linux-stable/drivers/spi/spi-lantiq-ssc.c
Hauke Mehrtens 17f84b793c spi: lantiq-ssc: add support for Lantiq SSC SPI controller
This driver supports the Lantiq SSC SPI controller in master
mode. This controller is found on Intel (former Lantiq) SoCs like
the Danube, Falcon, xRX200, xRX300.

The hardware uses two hardware FIFOs one for received and one for
transferred bytes. When the driver writes data into the transmit FIFO
the complete word is taken from the FIFO into a shift register. The
data from this shift register is then written to the wire. This driver
uses the interrupts signaling the status of the FIFOs and not the shift
register. It is also possible to use the interrupts for the shift
register, but they will send a signal after every word. When using the
interrupts for the shift register we get a signal when the last word is
written into the shift register and not when it is written to the wire.
After all FIFOs are empty the driver busy waits till the hardware is
not busy any more and returns the transfer status.

Signed-off-by: Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Mark Brown <broonie@kernel.org>
2017-02-14 17:10:40 +00:00

983 lines
25 KiB
C

/*
* Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
* Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#ifdef CONFIG_LANTIQ
#include <lantiq_soc.h>
#endif
#define SPI_RX_IRQ_NAME "spi_rx"
#define SPI_TX_IRQ_NAME "spi_tx"
#define SPI_ERR_IRQ_NAME "spi_err"
#define SPI_FRM_IRQ_NAME "spi_frm"
#define SPI_CLC 0x00
#define SPI_PISEL 0x04
#define SPI_ID 0x08
#define SPI_CON 0x10
#define SPI_STAT 0x14
#define SPI_WHBSTATE 0x18
#define SPI_TB 0x20
#define SPI_RB 0x24
#define SPI_RXFCON 0x30
#define SPI_TXFCON 0x34
#define SPI_FSTAT 0x38
#define SPI_BRT 0x40
#define SPI_BRSTAT 0x44
#define SPI_SFCON 0x60
#define SPI_SFSTAT 0x64
#define SPI_GPOCON 0x70
#define SPI_GPOSTAT 0x74
#define SPI_FPGO 0x78
#define SPI_RXREQ 0x80
#define SPI_RXCNT 0x84
#define SPI_DMACON 0xec
#define SPI_IRNEN 0xf4
#define SPI_IRNICR 0xf8
#define SPI_IRNCR 0xfc
#define SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
#define SPI_CLC_SMC_M (0xFF << SPI_CLC_SMC_S)
#define SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
#define SPI_CLC_RMC_M (0xFF << SPI_CLC_RMC_S)
#define SPI_CLC_DISS BIT(1) /* Disable status bit */
#define SPI_CLC_DISR BIT(0) /* Disable request bit */
#define SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
#define SPI_ID_TXFS_M (0x3F << SPI_ID_TXFS_S)
#define SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
#define SPI_ID_RXFS_M (0x3F << SPI_ID_RXFS_S)
#define SPI_ID_MOD_S 8 /* Module ID */
#define SPI_ID_MOD_M (0xff << SPI_ID_MOD_S)
#define SPI_ID_CFG_S 5 /* DMA interface support */
#define SPI_ID_CFG_M (1 << SPI_ID_CFG_S)
#define SPI_ID_REV_M 0x1F /* Hardware revision number */
#define SPI_CON_BM_S 16 /* Data width selection */
#define SPI_CON_BM_M (0x1F << SPI_CON_BM_S)
#define SPI_CON_EM BIT(24) /* Echo mode */
#define SPI_CON_IDLE BIT(23) /* Idle bit value */
#define SPI_CON_ENBV BIT(22) /* Enable byte valid control */
#define SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
#define SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
#define SPI_CON_AEN BIT(10) /* Abort error enable */
#define SPI_CON_REN BIT(9) /* Receive overflow error enable */
#define SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
#define SPI_CON_LB BIT(7) /* Loopback control */
#define SPI_CON_PO BIT(6) /* Clock polarity control */
#define SPI_CON_PH BIT(5) /* Clock phase control */
#define SPI_CON_HB BIT(4) /* Heading control */
#define SPI_CON_RXOFF BIT(1) /* Switch receiver off */
#define SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
#define SPI_STAT_RXBV_S 28
#define SPI_STAT_RXBV_M (0x7 << SPI_STAT_RXBV_S)
#define SPI_STAT_BSY BIT(13) /* Busy flag */
#define SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
#define SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
#define SPI_STAT_AE BIT(10) /* Abort error flag */
#define SPI_STAT_RE BIT(9) /* Receive error flag */
#define SPI_STAT_TE BIT(8) /* Transmit error flag */
#define SPI_STAT_ME BIT(7) /* Mode error flag */
#define SPI_STAT_MS BIT(1) /* Master/slave select bit */
#define SPI_STAT_EN BIT(0) /* Enable bit */
#define SPI_STAT_ERRORS (SPI_STAT_ME | SPI_STAT_TE | SPI_STAT_RE | \
SPI_STAT_AE | SPI_STAT_TUE | SPI_STAT_RUE)
#define SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
#define SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
#define SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
#define SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
