LZ4 final literal copy could be overlapped when doing
in-place decompression, so it's unsafe to just use memcpy()
on an optimized memcpy approach but memmove() instead.
Upstream LZ4 has updated this years ago [1] (and the impact
is non-sensible [2] plus only a few bytes remain), this commit
just synchronizes LZ4 upstream code to the kernel side as well.
It can be observed as EROFS in-place decompression failure
on specific files when X86_FEATURE_ERMS is unsupported,
memcpy() optimization of commit 59daa706fb ("x86, mem:
Optimize memcpy by avoiding memory false dependece") will
be enabled then.
Currently most modern x86-CPUs support ERMS, these CPUs just
use "rep movsb" approach so no problem at all. However, it can
still be verified with forcely disabling ERMS feature...
arch/x86/lib/memcpy_64.S:
ALTERNATIVE_2 "jmp memcpy_orig", "", X86_FEATURE_REP_GOOD, \
- "jmp memcpy_erms", X86_FEATURE_ERMS
+ "jmp memcpy_orig", X86_FEATURE_ERMS
We didn't observe any strange on arm64/arm/x86 platform before
since most memcpy() would behave in an increasing address order
("copy upwards" [3]) and it's the correct order of in-place
decompression but it really needs an update to memmove() for sure
considering it's an undefined behavior according to the standard
and some unique optimization already exists in the kernel.
[1] 33cb8518ac
[2] https://github.com/lz4/lz4/pull/717#issuecomment-497818921
[3] https://sourceware.org/bugzilla/show_bug.cgi?id=12518
Link: https://lkml.kernel.org/r/20201122030749.2698994-1-hsiangkao@redhat.com
Signed-off-by: Gao Xiang <hsiangkao@redhat.com>
Reviewed-by: Nick Terrell <terrelln@fb.com>
Cc: Yann Collet <yann.collet.73@gmail.com>
Cc: Miao Xie <miaoxie@huawei.com>
Cc: Chao Yu <yuchao0@huawei.com>
Cc: Li Guifu <bluce.liguifu@huawei.com>
Cc: Guo Xuenan <guoxuenan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>