mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
5f8f019380
The test verifies that when there is active TCP connection, the memory.stat.sock and memory.current values are close. Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Roman Gushchin <guro@fb.com> Signed-off-by: Shuah Khan (Samsung OSG) <shuah@kernel.org>
1015 lines
20 KiB
C
1015 lines
20 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#define _GNU_SOURCE
|
|
|
|
#include <linux/limits.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/wait.h>
|
|
#include <arpa/inet.h>
|
|
#include <netinet/in.h>
|
|
#include <netdb.h>
|
|
#include <errno.h>
|
|
|
|
#include "../kselftest.h"
|
|
#include "cgroup_util.h"
|
|
|
|
/*
|
|
* This test creates two nested cgroups with and without enabling
|
|
* the memory controller.
|
|
*/
|
|
static int test_memcg_subtree_control(const char *root)
|
|
{
|
|
char *parent, *child, *parent2, *child2;
|
|
int ret = KSFT_FAIL;
|
|
char buf[PAGE_SIZE];
|
|
|
|
/* Create two nested cgroups with the memory controller enabled */
|
|
parent = cg_name(root, "memcg_test_0");
|
|
child = cg_name(root, "memcg_test_0/memcg_test_1");
|
|
if (!parent || !child)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent, "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(child))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strstr(child, "cgroup.controllers", "memory"))
|
|
goto cleanup;
|
|
|
|
/* Create two nested cgroups without enabling memory controller */
|
|
parent2 = cg_name(root, "memcg_test_1");
|
|
child2 = cg_name(root, "memcg_test_1/memcg_test_1");
|
|
if (!parent2 || !child2)
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent2))
|
|
goto cleanup;
|
|
|
|
if (cg_create(child2))
|
|
goto cleanup;
|
|
|
|
if (cg_read(child2, "cgroup.controllers", buf, sizeof(buf)))
|
|
goto cleanup;
|
|
|
|
if (!cg_read_strstr(child2, "cgroup.controllers", "memory"))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(child);
|
|
cg_destroy(parent);
|
|
free(parent);
|
|
free(child);
|
|
|
|
cg_destroy(child2);
|
|
cg_destroy(parent2);
|
|
free(parent2);
|
|
free(child2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_anon_50M_check(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
char *buf, *ptr;
|
|
long anon, current;
|
|
int ret = -1;
|
|
|
|
buf = malloc(size);
|
|
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
|
|
*ptr = 0;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (current < size)
|
|
goto cleanup;
|
|
|
|
if (!values_close(size, current, 3))
|
|
goto cleanup;
|
|
|
|
anon = cg_read_key_long(cgroup, "memory.stat", "anon ");
|
|
if (anon < 0)
|
|
goto cleanup;
|
|
|
|
if (!values_close(anon, current, 3))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
cleanup:
|
|
free(buf);
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_pagecache_50M_check(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
int ret = -1;
|
|
long current, file;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (alloc_pagecache(fd, size))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (current < size)
|
|
goto cleanup;
|
|
|
|
file = cg_read_key_long(cgroup, "memory.stat", "file ");
|
|
if (file < 0)
|
|
goto cleanup;
|
|
|
|
if (!values_close(file, current, 10))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test create a memory cgroup, allocates
|
|
* some anonymous memory and some pagecache
|
|
* and check memory.current and some memory.stat values.