#define SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
#define SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
#define SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
#define SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
#define SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
#define SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
#define SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
#define SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
#define SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
#define SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
#define SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
#define SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
#define SPI_WHBSTATE_CLR_ERRORS (SPI_WHBSTATE_CLRRUE | SPI_WHBSTATE_CLRME | \
SPI_WHBSTATE_CLRTE | SPI_WHBSTATE_CLRRE | \
SPI_WHBSTATE_CLRAE | SPI_WHBSTATE_CLRTUE)
#define SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
#define SPI_RXFCON_RXFITL_M (0x3F << SPI_RXFCON_RXFITL_S)
#define SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
#define SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
#define SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
#define SPI_TXFCON_TXFITL_M (0x3F << SPI_TXFCON_TXFITL_S)
#define SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
#define SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
#define SPI_FSTAT_RXFFL_S 0
#define SPI_FSTAT_RXFFL_M (0x3f << SPI_FSTAT_RXFFL_S)
#define SPI_FSTAT_TXFFL_S 8
#define SPI_FSTAT_TXFFL_M (0x3f << SPI_FSTAT_TXFFL_S)
#define SPI_GPOCON_ISCSBN_S 8
#define SPI_GPOCON_INVOUTN_S 0
#define SPI_FGPO_SETOUTN_S 8
#define SPI_FGPO_CLROUTN_S 0
#define SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
#define SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
#define SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
#define SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
#define SPI_IRNEN_E BIT(2) /* Error end interrupt request */
#define SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
#define SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
#define SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
#define SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
#define SPI_IRNEN_ALL 0x1F
struct lantiq_ssc_hwcfg {
unsigned int irnen_r;
unsigned int irnen_t;
};
struct lantiq_ssc_spi {
struct spi_master *master;
struct device *dev;
void __iomem *regbase;
struct clk *spi_clk;
struct clk *fpi_clk;
const struct lantiq_ssc_hwcfg *hwcfg;
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct work;
const u8 *tx;
u8 *rx;
unsigned int tx_todo;
unsigned int rx_todo;
unsigned int bits_per_word;
unsigned int speed_hz;
unsigned int tx_fifo_size;
unsigned int rx_fifo_size;
unsigned int base_cs;
};
static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
{
return __raw_readl(spi->regbase + reg);
}
static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
u32 reg)
{
__raw_writel(val, spi->regbase + reg);
}
static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
u32 set, u32 reg)
{
u32 val = __raw_readl(spi->regbase + reg);
val &= ~clr;
val |= set;
__raw_writel(val, spi->regbase + reg);
}
static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
{
u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
return (fstat & SPI_FSTAT_TXFFL_M) >> SPI_FSTAT_TXFFL_S;
}
static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
{
u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
return fstat & SPI_FSTAT_RXFFL_M;
}
static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
{
return spi->tx_fifo_size - tx_fifo_level(spi);
}
static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = spi->rx_fifo_size << SPI_RXFCON_RXFITL_S;
val |= SPI_RXFCON_RXFEN | SPI_RXFCON_RXFLU;
lantiq_ssc_writel(spi, val, SPI_RXFCON);
}
static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = 1 << SPI_TXFCON_TXFITL_S;
val |= SPI_TXFCON_TXFEN | SPI_TXFCON_TXFLU;
lantiq_ssc_writel(spi, val, SPI_TXFCON);
}
static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, SPI_RXFCON_RXFLU, SPI_RXFCON);
}
static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, SPI_TXFCON_TXFLU, SPI_TXFCON);
}
static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, SPI_WHBSTATE_CLREN, SPI_WHBSTATE);
}
static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, SPI_WHBSTATE_SETEN, SPI_WHBSTATE);
}
static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
unsigned int max_speed_hz)
{
u32 spi_clk, brt;
/*
* SPI module clock is derived from FPI bus clock dependent on
* divider value in CLC.RMS which is always set to 1.
