.5 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* caam - Freescale FSL CAAM support for hw_random
*
* Copyright 2011 Freescale Semiconductor, Inc.
* Copyright 2018-2019 NXP
*
* Based on caamalg.c crypto API driver.
*
*/
#include <linux/hw_random.h>
#include <linux/completion.h>
#include <linux/atomic.h>
#include <linux/kfifo.h>
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
#define CAAM_RNG_MAX_FIFO_STORE_SIZE 16
/*
* Length of used descriptors, see caam_init_desc()
*/
#define CAAM_RNG_DESC_LEN (CAAM_CMD_SZ + \
CAAM_CMD_SZ + \
CAAM_CMD_SZ + CAAM_PTR_SZ_MAX)
/* rng per-device context */
struct caam_rng_ctx {
struct hwrng rng;
struct device *jrdev;
struct device *ctrldev;
void *desc_async;
void *desc_sync;
struct work_struct worker;
struct kfifo fifo;
};
struct caam_rng_job_ctx {
struct completion *done;
int *err;
};
static struct caam_rng_ctx *to_caam_rng_ctx(struct hwrng *r)
{
return (struct caam_rng_ctx *)r->priv;
}
static void caam_rng_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct caam_rng_job_ctx *jctx = context;
if (err)
*jctx->err = caam_jr_strstatus(jrdev, err);
complete(jctx->done);
}
static u32 *caam_init_desc(u32 *desc, dma_addr_t dst_dma)
{
init_job_desc(desc, 0); /* + 1 cmd_sz */
/* Generate random bytes: + 1 cmd_sz */
append_operation(desc, OP_ALG_ALGSEL_RNG | OP_TYPE_CLASS1_ALG |
OP_ALG_PR_ON);
/* Store bytes: + 1 cmd_sz + caam_ptr_sz */
append_fifo_store(desc, dst_dma,
CAAM_RNG_MAX_FIFO_STORE_SIZE, FIFOST_TYPE_RNGSTORE);
print_hex_dump_debug("rng job desc@: ", DUMP_PREFIX_ADDRESS,
16, 4, desc, desc_bytes(desc), 1);
return desc;
}
static int caam_rng_read_one(struct device *jrdev,
void *dst, int len,
void *desc,
struct completion *done)
{
dma_addr_t dst_dma;
int err, ret = 0;
struct caam_rng_job_ctx jctx = {
.done = done,
.err = &ret,
};
len = CAAM_RNG_MAX_FIFO_STORE_SIZE;
dst_dma = dma_map_single(jrdev, dst, len, DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, dst_dma)) {
dev_err(jrdev, "unable to map destination memory\n");
return -ENOMEM;
}
init_completion(done);
err = caam_jr_enqueue(jrdev,
caam_init_desc(desc, dst_dma),
caam_rng_done, &jctx);
if (err == -EINPROGRESS) {
wait_for_completion(done);
err = 0;
}
dma_unmap_single(jrdev, dst_dma, len, DMA_FROM_DEVICE);
return err ?: (ret ?: len);
}
static void caam_rng_fill_async(struct caam_rng_ctx *ctx)
{
struct scatterlist sg[1];
struct completion done;
int len, nents;
sg_init_table(sg, ARRAY_SIZE(sg));
nents = kfifo_dma_in_prepare(&ctx->fifo, sg, ARRAY_SIZE(sg),
CAAM_RNG_MAX_FIFO_STORE_SIZE);
if (!nents)
return;
len = caam_rng_read_one(ctx->jrdev, sg_virt(&sg[0]),
sg[0].length,
ctx->desc_async,
&done);
if (len < 0)
return;
kfifo_dma_in_finish(&ctx->fifo, len);
}
static void caam_rng_worker(struct work_struct *work)
{
struct caam_rng_ctx *ctx = container_of(work, struct caam_rng_ctx,
worker);
caam_rng_fill_async(ctx);
}
static int caam_read(struct hwrng *rng, void *dst, size_t max, bool wait)
{
struct caam_rng_ctx *ctx = to_caam_rng_ctx(rng);
int out;
if (wait) {
struct completion done;
return caam_rng_read_one(ctx->jrdev, dst, max,
ctx->desc_sync, &done);
}
out = kfifo_out(&ctx->fifo, dst, max);
if (kfifo_is_empty(&ctx->fifo))
schedule_work(&ctx->worker);
return out;
}
static void caam_cleanup(struct hwrng *rng)
{
struct caam_rng_ctx *ctx = to_caam_rng_ctx(rng);
flush_work(&ctx->worker);
caam_jr_free(ctx->jrdev);
kfifo_free(&ctx->fifo);
}
static int caam_init(struct hwrng *rng)
{
struct caam_rng_ctx *ctx = to_caam_rng_ctx(rng);
int err;
ctx->desc_sync = devm_kzalloc(ctx->ctrldev, CAAM_RNG_DESC_LEN,
GFP_DMA | GFP_KERNEL);
if (!ctx->desc_sync)
return -ENOMEM;
ctx->desc_async = devm_kzalloc(ctx->ctrldev, CAAM_RNG_DESC_LEN,
GFP_DMA | GFP_KERNEL);
if (!ctx->desc_async)
return -ENOMEM;
if (kfifo_alloc(&ctx->fifo, CAAM_RNG_MAX_FIFO_STORE_SIZE,
GFP_DMA | GFP_KERNEL))
return -ENOMEM;
INIT_WORK(&ctx->worker, caam_rng_worker);
ctx->jrdev = caam_jr_alloc();
err = PTR_ERR_OR_ZERO(ctx->jrdev);
if (err) {
kfifo_free(&ctx->fifo);
pr_err("Job Ring Device allocation for transform failed\n");
return err;
}
/*
* Fill async buffer to have early randomness data for
* hw_random
*/
caam_rng_fill_async(ctx);
return 0;
}
int caam_rng_init(struct device *ctrldev);
void caam_rng_exit(struct device *ctrldev)
{
devres_release_group(ctrldev, caam_rng_init);
}
int caam_rng_init(struct device *ctrldev)
{
struct caam_rng_ctx *ctx;
u32 rng_inst;
struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
int ret;
/* Check for an instantiated RNG before registration */
if (priv->era < 10)
rng_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
CHA_ID_LS_RNG_MASK) >> CHA_ID_LS_RNG_SHIFT;
else
rng_inst = rd_reg32(&priv->ctrl->vreg.rng) & CHA_VER_NUM_MASK;
if (!rng_inst)
return 0;
if (!devres_open_group(ctrldev, caam_rng_init, GFP_KERNEL))
return -ENOMEM;
ctx = devm_kzalloc(ctrldev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->ctrldev = ctrldev;
ctx->rng.name = "rng-caam";
ctx->rng.init = caam_init;
ctx->rng.cleanup = caam_cleanup;
ctx->rng.read = caam_read;
ctx->rng.priv = (unsigned long)ctx;
dev_info(ctrldev, "registering rng-caam\n");
ret = devm_hwrng_register(ctrldev, &ctx->rng);
if (ret) {
caam_rng_exit(ctrldev);
return ret;
}
devres_close_group(ctrldev, caam_rng_init);
return 0;
}