mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
f3eef46f05
Syzkaller reported a divide error in snd_pcm_lib_ioctl. fifo_size
is of type snd_pcm_uframes_t(unsigned long). If frame_size
is 0x100000000, the error occurs.
Fixes: a9960e6a29
("ALSA: pcm: fix fifo_size frame calculation")
Signed-off-by: Zubin Mithra <zsm@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20210827153735.789452-1-zsm@chromium.org
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2507 lines
69 KiB
C
2507 lines
69 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Digital Audio (PCM) abstract layer
|
|
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
|
|
* Abramo Bagnara <abramo@alsa-project.org>
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/time.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/export.h>
|
|
#include <sound/core.h>
|
|
#include <sound/control.h>
|
|
#include <sound/tlv.h>
|
|
#include <sound/info.h>
|
|
#include <sound/pcm.h>
|
|
#include <sound/pcm_params.h>
|
|
#include <sound/timer.h>
|
|
|
|
#include "pcm_local.h"
|
|
|
|
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
|
|
#define CREATE_TRACE_POINTS
|
|
#include "pcm_trace.h"
|
|
#else
|
|
#define trace_hwptr(substream, pos, in_interrupt)
|
|
#define trace_xrun(substream)
|
|
#define trace_hw_ptr_error(substream, reason)
|
|
#define trace_applptr(substream, prev, curr)
|
|
#endif
|
|
|
|
static int fill_silence_frames(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
|
|
|
|
/*
|
|
* fill ring buffer with silence
|
|
* runtime->silence_start: starting pointer to silence area
|
|
* runtime->silence_filled: size filled with silence
|
|
* runtime->silence_threshold: threshold from application
|
|
* runtime->silence_size: maximal size from application
|
|
*
|
|
* when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
|
|
*/
|
|
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
snd_pcm_uframes_t frames, ofs, transfer;
|
|
int err;
|
|
|
|
if (runtime->silence_size < runtime->boundary) {
|
|
snd_pcm_sframes_t noise_dist, n;
|
|
snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
|
|
if (runtime->silence_start != appl_ptr) {
|
|
n = appl_ptr - runtime->silence_start;
|
|
if (n < 0)
|
|
n += runtime->boundary;
|
|
if ((snd_pcm_uframes_t)n < runtime->silence_filled)
|
|
runtime->silence_filled -= n;
|
|
else
|
|
runtime->silence_filled = 0;
|
|
runtime->silence_start = appl_ptr;
|
|
}
|
|
if (runtime->silence_filled >= runtime->buffer_size)
|
|
return;
|
|
noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
|
|
if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
|
|
return;
|
|
frames = runtime->silence_threshold - noise_dist;
|
|
if (frames > runtime->silence_size)
|
|
frames = runtime->silence_size;
|
|
} else {
|
|
if (new_hw_ptr == ULONG_MAX) { /* initialization */
|
|
snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
|
|
if (avail > runtime->buffer_size)
|
|
avail = runtime->buffer_size;
|
|
runtime->silence_filled = avail > 0 ? avail : 0;
|
|
runtime->silence_start = (runtime->status->hw_ptr +
|
|
runtime->silence_filled) %
|
|
runtime->boundary;
|
|
} else {
|
|
ofs = runtime->status->hw_ptr;
|
|
frames = new_hw_ptr - ofs;
|
|
if ((snd_pcm_sframes_t)frames < 0)
|
|
frames += runtime->boundary;
|
|
runtime->silence_filled -= frames;
|
|
if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
|
|
runtime->silence_filled = 0;
|
|
runtime->silence_start = new_hw_ptr;
|
|
} else {
|
|
runtime->silence_start = ofs;
|
|
}
|
|
}
|
|
frames = runtime->buffer_size - runtime->silence_filled;
|
|
}
|
|
if (snd_BUG_ON(frames > runtime->buffer_size))
|
|
return;
|
|
if (frames == 0)
|
|
return;
|
|
ofs = runtime->silence_start % runtime->buffer_size;
|
|
while (frames > 0) {
|
|
transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
|
|
err = fill_silence_frames(substream, ofs, transfer);
|
|
snd_BUG_ON(err < 0);
|
|
runtime->silence_filled += transfer;
|
|
frames -= transfer;
|
|
ofs = 0;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SND_DEBUG
|
|
void snd_pcm_debug_name(struct snd_pcm_substream *substream,
|
|
char *name, size_t len)
|
|
{
|
|
snprintf(name, len, "pcmC%dD%d%c:%d",
|
|
substream->pcm->card->number,
|
|
substream->pcm->device,
|
|
substream->stream ? 'c' : 'p',
|
|
substream->number);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_debug_name);
|
|
#endif
|
|
|
|
#define XRUN_DEBUG_BASIC (1<<0)
|
|
#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
|
|
#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
|
|
|
|
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
|
|
|
|
#define xrun_debug(substream, mask) \
|
|
((substream)->pstr->xrun_debug & (mask))
|
|
#else
|
|
#define xrun_debug(substream, mask) 0
|
|
#endif
|
|
|
|
#define dump_stack_on_xrun(substream) do { \
|
|
if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
|
|
dump_stack(); \
|
|
} while (0)
|
|
|
|
/* call with stream lock held */
|
|
void __snd_pcm_xrun(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
|
|
trace_xrun(substream);
|
|
if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
|
|
struct timespec64 tstamp;
|
|
|
|
snd_pcm_gettime(runtime, &tstamp);
|
|
runtime->status->tstamp.tv_sec = tstamp.tv_sec;
|
|
runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
|
|
}
|
|
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
|
|
if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
|
|
char name[16];
|
|
snd_pcm_debug_name(substream, name, sizeof(name));
|
|
pcm_warn(substream->pcm, "XRUN: %s\n", name);
|
|
dump_stack_on_xrun(substream);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
|
|
#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
|
|
do { \
|
|
trace_hw_ptr_error(substream, reason); \
|
|
if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
|
|
pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
|
|
(in_interrupt) ? 'Q' : 'P', ##args); \
|
|
dump_stack_on_xrun(substream); \
|
|
} \
|
|
} while (0)
|
|
|
|
#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
|
|
|
|
#define hw_ptr_error(substream, fmt, args...) do { } while (0)
|
|
|
|
#endif
|
|
|
|
int snd_pcm_update_state(struct snd_pcm_substream *substream,
|
|
struct snd_pcm_runtime *runtime)
|
|
{
|
|
snd_pcm_uframes_t avail;
|
|
|
|
avail = snd_pcm_avail(substream);
|
|
if (avail > runtime->avail_max)
|
|
runtime->avail_max = avail;
|
|