*
* f_SPI
* baudrate = --------------
* 2 * (BR + 1)
*/
spi_clk = clk_get_rate(spi->fpi_clk) / 2;
if (max_speed_hz > spi_clk)
brt = 0;
else
brt = spi_clk / max_speed_hz - 1;
if (brt > 0xFFFF)
brt = 0xFFFF;
dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
spi_clk, max_speed_hz, brt);
lantiq_ssc_writel(spi, brt, SPI_BRT);
}
static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
unsigned int bits_per_word)
{
u32 bm;
/* CON.BM value = bits_per_word - 1 */
bm = (bits_per_word - 1) << SPI_CON_BM_S;
lantiq_ssc_maskl(spi, SPI_CON_BM_M, bm, SPI_CON);
}
static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
unsigned int mode)
{
u32 con_set = 0, con_clr = 0;
/*
* SPI mode mapping in CON register:
* Mode CPOL CPHA CON.PO CON.PH
* 0 0 0 0 1
* 1 0 1 0 0
* 2 1 0 1 1
* 3 1 1 1 0
*/
if (mode & SPI_CPHA)
con_clr |= SPI_CON_PH;
else
con_set |= SPI_CON_PH;
if (mode & SPI_CPOL)
con_set |= SPI_CON_PO | SPI_CON_IDLE;
else
con_clr |= SPI_CON_PO | SPI_CON_IDLE;
/* Set heading control */
if (mode & SPI_LSB_FIRST)
con_clr |= SPI_CON_HB;
else
con_set |= SPI_CON_HB;
/* Set loopback mode */
if (mode & SPI_LOOP)
con_set |= SPI_CON_LB;
else
con_clr |= SPI_CON_LB;
lantiq_ssc_maskl(spi, con_clr, con_set, SPI_CON);
}
static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
/*
* Set clock divider for run mode to 1 to
* run at same frequency as FPI bus
*/
lantiq_ssc_writel(spi, 1 << SPI_CLC_RMC_S, SPI_CLC);
/* Put controller into config mode */
hw_enter_config_mode(spi);
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
/* Enable error checking, disable TX/RX */
lantiq_ssc_writel(spi, SPI_CON_RUEN | SPI_CON_AEN | SPI_CON_TEN |
SPI_CON_REN | SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
/* Setup default SPI mode */
hw_setup_bits_per_word(spi, spi->bits_per_word);
hw_setup_clock_mode(spi, SPI_MODE_0);
/* Enable master mode and clear error flags */
lantiq_ssc_writel(spi, SPI_WHBSTATE_SETMS | SPI_WHBSTATE_CLR_ERRORS,
SPI_WHBSTATE);
/* Reset GPIO/CS registers */
lantiq_ssc_writel(spi, 0, SPI_GPOCON);
lantiq_ssc_writel(spi, 0xFF00, SPI_FPGO);
/* Enable and flush FIFOs */
rx_fifo_reset(spi);
tx_fifo_reset(spi);
/* Enable interrupts */
lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r | SPI_IRNEN_E,
SPI_IRNEN);
}
static int lantiq_ssc_setup(struct spi_device *spidev)
{
struct spi_master *master = spidev->master;
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
unsigned int cs = spidev->chip_select;
u32 gpocon;
/* GPIOs are used for CS */
if (gpio_is_valid(spidev->cs_gpio))
return 0;
dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
if (cs < spi->base_cs) {
dev_err(spi->dev,
"chipselect %i too small (min %i)\n", cs, spi->base_cs);
return -EINVAL;
}
/* set GPO pin to CS mode */
gpocon = 1 << ((cs - spi->base_cs) + SPI_GPOCON_ISCSBN_S);
/* invert GPO pin */
if (spidev->mode & SPI_CS_HIGH)
gpocon |= 1 << (cs - spi->base_cs);
lantiq_ssc_maskl(spi, 0, gpocon, SPI_GPOCON);
return 0;
}
static int lantiq_ssc_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_enter_config_mode(spi);
hw_setup_clock_mode(spi, message->spi->mode);
hw_enter_active_mode(spi);
return 0;
}
static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