|
|
*/
|
|
static int test_memcg_current(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
long current;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(memcg, "memory.current");
|
|
if (current != 0)
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_pagecache_50M(const char *cgroup, void *arg)
|
|
{
|
|
int fd = (long)arg;
|
|
|
|
return alloc_pagecache(fd, MB(50));
|
|
}
|
|
|
|
static int alloc_pagecache_50M_noexit(const char *cgroup, void *arg)
|
|
{
|
|
int fd = (long)arg;
|
|
int ppid = getppid();
|
|
|
|
if (alloc_pagecache(fd, MB(50)))
|
|
return -1;
|
|
|
|
while (getppid() == ppid)
|
|
sleep(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First, this test creates the following hierarchy:
|
|
* A memory.min = 50M, memory.max = 200M
|
|
* A/B memory.min = 50M, memory.current = 50M
|
|
* A/B/C memory.min = 75M, memory.current = 50M
|
|
* A/B/D memory.min = 25M, memory.current = 50M
|
|
* A/B/E memory.min = 500M, memory.current = 0
|
|
* A/B/F memory.min = 0, memory.current = 50M
|
|
*
|
|
* Usages are pagecache, but the test keeps a running
|
|
* process in every leaf cgroup.
|
|
* Then it creates A/G and creates a significant
|
|
* memory pressure in it.
|
|
*
|
|
* A/B memory.current ~= 50M
|
|
* A/B/C memory.current ~= 33M
|
|
* A/B/D memory.current ~= 17M
|
|
* A/B/E memory.current ~= 0
|
|
*
|
|
* After that it tries to allocate more than there is
|
|
* unprotected memory in A available, and checks
|
|
* checks that memory.min protects pagecache even
|
|
* in this case.
|
|
*/
|
|
static int test_memcg_min(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent[3] = {NULL};
|
|
char *children[4] = {NULL};
|
|
long c[4];
|
|
int i, attempts;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
goto cleanup;
|
|
|
|
parent[0] = cg_name(root, "memcg_test_0");
|
|
if (!parent[0])
|
|
goto cleanup;
|
|
|
|
parent[1] = cg_name(parent[0], "memcg_test_1");
|
|
if (!parent[1])
|
|
goto cleanup;
|
|
|
|
parent[2] = cg_name(parent[0], "memcg_test_2");
|
|
if (!parent[2])
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[0]))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(parent[0], "memory.min")) {
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.max", "200M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[1]))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[2]))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++) {
|
|
children[i] = cg_name_indexed(parent[1], "child_memcg", i);
|
|
if (!children[i])
|
|
goto cleanup;
|
|
|
|
if (cg_create(children[i]))
|
|
goto cleanup;
|
|
|
|
if (i == 2)
|
|
continue;
|
|
|
|
cg_run_nowait(children[i], alloc_pagecache_50M_noexit,
|
|
(void *)(long)fd);
|
|
}
|
|
|
|
if (cg_write(parent[0], "memory.min", "50M"))
|
|
goto cleanup;
|
|
if (cg_write(parent[1], "memory.min", "50M"))
|
|
goto cleanup;
|
|
if (cg_write(children[0], "memory.min", "75M"))
|
|
goto cleanup;
|
|
if (cg_write(children[1], "memory.min", "25M"))
|
|
goto cleanup;
|
|
if (cg_write(children[2], "memory.min", "500M"))
|
|
goto cleanup;
|
|
if (cg_write(children[3], "memory.min", "0"))
|
|
goto cleanup;
|
|
|
|
attempts = 0;
|
|
while (!values_close(cg_read_long(parent[1], "memory.current"),
|
|
MB(150), 3)) {
|
|
if (attempts++ > 5)
|
|
break;
|
|
sleep(1);
|
|
}
|
|
|
|
if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
|
|
goto cleanup;
|
|
|
|
if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++)
|
|
c[i] = cg_read_long(children[i], "memory.current");
|
|
|
|
if (!values_close(c[0], MB(33), 10))
|
|
goto cleanup;
|
|
|
|
if (!values_close(c[1], MB(17), 10))
|
|
goto cleanup;
|
|
|
|
if (!values_close(c[2], 0, 1))
|
|
goto cleanup;
|
|
|
|
if (!cg_run(parent[2], alloc_anon, (void *)MB(170)))
|
|
goto cleanup;
|
|
|
|
if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
|
|
if (!children[i])
|
|
continue;
|
|
|
|
cg_destroy(children[i]);
|
|
free(children[i]);
|
|
}
|
|
|
|
for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
|
|
if (!parent[i])
|
|
continue;
|
|
|
|
cg_destroy(parent[i]);
|
|
free(parent[i]);
|
|
}
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* First, this test creates the following hierarchy:
|
|
* A memory.low = 50M, memory.max = 200M
|
|
* A/B memory.low = 50M, memory.current = 50M
|
|
* A/B/C memory.low = 75M, memory.current = 50M
|
|
* A/B/D memory.low = 25M, memory.current = 50M
|
|
* A/B/E memory.low = 500M, memory.current = 0
|
|
* A/B/F memory.low = 0, memory.current = 50M
|
|
*
|
|
* Usages are pagecache.