if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
|
|
if (avail >= runtime->buffer_size) {
|
|
snd_pcm_drain_done(substream);
|
|
return -EPIPE;
|
|
}
|
|
} else {
|
|
if (avail >= runtime->stop_threshold) {
|
|
__snd_pcm_xrun(substream);
|
|
return -EPIPE;
|
|
}
|
|
}
|
|
if (runtime->twake) {
|
|
if (avail >= runtime->twake)
|
|
wake_up(&runtime->tsleep);
|
|
} else if (avail >= runtime->control->avail_min)
|
|
wake_up(&runtime->sleep);
|
|
return 0;
|
|
}
|
|
|
|
static void update_audio_tstamp(struct snd_pcm_substream *substream,
|
|
struct timespec64 *curr_tstamp,
|
|
struct timespec64 *audio_tstamp)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
u64 audio_frames, audio_nsecs;
|
|
struct timespec64 driver_tstamp;
|
|
|
|
if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
|
|
return;
|
|
|
|
if (!(substream->ops->get_time_info) ||
|
|
(runtime->audio_tstamp_report.actual_type ==
|
|
SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
|
|
|
|
/*
|
|
* provide audio timestamp derived from pointer position
|
|
* add delay only if requested
|
|
*/
|
|
|
|
audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
|
|
|
|
if (runtime->audio_tstamp_config.report_delay) {
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
audio_frames -= runtime->delay;
|
|
else
|
|
audio_frames += runtime->delay;
|
|
}
|
|
audio_nsecs = div_u64(audio_frames * 1000000000LL,
|
|
runtime->rate);
|
|
*audio_tstamp = ns_to_timespec64(audio_nsecs);
|
|
}
|
|
|
|
if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
|
|
runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
|
|
runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
|
|
runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
|
|
runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
|
|
runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
|
|
}
|
|
|
|
|
|
/*
|
|
* re-take a driver timestamp to let apps detect if the reference tstamp
|
|
* read by low-level hardware was provided with a delay
|
|
*/
|
|
snd_pcm_gettime(substream->runtime, &driver_tstamp);
|
|
runtime->driver_tstamp = driver_tstamp;
|
|
}
|
|
|
|
static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
|
|
unsigned int in_interrupt)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
snd_pcm_uframes_t pos;
|
|
snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
|
|
snd_pcm_sframes_t hdelta, delta;
|
|
unsigned long jdelta;
|
|
unsigned long curr_jiffies;
|
|
struct timespec64 curr_tstamp;
|
|
struct timespec64 audio_tstamp;
|
|
int crossed_boundary = 0;
|
|
|
|
old_hw_ptr = runtime->status->hw_ptr;
|
|
|
|
/*
|
|
* group pointer, time and jiffies reads to allow for more
|
|
* accurate correlations/corrections.
|
|
* The values are stored at the end of this routine after
|
|
* corrections for hw_ptr position
|
|
*/
|
|
pos = substream->ops->pointer(substream);
|
|
curr_jiffies = jiffies;
|
|
if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
|
|
if ((substream->ops->get_time_info) &&
|
|
(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
|
|
substream->ops->get_time_info(substream, &curr_tstamp,
|
|
&audio_tstamp,
|
|
&runtime->audio_tstamp_config,
|
|
&runtime->audio_tstamp_report);
|
|
|
|
/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
|
|
if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
|
|
snd_pcm_gettime(runtime, &curr_tstamp);
|
|
} else
|
|
snd_pcm_gettime(runtime, &curr_tstamp);
|
|
}
|
|
|
|
if (pos == SNDRV_PCM_POS_XRUN) {
|
|
__snd_pcm_xrun(substream);
|
|
return -EPIPE;
|
|
}
|
|
if (pos >= runtime->buffer_size) {
|
|
if (printk_ratelimit()) {
|
|
char name[16];
|
|
snd_pcm_debug_name(substream, name, sizeof(name));
|
|
pcm_err(substream->pcm,
|
|
"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
|
|
name, pos, runtime->buffer_size,
|
|
runtime->period_size);
|
|
}
|
|
pos = 0;
|
|
}
|
|
pos -= pos % runtime->min_align;
|
|
trace_hwptr(substream, pos, in_interrupt);
|
|
hw_base = runtime->hw_ptr_base;
|
|
new_hw_ptr = hw_base + pos;
|
|
if (in_interrupt) {
|
|
/* we know that one period was processed */
|
|
/* delta = "expected next hw_ptr" for in_interrupt != 0 */
|
|
delta = runtime->hw_ptr_interrupt + runtime->period_size;
|
|
if (delta > new_hw_ptr) {
|
|
/* check for double acknowledged interrupts */
|
|
hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
|
|
if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
|
|
hw_base += runtime->buffer_size;
|
|
if (hw_base >= runtime->boundary) {
|
|
hw_base = 0;
|
|
crossed_boundary++;
|
|
}
|
|
new_hw_ptr = hw_base + pos;
|
|
goto __delta;
|
|
}
|
|
}
|
|
}
|
|
/* new_hw_ptr might be lower than old_hw_ptr in case when */
|
|
/* pointer crosses the end of the ring buffer */
|
|
if (new_hw_ptr < old_hw_ptr) {
|
|
hw_base += runtime->buffer_size;
|
|
if (hw_base >= runtime->boundary) {
|
|
hw_base = 0;
|
|
crossed_boundary++;
|
|
}
|
|
new_hw_ptr = hw_base + pos;
|
|
}
|
|
__delta:
|
|
delta = new_hw_ptr - old_hw_ptr;
|
|
if (delta < 0)
|
|
delta += runtime->boundary;
|
|
|
|
if (runtime->no_period_wakeup) {
|
|
snd_pcm_sframes_t xrun_threshold;
|
|
/*
|
|
* Without regular period interrupts, we have to check
|
|
* the elapsed time to detect xruns.
|
|
*/
|
|
jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
|
|
if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
|
|
goto no_delta_check;
|
|
hdelta = jdelta - delta * HZ / runtime->rate;
|
|
xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
|
|
while (hdelta > xrun_threshold) {
|
|
delta += runtime->buffer_size;
|
|
hw_base += runtime->buffer_size;
|
|
if (hw_base >= runtime->boundary) {
|
|
hw_base = 0;
|
|
crossed_boundary++;
|
|
}
|
|
new_hw_ptr = hw_base + pos;
|
|
hdelta -= runtime->hw_ptr_buffer_jiffies;
|
|
}
|
|
goto no_delta_check;
|
|
}
|
|
|
|
/* something must be really wrong */
|
|
if (delta >= runtime->buffer_size + runtime->period_size) {
|
|
hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
|
|
"(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
|
|
substream->stream, (long)pos,
|
|
(long)new_hw_ptr, (long)old_hw_ptr);
|
|
return 0;
|
|
}
|
|
|
|
/* Do jiffies check only in xrun_debug mode */
|
|
if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
|
|
goto no_jiffies_check;
|
|
|
|
/* Skip the jiffies check for hardwares with BATCH flag.
|
|
* Such hardware usually just increases the position at each IRQ,
|
|
* thus it can't give any strange position.