struct spi_device *spidev, struct spi_transfer *t)
{
unsigned int speed_hz = t->speed_hz;
unsigned int bits_per_word = t->bits_per_word;
u32 con;
if (bits_per_word != spi->bits_per_word ||
speed_hz != spi->speed_hz) {
hw_enter_config_mode(spi);
hw_setup_speed_hz(spi, speed_hz);
hw_setup_bits_per_word(spi, bits_per_word);
hw_enter_active_mode(spi);
spi->speed_hz = speed_hz;
spi->bits_per_word = bits_per_word;
}
/* Configure transmitter and receiver */
con = lantiq_ssc_readl(spi, SPI_CON);
if (t->tx_buf)
con &= ~SPI_CON_TXOFF;
else
con |= SPI_CON_TXOFF;
if (t->rx_buf)
con &= ~SPI_CON_RXOFF;
else
con |= SPI_CON_RXOFF;
lantiq_ssc_writel(spi, con, SPI_CON);
}
static int lantiq_ssc_unprepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
flush_workqueue(spi->wq);
/* Disable transmitter and receiver while idle */
lantiq_ssc_maskl(spi, 0, SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
return 0;
}
static void tx_fifo_write(struct lantiq_ssc_spi *spi)
{
const u8 *tx8;
const u16 *tx16;
const u32 *tx32;
u32 data;
unsigned int tx_free = tx_fifo_free(spi);
while (spi->tx_todo && tx_free) {
switch (spi->bits_per_word) {
case 2 ... 8:
tx8 = spi->tx;
data = *tx8;
spi->tx_todo--;
spi->tx++;
break;
case 16:
tx16 = (u16 *) spi->tx;
data = *tx16;
spi->tx_todo -= 2;
spi->tx += 2;
break;
case 32:
tx32 = (u32 *) spi->tx;
data = *tx32;
spi->tx_todo -= 4;
spi->tx += 4;
break;
default:
WARN_ON(1);
data = 0;
break;
}
lantiq_ssc_writel(spi, data, SPI_TB);
tx_free--;
}
}
static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
{
u8 *rx8;
u16 *rx16;
u32 *rx32;
u32 data;
unsigned int rx_fill = rx_fifo_level(spi);
while (rx_fill) {
data = lantiq_ssc_readl(spi, SPI_RB);
switch (spi->bits_per_word) {
case 2 ... 8:
rx8 = spi->rx;
*rx8 = data;
spi->rx_todo--;
spi->rx++;
break;
case 16:
rx16 = (u16 *) spi->rx;
*rx16 = data;
spi->rx_todo -= 2;
spi->rx += 2;
break;
case 32:
rx32 = (u32 *) spi->rx;
*rx32 = data;
spi->rx_todo -= 4;
spi->rx += 4;
break;
default:
WARN_ON(1);
break;
}
rx_fill--;
}
}
static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
{
u32 data, *rx32;
u8 *rx8;
unsigned int rxbv, shift;
unsigned int rx_fill = rx_fifo_level(spi);
/*
* In RX-only mode the bits per word value is ignored by HW. A value
* of 32 is used instead. Thus all 4 bytes per FIFO must be read.
* If remaining RX bytes are less than 4, the FIFO must be read
* differently. The amount of received and valid bytes is indicated
* by STAT.RXBV register value.
*/
while (rx_fill) {
if (spi->rx_todo < 4) {
rxbv = (lantiq_ssc_readl(spi, SPI_STAT) &
SPI_STAT_RXBV_M) >> SPI_STAT_RXBV_S;
data = lantiq_ssc_readl(spi, SPI_RB);
shift = (rxbv - 1) * 8;
rx8 = spi->rx;
while (rxbv) {
*rx8++ = (data >> shift) & 0xFF;
rxbv--;
shift -= 8;
spi->rx_todo--;
spi->rx++;
}
} else {
data = lantiq_ssc_readl(spi, SPI_RB);
rx32 = (u32 *) spi->rx;
*rx32++ = data;
spi->rx_todo -= 4;
spi->rx += 4;
}
rx_fill--;
}
}
static void rx_request(struct lantiq_ssc_spi *spi)
{
unsigned int rxreq, rxreq_max;
/*
* To avoid receive overflows at high clocks it is better to request
* only the amount of bytes that fits into all FIFOs. This value
* depends on the FIFO size implemented in hardware.