|
|
* Then it creates A/G an creates a significant
|
|
* memory pressure in it.
|
|
*
|
|
* Then it checks actual memory usages and expects that:
|
|
* A/B memory.current ~= 50M
|
|
* A/B/ memory.current ~= 33M
|
|
* A/B/D memory.current ~= 17M
|
|
* A/B/E memory.current ~= 0
|
|
*
|
|
* After that it tries to allocate more than there is
|
|
* unprotected memory in A available,
|
|
* and checks low and oom events in memory.events.
|
|
*/
|
|
static int test_memcg_low(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *parent[3] = {NULL};
|
|
char *children[4] = {NULL};
|
|
long low, oom;
|
|
long c[4];
|
|
int i;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
goto cleanup;
|
|
|
|
parent[0] = cg_name(root, "memcg_test_0");
|
|
if (!parent[0])
|
|
goto cleanup;
|
|
|
|
parent[1] = cg_name(parent[0], "memcg_test_1");
|
|
if (!parent[1])
|
|
goto cleanup;
|
|
|
|
parent[2] = cg_name(parent[0], "memcg_test_2");
|
|
if (!parent[2])
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[0]))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(parent[0], "memory.low"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.max", "200M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[0], "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[1]))
|
|
goto cleanup;
|
|
|
|
if (cg_write(parent[1], "cgroup.subtree_control", "+memory"))
|
|
goto cleanup;
|
|
|
|
if (cg_create(parent[2]))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++) {
|
|
children[i] = cg_name_indexed(parent[1], "child_memcg", i);
|
|
if (!children[i])
|
|
goto cleanup;
|
|
|
|
if (cg_create(children[i]))
|
|
goto cleanup;
|
|
|
|
if (i == 2)
|
|
continue;
|
|
|
|
if (cg_run(children[i], alloc_pagecache_50M, (void *)(long)fd))
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cg_write(parent[0], "memory.low", "50M"))
|
|
goto cleanup;
|
|
if (cg_write(parent[1], "memory.low", "50M"))
|
|
goto cleanup;
|
|
if (cg_write(children[0], "memory.low", "75M"))
|
|
goto cleanup;
|
|
if (cg_write(children[1], "memory.low", "25M"))
|
|
goto cleanup;
|
|
if (cg_write(children[2], "memory.low", "500M"))
|
|
goto cleanup;
|
|
if (cg_write(children[3], "memory.low", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_run(parent[2], alloc_anon, (void *)MB(148)))
|
|
goto cleanup;
|
|
|
|
if (!values_close(cg_read_long(parent[1], "memory.current"), MB(50), 3))
|
|
goto cleanup;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++)
|
|
c[i] = cg_read_long(children[i], "memory.current");
|
|
|
|
if (!values_close(c[0], MB(33), 10))
|
|
goto cleanup;
|
|
|
|
if (!values_close(c[1], MB(17), 10))
|
|
goto cleanup;
|
|
|
|
if (!values_close(c[2], 0, 1))
|
|
goto cleanup;
|
|
|
|
if (cg_run(parent[2], alloc_anon, (void *)MB(166))) {
|
|
fprintf(stderr,
|
|
"memory.low prevents from allocating anon memory\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(children); i++) {
|
|
oom = cg_read_key_long(children[i], "memory.events", "oom ");
|
|
low = cg_read_key_long(children[i], "memory.events", "low ");
|
|
|
|
if (oom)
|
|
goto cleanup;
|
|
if (i < 2 && low <= 0)
|
|
goto cleanup;
|
|
if (i >= 2 && low)
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
for (i = ARRAY_SIZE(children) - 1; i >= 0; i--) {
|
|
if (!children[i])
|
|
continue;
|
|
|
|
cg_destroy(children[i]);
|
|
free(children[i]);
|
|
}
|
|
|
|
for (i = ARRAY_SIZE(parent) - 1; i >= 0; i--) {
|
|
if (!parent[i])
|
|
continue;
|
|
|
|
cg_destroy(parent[i]);
|
|
free(parent[i]);
|
|
}