|
|
*/
|
|
if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
|
|
goto no_jiffies_check;
|
|
hdelta = delta;
|
|
if (hdelta < runtime->delay)
|
|
goto no_jiffies_check;
|
|
hdelta -= runtime->delay;
|
|
jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
|
|
if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
|
|
delta = jdelta /
|
|
(((runtime->period_size * HZ) / runtime->rate)
|
|
+ HZ/100);
|
|
/* move new_hw_ptr according jiffies not pos variable */
|
|
new_hw_ptr = old_hw_ptr;
|
|
hw_base = delta;
|
|
/* use loop to avoid checks for delta overflows */
|
|
/* the delta value is small or zero in most cases */
|
|
while (delta > 0) {
|
|
new_hw_ptr += runtime->period_size;
|
|
if (new_hw_ptr >= runtime->boundary) {
|
|
new_hw_ptr -= runtime->boundary;
|
|
crossed_boundary--;
|
|
}
|
|
delta--;
|
|
}
|
|
/* align hw_base to buffer_size */
|
|
hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
|
|
"(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
|
|
(long)pos, (long)hdelta,
|
|
(long)runtime->period_size, jdelta,
|
|
((hdelta * HZ) / runtime->rate), hw_base,
|
|
(unsigned long)old_hw_ptr,
|
|
(unsigned long)new_hw_ptr);
|
|
/* reset values to proper state */
|
|
delta = 0;
|
|
hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
|
|
}
|
|
no_jiffies_check:
|
|
if (delta > runtime->period_size + runtime->period_size / 2) {
|
|
hw_ptr_error(substream, in_interrupt,
|
|
"Lost interrupts?",
|
|
"(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
|
|
substream->stream, (long)delta,
|
|
(long)new_hw_ptr,
|
|
(long)old_hw_ptr);
|
|
}
|
|
|
|
no_delta_check:
|
|
if (runtime->status->hw_ptr == new_hw_ptr) {
|
|
runtime->hw_ptr_jiffies = curr_jiffies;
|
|
update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
|
|
return 0;
|
|
}
|
|
|
|
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
|
|
runtime->silence_size > 0)
|
|
snd_pcm_playback_silence(substream, new_hw_ptr);
|
|
|
|
if (in_interrupt) {
|
|
delta = new_hw_ptr - runtime->hw_ptr_interrupt;
|
|
if (delta < 0)
|
|
delta += runtime->boundary;
|
|
delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
|
|
runtime->hw_ptr_interrupt += delta;
|
|
if (runtime->hw_ptr_interrupt >= runtime->boundary)
|
|
runtime->hw_ptr_interrupt -= runtime->boundary;
|
|
}
|
|
runtime->hw_ptr_base = hw_base;
|
|
runtime->status->hw_ptr = new_hw_ptr;
|
|
runtime->hw_ptr_jiffies = curr_jiffies;
|
|
if (crossed_boundary) {
|
|
snd_BUG_ON(crossed_boundary != 1);
|
|
runtime->hw_ptr_wrap += runtime->boundary;
|
|
}
|
|
|
|
update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
|
|
|
|
return snd_pcm_update_state(substream, runtime);
|
|
}
|
|
|
|
/* CAUTION: call it with irq disabled */
|
|
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
|
|
{
|
|
return snd_pcm_update_hw_ptr0(substream, 0);
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_set_ops - set the PCM operators
|
|
* @pcm: the pcm instance
|
|
* @direction: stream direction, SNDRV_PCM_STREAM_XXX
|
|
* @ops: the operator table
|
|
*
|
|
* Sets the given PCM operators to the pcm instance.
|
|
*/
|
|
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
|
|
const struct snd_pcm_ops *ops)
|
|
{
|
|
struct snd_pcm_str *stream = &pcm->streams[direction];
|
|
struct snd_pcm_substream *substream;
|
|
|
|
for (substream = stream->substream; substream != NULL; substream = substream->next)
|
|
substream->ops = ops;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_set_ops);
|
|
|
|
/**
|
|
* snd_pcm_set_sync - set the PCM sync id
|
|
* @substream: the pcm substream
|
|
*
|
|
* Sets the PCM sync identifier for the card.
|
|
*/
|
|
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
|
|
runtime->sync.id32[0] = substream->pcm->card->number;
|
|
runtime->sync.id32[1] = -1;
|
|
runtime->sync.id32[2] = -1;
|
|
runtime->sync.id32[3] = -1;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_set_sync);
|
|
|
|
/*
|
|
* Standard ioctl routine
|
|
*/
|
|
|
|
static inline unsigned int div32(unsigned int a, unsigned int b,
|
|
unsigned int *r)
|
|
{
|
|
if (b == 0) {
|
|
*r = 0;
|
|
return UINT_MAX;
|
|
}
|
|
*r = a % b;
|
|
return a / b;
|
|
}
|
|
|
|
static inline unsigned int div_down(unsigned int a, unsigned int b)
|
|
{
|
|
if (b == 0)
|
|
return UINT_MAX;
|
|
return a / b;
|
|
}
|
|
|
|
static inline unsigned int div_up(unsigned int a, unsigned int b)
|
|
{
|
|
unsigned int r;
|
|
unsigned int q;
|
|
if (b == 0)
|
|
return UINT_MAX;
|
|
q = div32(a, b, &r);
|
|
if (r)
|
|
++q;
|
|
return q;
|
|
}
|
|
|
|
static inline unsigned int mul(unsigned int a, unsigned int b)
|
|
{
|
|
if (a == 0)
|
|
return 0;
|
|
if (div_down(UINT_MAX, a) < b)
|
|
return UINT_MAX;
|
|
return a * b;
|
|
}
|
|
|
|
static inline unsigned int muldiv32(unsigned int a, unsigned int b,
|
|
unsigned int c, unsigned int *r)
|
|
{
|
|
u_int64_t n = (u_int64_t) a * b;
|
|
if (c == 0) {
|
|
*r = 0;
|
|
return UINT_MAX;
|
|
}
|
|
n = div_u64_rem(n, c, r);
|
|
if (n >= UINT_MAX) {
|
|
*r = 0;
|
|
return UINT_MAX;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* snd_interval_refine - refine the interval value of configurator
|
|
* @i: the interval value to refine
|
|
* @v: the interval value to refer to
|
|
*
|
|
* Refines the interval value with the reference value.
|
|
* The interval is changed to the range satisfying both intervals.
|
|
* The interval status (min, max, integer, etc.) are evaluated.