*/
rxreq = spi->rx_todo;
rxreq_max = spi->rx_fifo_size * 4;
if (rxreq > rxreq_max)
rxreq = rxreq_max;
lantiq_ssc_writel(spi, rxreq, SPI_RXREQ);
}
static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
if (spi->tx) {
if (spi->rx && spi->rx_todo)
rx_fifo_read_full_duplex(spi);
if (spi->tx_todo)
tx_fifo_write(spi);
else if (!tx_fifo_level(spi))
goto completed;
} else if (spi->rx) {
if (spi->rx_todo) {
rx_fifo_read_half_duplex(spi);
if (spi->rx_todo)
rx_request(spi);
else
goto completed;
} else {
goto completed;
}
}
return IRQ_HANDLED;
completed:
queue_work(spi->wq, &spi->work);
return IRQ_HANDLED;
}
static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
if (!(stat & SPI_STAT_ERRORS))
return IRQ_NONE;
if (stat & SPI_STAT_RUE)
dev_err(spi->dev, "receive underflow error\n");
if (stat & SPI_STAT_TUE)
dev_err(spi->dev, "transmit underflow error\n");
if (stat & SPI_STAT_AE)
dev_err(spi->dev, "abort error\n");
if (stat & SPI_STAT_RE)
dev_err(spi->dev, "receive overflow error\n");
if (stat & SPI_STAT_TE)
dev_err(spi->dev, "transmit overflow error\n");
if (stat & SPI_STAT_ME)
dev_err(spi->dev, "mode error\n");
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
/* set bad status so it can be retried */
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
queue_work(spi->wq, &spi->work);
return IRQ_HANDLED;
}
static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
struct spi_transfer *t)
{
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
spi->tx = t->tx_buf;
spi->rx = t->rx_buf;
if (t->tx_buf) {
spi->tx_todo = t->len;
/* initially fill TX FIFO */
tx_fifo_write(spi);
}
if (spi->rx) {
spi->rx_todo = t->len;
/* start shift clock in RX-only mode */
if (!spi->tx)
rx_request(spi);
}
spin_unlock_irqrestore(&spi->lock, flags);
return t->len;
}
/*
* The driver only gets an interrupt when the FIFO is empty, but there
* is an additional shift register from which the data is written to
* the wire. We get the last interrupt when the controller starts to
* write the last word to the wire, not when it is finished. Do busy
* waiting till it finishes.
*/
static void lantiq_ssc_bussy_work(struct work_struct *work)
{
struct lantiq_ssc_spi *spi;
unsigned long long timeout = 8LL * 1000LL;
unsigned long end;
spi = container_of(work, typeof(*spi), work);
do_div(timeout, spi->speed_hz);
timeout += timeout + 100; /* some tolerance */
end = jiffies + msecs_to_jiffies(timeout);
do {
u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
if (!(stat & SPI_STAT_BSY)) {
spi_finalize_current_transfer(spi->master);
return;
}
cond_resched();
} while (!time_after_eq(jiffies, end));
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(spi->master);
}
static void lantiq_ssc_handle_err(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
/* flush FIFOs on timeout */
rx_fifo_flush(spi);
tx_fifo_flush(spi);
}
static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
unsigned int cs = spidev->chip_select;
u32 fgpo;
if (!!(spidev->mode & SPI_CS_HIGH) == enable)
fgpo = (1 << (cs - spi->base_cs));
else
fgpo = (1 << (cs - spi->base_cs + SPI_FGPO_SETOUTN_S));
lantiq_ssc_writel(spi, fgpo, SPI_FPGO);
}
static int lantiq_ssc_transfer_one(struct spi_master *master,
struct spi_device *spidev,
struct spi_transfer *t)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_setup_transfer(spi, spidev, t);
return transfer_start(spi, spidev, t);
}
static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
.irnen_r = SPI_IRNEN_R_XWAY,
.irnen_t = SPI_IRNEN_T_XWAY,
};
static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
.irnen_r = SPI_IRNEN_R_XRX,
.irnen_t = SPI_IRNEN_T_XRX,
};
static const struct of_device_id lantiq_ssc_match[] = {
{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
{},
};
MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
static int lantiq_ssc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res;
struct lantiq_ssc_spi *spi;
const struct lantiq_ssc_hwcfg *hwcfg;