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_pagecache_max_30M(const char *cgroup, void *arg)
|
|
{
|
|
size_t size = MB(50);
|
|
int ret = -1;
|
|
long current;
|
|
int fd;
|
|
|
|
fd = get_temp_fd();
|
|
if (fd < 0)
|
|
return -1;
|
|
|
|
if (alloc_pagecache(fd, size))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
if (current <= MB(29) || current > MB(30))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
|
|
cleanup:
|
|
close(fd);
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.high limits the amount of
|
|
* memory which can be consumed by either anonymous memory
|
|
* or pagecache.
|
|
*/
|
|
static int test_memcg_high(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long high;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.high", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.high", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (!cg_run(memcg, alloc_pagecache_50M_check, NULL))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
|
|
goto cleanup;
|
|
|
|
high = cg_read_key_long(memcg, "memory.events", "high ");
|
|
if (high <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.max limits the amount of
|
|
* memory which can be consumed by either anonymous memory
|
|
* or pagecache.
|
|
*/
|
|
static int test_memcg_max(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long current, max;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
/* Should be killed by OOM killer */
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_pagecache_max_30M, NULL))
|
|
goto cleanup;
|
|
|
|
current = cg_read_long(memcg, "memory.current");
|
|
if (current > MB(30) || !current)
|
|
goto cleanup;
|
|
|
|
max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (max <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_anon_50M_check_swap(const char *cgroup, void *arg)
|
|
{
|
|
long mem_max = (long)arg;
|
|
size_t size = MB(50);
|
|
char *buf, *ptr;
|
|
long mem_current, swap_current;
|
|
int ret = -1;
|
|
|
|
buf = malloc(size);
|
|
for (ptr = buf; ptr < buf + size; ptr += PAGE_SIZE)
|
|
*ptr = 0;
|
|
|
|
mem_current = cg_read_long(cgroup, "memory.current");
|
|
if (!mem_current || !values_close(mem_current, mem_max, 3))
|
|
goto cleanup;
|
|
|
|
swap_current = cg_read_long(cgroup, "memory.swap.current");
|
|
if (!swap_current ||
|
|
!values_close(mem_current + swap_current, size, 3))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
cleanup:
|
|
free(buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks that memory.swap.max limits the amount of
|
|
* anonymous memory which can be swapped out.
|
|
*/
|
|
static int test_memcg_swap_max(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
long max;
|
|
|
|
if (!is_swap_enabled())
|
|
return KSFT_SKIP;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(memcg, "memory.swap.current")) {
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (cg_read_strcmp(memcg, "memory.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "memory.swap.max", "max\n"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
/* Should be killed by OOM killer */
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_run(memcg, alloc_anon_50M_check_swap, (void *)MB(30)))
|
|
goto cleanup;
|
|
|
|
max = cg_read_key_long(memcg, "memory.events", "max ");
|
|
if (max <= 0)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test disables swapping and tries to allocate anonymous memory
|
|
* up to OOM. Then it checks for oom and oom_kill events in
|
|
* memory.events.