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
|
|
{
|
|
int changed = 0;
|
|
if (snd_BUG_ON(snd_interval_empty(i)))
|
|
return -EINVAL;
|
|
if (i->min < v->min) {
|
|
i->min = v->min;
|
|
i->openmin = v->openmin;
|
|
changed = 1;
|
|
} else if (i->min == v->min && !i->openmin && v->openmin) {
|
|
i->openmin = 1;
|
|
changed = 1;
|
|
}
|
|
if (i->max > v->max) {
|
|
i->max = v->max;
|
|
i->openmax = v->openmax;
|
|
changed = 1;
|
|
} else if (i->max == v->max && !i->openmax && v->openmax) {
|
|
i->openmax = 1;
|
|
changed = 1;
|
|
}
|
|
if (!i->integer && v->integer) {
|
|
i->integer = 1;
|
|
changed = 1;
|
|
}
|
|
if (i->integer) {
|
|
if (i->openmin) {
|
|
i->min++;
|
|
i->openmin = 0;
|
|
}
|
|
if (i->openmax) {
|
|
i->max--;
|
|
i->openmax = 0;
|
|
}
|
|
} else if (!i->openmin && !i->openmax && i->min == i->max)
|
|
i->integer = 1;
|
|
if (snd_interval_checkempty(i)) {
|
|
snd_interval_none(i);
|
|
return -EINVAL;
|
|
}
|
|
return changed;
|
|
}
|
|
EXPORT_SYMBOL(snd_interval_refine);
|
|
|
|
static int snd_interval_refine_first(struct snd_interval *i)
|
|
{
|
|
const unsigned int last_max = i->max;
|
|
|
|
if (snd_BUG_ON(snd_interval_empty(i)))
|
|
return -EINVAL;
|
|
if (snd_interval_single(i))
|
|
return 0;
|
|
i->max = i->min;
|
|
if (i->openmin)
|
|
i->max++;
|
|
/* only exclude max value if also excluded before refine */
|
|
i->openmax = (i->openmax && i->max >= last_max);
|
|
return 1;
|
|
}
|
|
|
|
static int snd_interval_refine_last(struct snd_interval *i)
|
|
{
|
|
const unsigned int last_min = i->min;
|
|
|
|
if (snd_BUG_ON(snd_interval_empty(i)))
|
|
return -EINVAL;
|
|
if (snd_interval_single(i))
|
|
return 0;
|
|
i->min = i->max;
|
|
if (i->openmax)
|
|
i->min--;
|
|
/* only exclude min value if also excluded before refine */
|
|
i->openmin = (i->openmin && i->min <= last_min);
|
|
return 1;
|
|
}
|
|
|
|
void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
|
|
{
|
|
if (a->empty || b->empty) {
|
|
snd_interval_none(c);
|
|
return;
|
|
}
|
|
c->empty = 0;
|
|
c->min = mul(a->min, b->min);
|
|
c->openmin = (a->openmin || b->openmin);
|
|
c->max = mul(a->max, b->max);
|
|
c->openmax = (a->openmax || b->openmax);
|
|
c->integer = (a->integer && b->integer);
|
|
}
|
|
|
|
/**
|
|
* snd_interval_div - refine the interval value with division
|
|
* @a: dividend
|
|
* @b: divisor
|
|
* @c: quotient
|
|
*
|
|
* c = a / b
|
|
*
|
|
* Returns non-zero if the value is changed, zero if not changed.
|
|
*/
|
|
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
|
|
{
|
|
unsigned int r;
|
|
if (a->empty || b->empty) {
|
|
snd_interval_none(c);
|
|
return;
|
|
}
|
|
c->empty = 0;
|
|
c->min = div32(a->min, b->max, &r);
|
|
c->openmin = (r || a->openmin || b->openmax);
|
|
if (b->min > 0) {
|
|
c->max = div32(a->max, b->min, &r);
|
|
if (r) {
|
|
c->max++;
|
|
c->openmax = 1;
|
|
} else
|
|
c->openmax = (a->openmax || b->openmin);
|
|
} else {
|
|
c->max = UINT_MAX;
|
|
c->openmax = 0;
|
|
}
|
|
c->integer = 0;
|
|
}
|
|
|
|
/**
|
|
* snd_interval_muldivk - refine the interval value
|
|
* @a: dividend 1
|
|
* @b: dividend 2
|
|
* @k: divisor (as integer)
|
|
* @c: result
|
|
*
|
|
* c = a * b / k
|
|
*
|
|
* Returns non-zero if the value is changed, zero if not changed.
|
|
*/
|
|
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
|
|
unsigned int k, struct snd_interval *c)
|
|
{
|
|
unsigned int r;
|
|
if (a->empty || b->empty) {
|
|
snd_interval_none(c);
|
|
return;
|
|
}
|
|
c->empty = 0;
|
|
c->min = muldiv32(a->min, b->min, k, &r);
|
|
c->openmin = (r || a->openmin || b->openmin);
|
|
c->max = muldiv32(a->max, b->max, k, &r);
|
|
if (r) {
|
|
c->max++;
|
|
c->openmax = 1;
|
|
} else
|
|
c->openmax = (a->openmax || b->openmax);
|
|
c->integer = 0;
|
|
}
|
|
|
|
/**
|
|
* snd_interval_mulkdiv - refine the interval value
|
|
* @a: dividend 1
|
|
* @k: dividend 2 (as integer)
|
|
* @b: divisor
|
|
* @c: result
|
|
*
|
|
* c = a * k / b
|
|
*
|
|
* Returns non-zero if the value is changed, zero if not changed.
|
|
*/
|
|
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
|
|
const struct snd_interval *b, struct snd_interval *c)
|
|
{
|
|
unsigned int r;
|
|
if (a->empty || b->empty) {
|
|
snd_interval_none(c);
|
|
return;
|
|
}
|
|
c->empty = 0;
|
|
c->min = muldiv32(a->min, k, b->max, &r);
|
|
c->openmin = (r || a->openmin || b->openmax);
|
|
if (b->min > 0) {
|
|
c->max = muldiv32(a->max, k, b->min, &r);
|
|
if (r) {
|
|
c->max++;
|
|
c->openmax = 1;
|
|
} else
|
|
c->openmax = (a->openmax || b->openmin);
|
|
} else {
|
|
c->max = UINT_MAX;
|
|
c->openmax = 0;
|
|
}
|
|
c->integer = 0;
|
|
}
|
|
|
|
/* ---- */
|
|
|
|
|
|
/**
|
|
* snd_interval_ratnum - refine the interval value
|
|
* @i: interval to refine
|
|
* @rats_count: number of ratnum_t
|
|
* @rats: ratnum_t array
|
|
* @nump: pointer to store the resultant numerator
|
|
* @denp: pointer to store the resultant denominator
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_interval_ratnum(struct snd_interval *i,
|
|
unsigned int rats_count, const struct snd_ratnum *rats,
|
|
unsigned int *nump, unsigned int *denp)
|
|
{
|
|
unsigned int best_num, best_den;
|
|
int best_diff;
|
|
unsigned int k;
|
|
struct snd_interval t;
|
|
int err;
|
|
unsigned int result_num, result_den;
|
|
int result_diff;
|
|
|
|
best_num = best_den = best_diff = 0;
|
|
for (k = 0; k < rats_count; ++k) {
|
|
unsigned int num = rats[k].num;
|
|
unsigned int den;
|
|
unsigned int q = i->min;
|
|
int diff;
|
|
if (q == 0)
|
|
q = 1;
|
|
den = div_up(num, q);
|
|
if (den < rats[k].den_min)
|
|
continue;
|
|
if (den > rats[k].den_max)
|
|
den = rats[k].den_max;
|
|
else {
|
|
unsigned int r;
|
|
r = (den - rats[k].den_min) % rats[k].den_step;