const struct of_device_id *match;
int err, rx_irq, tx_irq, err_irq;
u32 id, supports_dma, revision;
unsigned int num_cs;
match = of_match_device(lantiq_ssc_match, dev);
if (!match) {
dev_err(dev, "no device match\n");
return -EINVAL;
}
hwcfg = match->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to get resources\n");
return -ENXIO;
}
rx_irq = platform_get_irq_byname(pdev, SPI_RX_IRQ_NAME);
if (rx_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_RX_IRQ_NAME);
return -ENXIO;
}
tx_irq = platform_get_irq_byname(pdev, SPI_TX_IRQ_NAME);
if (tx_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_TX_IRQ_NAME);
return -ENXIO;
}
err_irq = platform_get_irq_byname(pdev, SPI_ERR_IRQ_NAME);
if (err_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_ERR_IRQ_NAME);
return -ENXIO;
}
master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
if (!master)
return -ENOMEM;
spi = spi_master_get_devdata(master);
spi->master = master;
spi->dev = dev;
spi->hwcfg = hwcfg;
platform_set_drvdata(pdev, spi);
spi->regbase = devm_ioremap_resource(dev, res);
if (IS_ERR(spi->regbase)) {
err = PTR_ERR(spi->regbase);
goto err_master_put;
}
err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
0, SPI_RX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
0, SPI_TX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
0, SPI_ERR_IRQ_NAME, spi);
if (err)
goto err_master_put;
spi->spi_clk = devm_clk_get(dev, "gate");
if (IS_ERR(spi->spi_clk)) {
err = PTR_ERR(spi->spi_clk);
goto err_master_put;
}
err = clk_prepare_enable(spi->spi_clk);
if (err)
goto err_master_put;
/*
* Use the old clk_get_fpi() function on Lantiq platform, till it
* supports common clk.
*/
#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
spi->fpi_clk = clk_get_fpi();
#else
spi->fpi_clk = clk_get(dev, "freq");
#endif
if (IS_ERR(spi->fpi_clk)) {
err = PTR_ERR(spi->fpi_clk);
goto err_clk_disable;
}
num_cs = 8;
of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
spi->base_cs = 1;
of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
spin_lock_init(&spi->lock);
spi->bits_per_word = 8;
spi->speed_hz = 0;
master->dev.of_node = pdev->dev.of_node;
master->num_chipselect = num_cs;
master->setup = lantiq_ssc_setup;
master->set_cs = lantiq_ssc_set_cs;
master->handle_err = lantiq_ssc_handle_err;
master->prepare_message = lantiq_ssc_prepare_message;
master->unprepare_message = lantiq_ssc_unprepare_message;
master->transfer_one = lantiq_ssc_transfer_one;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
if (!spi->wq) {
err = -ENOMEM;
goto err_clk_put;
}
INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
id = lantiq_ssc_readl(spi, SPI_ID);
spi->tx_fifo_size = (id & SPI_ID_TXFS_M) >> SPI_ID_TXFS_S;
spi->rx_fifo_size = (id & SPI_ID_RXFS_M) >> SPI_ID_RXFS_S;
supports_dma = (id & SPI_ID_CFG_M) >> SPI_ID_CFG_S;
revision = id & SPI_ID_REV_M;
lantiq_ssc_hw_init(spi);
dev_info(dev,
"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
err = devm_spi_register_master(dev, master);
if (err) {
dev_err(dev, "failed to register spi_master\n");
goto err_wq_destroy;
}
return 0;
err_wq_destroy:
destroy_workqueue(spi->wq);
err_clk_put:
clk_put(spi->fpi_clk);
err_clk_disable:
clk_disable_unprepare(spi->spi_clk);
err_master_put:
spi_master_put(master);
return err;
}
static int lantiq_ssc_remove(struct platform_device *pdev)
{
struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
lantiq_ssc_writel(spi, 0, SPI_IRNEN);
lantiq_ssc_writel(spi, 0, SPI_CLC);
rx_fifo_flush(spi);
tx_fifo_flush(spi);
hw_enter_config_mode(spi);
destroy_workqueue(spi->wq);
clk_disable_unprepare(spi->spi_clk);
clk_put(spi->fpi_clk);
return 0;
}
static struct platform_driver lantiq_ssc_driver = {
.probe = lantiq_ssc_probe,
.remove = lantiq_ssc_remove,
.driver = {
.name = "spi-lantiq-ssc",
.owner = THIS_MODULE,
.of_match_table = lantiq_ssc_match,
},
};
module_platform_driver(lantiq_ssc_driver);
MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:spi-lantiq-ssc");