|
|
*/
|
|
static int test_memcg_oom_events(const char *root)
|
|
{
|
|
int ret = KSFT_FAIL;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.max", "30M"))
|
|
goto cleanup;
|
|
|
|
if (cg_write(memcg, "memory.swap.max", "0"))
|
|
goto cleanup;
|
|
|
|
if (!cg_run(memcg, alloc_anon, (void *)MB(100)))
|
|
goto cleanup;
|
|
|
|
if (cg_read_strcmp(memcg, "cgroup.procs", ""))
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom ") != 1)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.events", "oom_kill ") != 1)
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct tcp_server_args {
|
|
unsigned short port;
|
|
int ctl[2];
|
|
};
|
|
|
|
static int tcp_server(const char *cgroup, void *arg)
|
|
{
|
|
struct tcp_server_args *srv_args = arg;
|
|
struct sockaddr_in6 saddr = { 0 };
|
|
socklen_t slen = sizeof(saddr);
|
|
int sk, client_sk, ctl_fd, yes = 1, ret = -1;
|
|
|
|
close(srv_args->ctl[0]);
|
|
ctl_fd = srv_args->ctl[1];
|
|
|
|
saddr.sin6_family = AF_INET6;
|
|
saddr.sin6_addr = in6addr_any;
|
|
saddr.sin6_port = htons(srv_args->port);
|
|
|
|
sk = socket(AF_INET6, SOCK_STREAM, 0);
|
|
if (sk < 0)
|
|
return ret;
|
|
|
|
if (setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)) < 0)
|
|
goto cleanup;
|
|
|
|
if (bind(sk, (struct sockaddr *)&saddr, slen)) {
|
|
write(ctl_fd, &errno, sizeof(errno));
|
|
goto cleanup;
|
|
}
|
|
|
|
if (listen(sk, 1))
|
|
goto cleanup;
|
|
|
|
ret = 0;
|
|
if (write(ctl_fd, &ret, sizeof(ret)) != sizeof(ret)) {
|
|
ret = -1;
|
|
goto cleanup;
|
|
}
|
|
|
|
client_sk = accept(sk, NULL, NULL);
|
|
if (client_sk < 0)
|
|
goto cleanup;
|
|
|
|
ret = -1;
|
|
for (;;) {
|
|
uint8_t buf[0x100000];
|
|
|
|
if (write(client_sk, buf, sizeof(buf)) <= 0) {
|
|
if (errno == ECONNRESET)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
close(client_sk);
|
|
|
|
cleanup:
|
|
close(sk);
|
|
return ret;
|
|
}
|
|
|
|
static int tcp_client(const char *cgroup, unsigned short port)
|
|
{
|
|
const char server[] = "localhost";
|
|
struct addrinfo *ai;
|
|
char servport[6];
|
|
int retries = 0x10; /* nice round number */
|
|
int sk, ret;
|
|
|
|
snprintf(servport, sizeof(servport), "%hd", port);
|
|
ret = getaddrinfo(server, servport, NULL, &ai);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sk = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
|
|
if (sk < 0)
|
|
goto free_ainfo;
|
|
|
|
ret = connect(sk, ai->ai_addr, ai->ai_addrlen);
|
|
if (ret < 0)
|
|
goto close_sk;
|
|
|
|
ret = KSFT_FAIL;
|
|
while (retries--) {
|
|
uint8_t buf[0x100000];
|
|
long current, sock;
|
|
|
|
if (read(sk, buf, sizeof(buf)) <= 0)
|
|
goto close_sk;
|
|
|
|
current = cg_read_long(cgroup, "memory.current");
|
|
sock = cg_read_key_long(cgroup, "memory.stat", "sock ");
|
|
|
|
if (current < 0 || sock < 0)
|
|
goto close_sk;
|
|
|
|
if (current < sock)
|
|
goto close_sk;
|
|
|
|
if (values_close(current, sock, 10)) {
|
|
ret = KSFT_PASS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
close_sk:
|
|
close(sk);
|
|
free_ainfo:
|
|
freeaddrinfo(ai);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This test checks socket memory accounting.