|
|
if (r != 0)
|
|
den -= r;
|
|
}
|
|
diff = num - q * den;
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
if (best_num == 0 ||
|
|
diff * best_den < best_diff * den) {
|
|
best_diff = diff;
|
|
best_den = den;
|
|
best_num = num;
|
|
}
|
|
}
|
|
if (best_den == 0) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
t.min = div_down(best_num, best_den);
|
|
t.openmin = !!(best_num % best_den);
|
|
|
|
result_num = best_num;
|
|
result_diff = best_diff;
|
|
result_den = best_den;
|
|
best_num = best_den = best_diff = 0;
|
|
for (k = 0; k < rats_count; ++k) {
|
|
unsigned int num = rats[k].num;
|
|
unsigned int den;
|
|
unsigned int q = i->max;
|
|
int diff;
|
|
if (q == 0) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
den = div_down(num, q);
|
|
if (den > rats[k].den_max)
|
|
continue;
|
|
if (den < rats[k].den_min)
|
|
den = rats[k].den_min;
|
|
else {
|
|
unsigned int r;
|
|
r = (den - rats[k].den_min) % rats[k].den_step;
|
|
if (r != 0)
|
|
den += rats[k].den_step - r;
|
|
}
|
|
diff = q * den - num;
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
if (best_num == 0 ||
|
|
diff * best_den < best_diff * den) {
|
|
best_diff = diff;
|
|
best_den = den;
|
|
best_num = num;
|
|
}
|
|
}
|
|
if (best_den == 0) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
t.max = div_up(best_num, best_den);
|
|
t.openmax = !!(best_num % best_den);
|
|
t.integer = 0;
|
|
err = snd_interval_refine(i, &t);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (snd_interval_single(i)) {
|
|
if (best_diff * result_den < result_diff * best_den) {
|
|
result_num = best_num;
|
|
result_den = best_den;
|
|
}
|
|
if (nump)
|
|
*nump = result_num;
|
|
if (denp)
|
|
*denp = result_den;
|
|
}
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(snd_interval_ratnum);
|
|
|
|
/**
|
|
* snd_interval_ratden - refine the interval value
|
|
* @i: interval to refine
|
|
* @rats_count: number of struct ratden
|
|
* @rats: struct ratden array
|
|
* @nump: pointer to store the resultant numerator
|
|
* @denp: pointer to store the resultant denominator
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
static int snd_interval_ratden(struct snd_interval *i,
|
|
unsigned int rats_count,
|
|
const struct snd_ratden *rats,
|
|
unsigned int *nump, unsigned int *denp)
|
|
{
|
|
unsigned int best_num, best_diff, best_den;
|
|
unsigned int k;
|
|
struct snd_interval t;
|
|
int err;
|
|
|
|
best_num = best_den = best_diff = 0;
|
|
for (k = 0; k < rats_count; ++k) {
|
|
unsigned int num;
|
|
unsigned int den = rats[k].den;
|
|
unsigned int q = i->min;
|
|
int diff;
|
|
num = mul(q, den);
|
|
if (num > rats[k].num_max)
|
|
continue;
|
|
if (num < rats[k].num_min)
|
|
num = rats[k].num_max;
|
|
else {
|
|
unsigned int r;
|
|
r = (num - rats[k].num_min) % rats[k].num_step;
|
|
if (r != 0)
|
|
num += rats[k].num_step - r;
|
|
}
|
|
diff = num - q * den;
|
|
if (best_num == 0 ||
|
|
diff * best_den < best_diff * den) {
|
|
best_diff = diff;
|
|
best_den = den;
|
|
best_num = num;
|
|
}
|
|
}
|
|
if (best_den == 0) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
t.min = div_down(best_num, best_den);
|
|
t.openmin = !!(best_num % best_den);
|
|
|
|
best_num = best_den = best_diff = 0;
|
|
for (k = 0; k < rats_count; ++k) {
|
|
unsigned int num;
|
|
unsigned int den = rats[k].den;
|
|
unsigned int q = i->max;
|
|
int diff;
|
|
num = mul(q, den);
|
|
if (num < rats[k].num_min)
|
|
continue;
|
|
if (num > rats[k].num_max)
|
|
num = rats[k].num_max;
|
|
else {
|
|
unsigned int r;
|
|
r = (num - rats[k].num_min) % rats[k].num_step;
|
|
if (r != 0)
|
|
num -= r;
|
|
}
|
|
diff = q * den - num;
|
|
if (best_num == 0 ||
|
|
diff * best_den < best_diff * den) {
|
|
best_diff = diff;
|
|
best_den = den;
|
|
best_num = num;
|
|
}
|
|
}
|
|
if (best_den == 0) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
t.max = div_up(best_num, best_den);
|
|
t.openmax = !!(best_num % best_den);
|
|
t.integer = 0;
|
|
err = snd_interval_refine(i, &t);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (snd_interval_single(i)) {
|
|
if (nump)
|
|
*nump = best_num;
|
|
if (denp)
|
|
*denp = best_den;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* snd_interval_list - refine the interval value from the list
|
|
* @i: the interval value to refine
|
|
* @count: the number of elements in the list
|
|
* @list: the value list
|
|
* @mask: the bit-mask to evaluate
|
|
*
|
|
* Refines the interval value from the list.
|
|
* When mask is non-zero, only the elements corresponding to bit 1 are
|
|
* evaluated.
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_interval_list(struct snd_interval *i, unsigned int count,
|
|
const unsigned int *list, unsigned int mask)
|
|
{
|
|
unsigned int k;
|
|
struct snd_interval list_range;
|
|
|
|
if (!count) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
snd_interval_any(&list_range);
|
|
list_range.min = UINT_MAX;
|
|
list_range.max = 0;
|
|
for (k = 0; k < count; k++) {
|
|
if (mask && !(mask & (1 << k)))
|
|
continue;
|
|
if (!snd_interval_test(i, list[k]))
|
|
continue;
|
|
list_range.min = min(list_range.min, list[k]);
|
|
list_range.max = max(list_range.max, list[k]);
|
|
}
|
|
return snd_interval_refine(i, &list_range);
|
|
}
|
|
EXPORT_SYMBOL(snd_interval_list);
|
|
|
|
/**
|
|
* snd_interval_ranges - refine the interval value from the list of ranges
|
|
* @i: the interval value to refine
|
|
* @count: the number of elements in the list of ranges
|
|
* @ranges: the ranges list
|
|
* @mask: the bit-mask to evaluate
|
|
*
|
|
* Refines the interval value from the list of ranges.
|
|
* When mask is non-zero, only the elements corresponding to bit 1 are
|
|
* evaluated.
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_interval_ranges(struct snd_interval *i, unsigned int count,
|
|
const struct snd_interval *ranges, unsigned int mask)
|
|
{
|
|
unsigned int k;
|
|
struct snd_interval range_union;
|
|
struct snd_interval range;
|
|
|
|
if (!count) {
|
|
snd_interval_none(i);
|
|
return -EINVAL;
|
|
}
|
|
snd_interval_any(&range_union);
|
|
range_union.min = UINT_MAX;
|
|
range_union.max = 0;
|
|
for (k = 0; k < count; k++) {
|
|
if (mask && !(mask & (1 << k)))
|
|
continue;
|
|
snd_interval_copy(&range, &ranges[k]);
|
|
if (snd_interval_refine(&range, i) < 0)
|
|
continue;
|
|
if (snd_interval_empty(&range))
|
|
continue;
|
|
|
|
if (range.min < range_union.min) {
|
|
range_union.min = range.min;
|
|
range_union.openmin = 1;
|
|
}
|
|
if (range.min == range_union.min && !range.openmin)
|
|
range_union.openmin = 0;
|
|
if (range.max > range_union.max) {
|
|
range_union.max = range.max;
|
|
range_union.openmax = 1;
|
|
}
|
|
if (range.max == range_union.max && !range.openmax)
|
|
range_union.openmax = 0;
|
|
}
|
|
return snd_interval_refine(i, &range_union);
|
|
}
|
|
EXPORT_SYMBOL(snd_interval_ranges);
|
|
|
|
static int snd_interval_step(struct snd_interval *i, unsigned int step)
|
|
{
|
|
unsigned int n;
|
|
int changed = 0;
|
|
n = i->min % step;
|
|
if (n != 0 || i->openmin) {
|
|
i->min += step - n;
|
|
i->openmin = 0;
|
|
changed = 1;
|
|
}
|
|
n = i->max % step;
|
|
if (n != 0 || i->openmax) {
|
|
i->max -= n;
|
|
i->openmax = 0;
|
|
changed = 1;
|
|
}
|
|
if (snd_interval_checkempty(i)) {
|
|
i->empty = 1;
|
|
return -EINVAL;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
/* Info constraints helpers */
|
|
|
|
/**
|
|
* snd_pcm_hw_rule_add - add the hw-constraint rule
|
|
* @runtime: the pcm runtime instance
|
|
* @cond: condition bits
|
|
* @var: the variable to evaluate
|
|
* @func: the evaluation function
|
|
* @private: the private data pointer passed to function
|
|
* @dep: the dependent variables
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
|
|
int var,
|
|
snd_pcm_hw_rule_func_t func, void *private,
|
|
int dep, ...)
|
|
{
|
|
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
|
|
struct snd_pcm_hw_rule *c;
|
|
unsigned int k;
|
|
va_list args;
|
|
va_start(args, dep);
|
|
if (constrs->rules_num >= constrs->rules_all) {
|
|
struct snd_pcm_hw_rule *new;
|
|
unsigned int new_rules = constrs->rules_all + 16;
|
|
new = krealloc_array(constrs->rules, new_rules,
|
|
sizeof(*c), GFP_KERNEL);
|
|
if (!new) {
|
|
va_end(args);
|
|
return -ENOMEM;
|
|
}
|
|
constrs->rules = new;
|
|
constrs->rules_all = new_rules;
|
|
}
|
|
c = &constrs->rules[constrs->rules_num];
|
|
c->cond = cond;
|
|
c->func = func;
|
|
c->var = var;
|
|
c->private = private;
|
|
k = 0;
|
|
while (1) {
|
|
if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
|
|
va_end(args);
|
|
return -EINVAL;
|
|
}
|
|
c->deps[k++] = dep;
|
|
if (dep < 0)
|
|
break;
|
|
dep = va_arg(args, int);
|
|
}
|
|
constrs->rules_num++;
|
|
va_end(args);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_rule_add);
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
|
|
* @runtime: PCM runtime instance
|
|
* @var: hw_params variable to apply the mask
|
|
* @mask: the bitmap mask
|
|
*
|
|
* Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
|
|
u_int32_t mask)
|
|
{
|
|
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
|
|
struct snd_mask *maskp = constrs_mask(constrs, var);
|
|
*maskp->bits &= mask;
|
|
memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
|
|
if (*maskp->bits == 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
|
|
* @runtime: PCM runtime instance
|
|
* @var: hw_params variable to apply the mask
|
|
* @mask: the 64bit bitmap mask
|
|
*
|
|
* Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
|
|
u_int64_t mask)
|
|
{
|
|
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
|
|
struct snd_mask *maskp = constrs_mask(constrs, var);
|
|
maskp->bits[0] &= (u_int32_t)mask;
|
|
maskp->bits[1] &= (u_int32_t)(mask >> 32);
|
|
memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
|
|
if (! maskp->bits[0] && ! maskp->bits[1])
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
|
|
* @runtime: PCM runtime instance
|
|
* @var: hw_params variable to apply the integer constraint
|
|
*
|
|
* Apply the constraint of integer to an interval parameter.
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
|
|
{
|
|
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
|
|
return snd_interval_setinteger(constrs_interval(constrs, var));
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
|
|
* @runtime: PCM runtime instance
|
|
* @var: hw_params variable to apply the range
|
|
* @min: the minimal value
|
|
* @max: the maximal value
|
|
*
|
|
* Apply the min/max range constraint to an interval parameter.
|
|
*
|
|
* Return: Positive if the value is changed, zero if it's not changed, or a
|
|
* negative error code.