|
|
* The test forks a TCP server listens on a random port between 1000
|
|
* and 61000. Once it gets a client connection, it starts writing to
|
|
* its socket.
|
|
* The TCP client interleaves reads from the socket with check whether
|
|
* memory.current and memory.stat.sock are similar.
|
|
*/
|
|
static int test_memcg_sock(const char *root)
|
|
{
|
|
int bind_retries = 5, ret = KSFT_FAIL, pid, err;
|
|
unsigned short port;
|
|
char *memcg;
|
|
|
|
memcg = cg_name(root, "memcg_test");
|
|
if (!memcg)
|
|
goto cleanup;
|
|
|
|
if (cg_create(memcg))
|
|
goto cleanup;
|
|
|
|
while (bind_retries--) {
|
|
struct tcp_server_args args;
|
|
|
|
if (pipe(args.ctl))
|
|
goto cleanup;
|
|
|
|
port = args.port = 1000 + rand() % 60000;
|
|
|
|
pid = cg_run_nowait(memcg, tcp_server, &args);
|
|
if (pid < 0)
|
|
goto cleanup;
|
|
|
|
close(args.ctl[1]);
|
|
if (read(args.ctl[0], &err, sizeof(err)) != sizeof(err))
|
|
goto cleanup;
|
|
close(args.ctl[0]);
|
|
|
|
if (!err)
|
|
break;
|
|
if (err != EADDRINUSE)
|
|
goto cleanup;
|
|
|
|
waitpid(pid, NULL, 0);
|
|
}
|
|
|
|
if (err == EADDRINUSE) {
|
|
ret = KSFT_SKIP;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (tcp_client(memcg, port) != KSFT_PASS)
|
|
goto cleanup;
|
|
|
|
waitpid(pid, &err, 0);
|
|
if (WEXITSTATUS(err))
|
|
goto cleanup;
|
|
|
|
if (cg_read_long(memcg, "memory.current") < 0)
|
|
goto cleanup;
|
|
|
|
if (cg_read_key_long(memcg, "memory.stat", "sock "))
|
|
goto cleanup;
|
|
|
|
ret = KSFT_PASS;
|
|
|
|
cleanup:
|
|
cg_destroy(memcg);
|
|
free(memcg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define T(x) { x, #x }
|
|
struct memcg_test {
|
|
int (*fn)(const char *root);
|
|
const char *name;
|
|
} tests[] = {
|
|
T(test_memcg_subtree_control),
|
|
T(test_memcg_current),
|
|
T(test_memcg_min),
|
|
T(test_memcg_low),
|
|
T(test_memcg_high),
|
|
T(test_memcg_max),
|
|
T(test_memcg_oom_events),
|
|
T(test_memcg_swap_max),
|
|
T(test_memcg_sock),
|
|
};
|
|
#undef T
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char root[PATH_MAX];
|
|
int i, ret = EXIT_SUCCESS;
|
|
|
|
if (cg_find_unified_root(root, sizeof(root)))
|
|
ksft_exit_skip("cgroup v2 isn't mounted\n");
|
|
|
|
/*
|
|
* Check that memory controller is available:
|
|
* memory is listed in cgroup.controllers
|
|
*/
|
|
if (cg_read_strstr(root, "cgroup.controllers", "memory"))
|
|
ksft_exit_skip("memory controller isn't available\n");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tests); i++) {
|
|
switch (tests[i].fn(root)) {
|
|
case KSFT_PASS:
|
|
ksft_test_result_pass("%s\n", tests[i].name);
|
|
break;
|
|
case KSFT_SKIP:
|
|
ksft_test_result_skip("%s\n", tests[i].name);
|
|
break;
|
|
default:
|
|
ret = EXIT_FAILURE;
|
|
ksft_test_result_fail("%s\n", tests[i].name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|