|
|
*/
|
|
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
|
|
unsigned int min, unsigned int max)
|
|
{
|
|
struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
|
|
struct snd_interval t;
|
|
t.min = min;
|
|
t.max = max;
|
|
t.openmin = t.openmax = 0;
|
|
t.integer = 0;
|
|
return snd_interval_refine(constrs_interval(constrs, var), &t);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
|
|
|
|
static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
struct snd_pcm_hw_constraint_list *list = rule->private;
|
|
return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
|
|
}
|
|
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the list constraint
|
|
* @l: list
|
|
*
|
|
* Apply the list of constraints to an interval parameter.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var,
|
|
const struct snd_pcm_hw_constraint_list *l)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_list, (void *)l,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
|
|
|
|
static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
struct snd_pcm_hw_constraint_ranges *r = rule->private;
|
|
return snd_interval_ranges(hw_param_interval(params, rule->var),
|
|
r->count, r->ranges, r->mask);
|
|
}
|
|
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the list of range constraints
|
|
* @r: ranges
|
|
*
|
|
* Apply the list of range constraints to an interval parameter.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var,
|
|
const struct snd_pcm_hw_constraint_ranges *r)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_ranges, (void *)r,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
|
|
|
|
static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
|
|
unsigned int num = 0, den = 0;
|
|
int err;
|
|
err = snd_interval_ratnum(hw_param_interval(params, rule->var),
|
|
r->nrats, r->rats, &num, &den);
|
|
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
|
|
params->rate_num = num;
|
|
params->rate_den = den;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the ratnums constraint
|
|
* @r: struct snd_ratnums constriants
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var,
|
|
const struct snd_pcm_hw_constraint_ratnums *r)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_ratnums, (void *)r,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
|
|
|
|
static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
|
|
unsigned int num = 0, den = 0;
|
|
int err = snd_interval_ratden(hw_param_interval(params, rule->var),
|
|
r->nrats, r->rats, &num, &den);
|
|
if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
|
|
params->rate_num = num;
|
|
params->rate_den = den;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the ratdens constraint
|
|
* @r: struct snd_ratdens constriants
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var,
|
|
const struct snd_pcm_hw_constraint_ratdens *r)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_ratdens, (void *)r,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
|
|
|
|
static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
unsigned int l = (unsigned long) rule->private;
|
|
int width = l & 0xffff;
|
|
unsigned int msbits = l >> 16;
|
|
const struct snd_interval *i =
|
|
hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
|
|
|
|
if (!snd_interval_single(i))
|
|
return 0;
|
|
|
|
if ((snd_interval_value(i) == width) ||
|
|
(width == 0 && snd_interval_value(i) > msbits))
|
|
params->msbits = min_not_zero(params->msbits, msbits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @width: sample bits width
|
|
* @msbits: msbits width
|
|
*
|
|
* This constraint will set the number of most significant bits (msbits) if a
|
|
* sample format with the specified width has been select. If width is set to 0
|
|
* the msbits will be set for any sample format with a width larger than the
|
|
* specified msbits.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
unsigned int width,
|
|
unsigned int msbits)
|
|
{
|
|
unsigned long l = (msbits << 16) | width;
|
|
return snd_pcm_hw_rule_add(runtime, cond, -1,
|
|
snd_pcm_hw_rule_msbits,
|
|
(void*) l,
|
|
SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
|
|
|
|
static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
unsigned long step = (unsigned long) rule->private;
|
|
return snd_interval_step(hw_param_interval(params, rule->var), step);
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_step - add a hw constraint step rule
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the step constraint
|
|
* @step: step size
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var,
|
|
unsigned long step)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_step, (void *) step,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
|
|
|
|
static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
|
|
{
|
|
static const unsigned int pow2_sizes[] = {
|
|
1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
|
|
1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
|
|
1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
|
|
1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
|
|
};
|
|
return snd_interval_list(hw_param_interval(params, rule->var),
|
|
ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
|
|
* @runtime: PCM runtime instance
|
|
* @cond: condition bits
|
|
* @var: hw_params variable to apply the power-of-2 constraint
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
|
|
unsigned int cond,
|
|
snd_pcm_hw_param_t var)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, cond, var,
|
|
snd_pcm_hw_rule_pow2, NULL,
|
|
var, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
|
|
|
|
static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
|
|
struct snd_pcm_hw_rule *rule)
|
|
{
|
|
unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
|
|
struct snd_interval *rate;
|
|
|
|
rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
|
|
return snd_interval_list(rate, 1, &base_rate, 0);
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
|
|
* @runtime: PCM runtime instance
|
|
* @base_rate: the rate at which the hardware does not resample
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
|
|
unsigned int base_rate)
|
|
{
|
|
return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
|
|
SNDRV_PCM_HW_PARAM_RATE,
|
|
snd_pcm_hw_rule_noresample_func,
|
|
(void *)(uintptr_t)base_rate,
|
|
SNDRV_PCM_HW_PARAM_RATE, -1);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
|
|
|
|
static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var)
|
|
{
|
|
if (hw_is_mask(var)) {
|
|
snd_mask_any(hw_param_mask(params, var));
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
return;
|
|
}
|
|
if (hw_is_interval(var)) {
|
|
snd_interval_any(hw_param_interval(params, var));
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
return;
|
|
}
|
|
snd_BUG();
|
|
}
|
|
|
|
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
|
|
{
|
|
unsigned int k;
|
|
memset(params, 0, sizeof(*params));
|
|
for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
|
|
_snd_pcm_hw_param_any(params, k);
|
|
for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
|
|
_snd_pcm_hw_param_any(params, k);
|
|
params->info = ~0U;
|
|
}
|
|
EXPORT_SYMBOL(_snd_pcm_hw_params_any);
|
|
|
|
/**
|
|
* snd_pcm_hw_param_value - return @params field @var value
|
|
* @params: the hw_params instance
|
|
* @var: parameter to retrieve
|
|
* @dir: pointer to the direction (-1,0,1) or %NULL
|
|
*
|
|
* Return: The value for field @var if it's fixed in configuration space
|
|
* defined by @params. -%EINVAL otherwise.
|
|
*/
|
|
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var, int *dir)
|
|
{
|
|
if (hw_is_mask(var)) {
|
|
const struct snd_mask *mask = hw_param_mask_c(params, var);
|
|
if (!snd_mask_single(mask))
|
|
return -EINVAL;
|
|
if (dir)
|
|
*dir = 0;
|
|
return snd_mask_value(mask);
|
|
}
|
|
if (hw_is_interval(var)) {
|
|
const struct snd_interval *i = hw_param_interval_c(params, var);
|
|
if (!snd_interval_single(i))
|
|
return -EINVAL;
|
|
if (dir)
|
|
*dir = i->openmin;
|
|
return snd_interval_value(i);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_param_value);
|
|
|
|
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var)
|
|
{
|
|
if (hw_is_mask(var)) {
|
|
snd_mask_none(hw_param_mask(params, var));
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
} else if (hw_is_interval(var)) {
|
|
snd_interval_none(hw_param_interval(params, var));
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
} else {
|
|
snd_BUG();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
|
|
|
|
static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var)
|
|
{
|
|
int changed;
|
|
if (hw_is_mask(var))
|
|
changed = snd_mask_refine_first(hw_param_mask(params, var));
|
|
else if (hw_is_interval(var))
|
|
changed = snd_interval_refine_first(hw_param_interval(params, var));
|
|
else
|
|
return -EINVAL;
|
|
if (changed > 0) {
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
/**
|
|
* snd_pcm_hw_param_first - refine config space and return minimum value
|
|
* @pcm: PCM instance
|
|
* @params: the hw_params instance
|
|
* @var: parameter to retrieve
|
|
* @dir: pointer to the direction (-1,0,1) or %NULL
|
|
*
|
|
* Inside configuration space defined by @params remove from @var all
|
|
* values > minimum. Reduce configuration space accordingly.
|
|
*
|
|
* Return: The minimum, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
|
|
struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var, int *dir)
|
|
{
|
|
int changed = _snd_pcm_hw_param_first(params, var);
|
|
if (changed < 0)
|
|
return changed;
|
|
if (params->rmask) {
|
|
int err = snd_pcm_hw_refine(pcm, params);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
return snd_pcm_hw_param_value(params, var, dir);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_param_first);
|
|
|
|
static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var)
|
|
{
|
|
int changed;
|
|
if (hw_is_mask(var))
|
|
changed = snd_mask_refine_last(hw_param_mask(params, var));
|
|
else if (hw_is_interval(var))
|
|
changed = snd_interval_refine_last(hw_param_interval(params, var));
|
|
else
|
|
return -EINVAL;
|
|
if (changed > 0) {
|
|
params->cmask |= 1 << var;
|
|
params->rmask |= 1 << var;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
/**
|
|
* snd_pcm_hw_param_last - refine config space and return maximum value
|
|
* @pcm: PCM instance
|
|
* @params: the hw_params instance
|
|
* @var: parameter to retrieve
|
|
* @dir: pointer to the direction (-1,0,1) or %NULL
|
|
*
|
|
* Inside configuration space defined by @params remove from @var all
|
|
* values < maximum. Reduce configuration space accordingly.
|
|
*
|
|
* Return: The maximum, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
|
|
struct snd_pcm_hw_params *params,
|
|
snd_pcm_hw_param_t var, int *dir)
|
|
{
|
|
int changed = _snd_pcm_hw_param_last(params, var);
|
|
if (changed < 0)
|
|
return changed;
|
|
if (params->rmask) {
|
|
int err = snd_pcm_hw_refine(pcm, params);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
return snd_pcm_hw_param_value(params, var, dir);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_hw_param_last);
|
|
|
|
static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
|
|
void *arg)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
unsigned long flags;
|
|
snd_pcm_stream_lock_irqsave(substream, flags);
|
|
if (snd_pcm_running(substream) &&
|
|
snd_pcm_update_hw_ptr(substream) >= 0)
|
|
runtime->status->hw_ptr %= runtime->buffer_size;
|
|
else {
|
|
runtime->status->hw_ptr = 0;
|
|
runtime->hw_ptr_wrap = 0;
|
|
}
|
|
snd_pcm_stream_unlock_irqrestore(substream, flags);
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
|
|
void *arg)
|
|
{
|
|
struct snd_pcm_channel_info *info = arg;
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
int width;
|
|
if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
|
|
info->offset = -1;
|
|
return 0;
|
|
}
|
|
width = snd_pcm_format_physical_width(runtime->format);
|
|
if (width < 0)
|
|
return width;
|
|
info->offset = 0;
|
|
switch (runtime->access) {
|
|
case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
|
|
case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
|
|
info->first = info->channel * width;
|
|
info->step = runtime->channels * width;
|
|
break;
|
|
case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
|
|
case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
|
|
{
|
|
size_t size = runtime->dma_bytes / runtime->channels;
|
|
info->first = info->channel * size * 8;
|
|
info->step = width;
|
|
break;
|
|
}
|
|
default:
|
|
snd_BUG();
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
|
|
void *arg)
|
|
{
|
|
struct snd_pcm_hw_params *params = arg;
|
|
snd_pcm_format_t format;
|
|
int channels;
|
|
ssize_t frame_size;
|
|
|
|
params->fifo_size = substream->runtime->hw.fifo_size;
|
|
if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
|
|
format = params_format(params);
|
|
channels = params_channels(params);
|
|
frame_size = snd_pcm_format_size(format, channels);
|
|
if (frame_size > 0)
|
|
params->fifo_size /= frame_size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_lib_ioctl - a generic PCM ioctl callback
|
|
* @substream: the pcm substream instance
|
|
* @cmd: ioctl command
|
|
* @arg: ioctl argument
|
|
*
|
|
* Processes the generic ioctl commands for PCM.
|
|
* Can be passed as the ioctl callback for PCM ops.
|
|
*
|
|
* Return: Zero if successful, or a negative error code on failure.
|
|
*/
|
|
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
|
|
unsigned int cmd, void *arg)
|
|
{
|
|
switch (cmd) {
|
|
case SNDRV_PCM_IOCTL1_RESET:
|
|
return snd_pcm_lib_ioctl_reset(substream, arg);
|
|
case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
|
|
return snd_pcm_lib_ioctl_channel_info(substream, arg);
|
|
case SNDRV_PCM_IOCTL1_FIFO_SIZE:
|
|
return snd_pcm_lib_ioctl_fifo_size(substream, arg);
|
|
}
|
|
return -ENXIO;
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_lib_ioctl);
|
|
|
|
/**
|
|
* snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
|
|
* under acquired lock of PCM substream.
|
|
* @substream: the instance of pcm substream.
|
|
*
|
|
* This function is called when the batch of audio data frames as the same size as the period of
|
|
* buffer is already processed in audio data transmission.
|
|
*
|
|
* The call of function updates the status of runtime with the latest position of audio data
|
|
* transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
|
|
* available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
|
|
* substream according to configured threshold.
|
|
*
|
|
* The function is intended to use for the case that PCM driver operates audio data frames under
|
|
* acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
|
|
* context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
|
|
* since lock of PCM substream should be acquired in advance.
|
|
*
|
|
* Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
|
|
* function:
|
|
*
|
|
* - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
|
|
* - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
|
|
* - .get_time_info - to retrieve audio time stamp if needed.
|
|
*
|
|
* Even if more than one periods have elapsed since the last call, you have to call this only once.
|
|
*/
|
|
void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime;
|
|
|
|
if (PCM_RUNTIME_CHECK(substream))
|
|
return;
|
|
runtime = substream->runtime;
|
|
|
|
if (!snd_pcm_running(substream) ||
|
|
snd_pcm_update_hw_ptr0(substream, 1) < 0)
|
|
goto _end;
|
|
|
|
#ifdef CONFIG_SND_PCM_TIMER
|
|
if (substream->timer_running)
|
|
snd_timer_interrupt(substream->timer, 1);
|
|
#endif
|
|
_end:
|
|
kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
|
|
|
|
/**
|
|
* snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
|
|
* PCM substream.
|
|
* @substream: the instance of PCM substream.
|
|
*
|
|
* This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
|
|
* acquiring lock of PCM substream voluntarily.
|
|
*
|
|
* It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
|
|
* the batch of audio data frames as the same size as the period of buffer is already processed in
|
|
* audio data transmission.
|
|
*/
|
|
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (snd_BUG_ON(!substream))
|
|
return;
|
|
|
|
snd_pcm_stream_lock_irqsave(substream, flags);
|
|
snd_pcm_period_elapsed_under_stream_lock(substream);
|
|
snd_pcm_stream_unlock_irqrestore(substream, flags);
|
|
}
|
|
EXPORT_SYMBOL(snd_pcm_period_elapsed);
|
|
|
|
/*
|
|
* Wait until avail_min data becomes available
|
|
* Returns a negative error code if any error occurs during operation.
|
|
* The available space is stored on availp. When err = 0 and avail = 0
|
|
* on the capture stream, it indicates the stream is in DRAINING state.
|
|
*/
|
|
static int wait_for_avail(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t *availp)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
|
|
wait_queue_entry_t wait;
|
|
int err = 0;
|
|
snd_pcm_uframes_t avail = 0;
|
|
long wait_time, tout;
|
|
|
|
init_waitqueue_entry(&wait, current);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&runtime->tsleep, &wait);
|
|
|
|
if (runtime->no_period_wakeup)
|
|
wait_time = MAX_SCHEDULE_TIMEOUT;
|
|
else {
|
|
/* use wait time from substream if available */
|
|
if (substream->wait_time) {
|
|
wait_time = substream->wait_time;
|
|
} else {
|
|
wait_time = 10;
|
|
|
|
if (runtime->rate) {
|
|
long t = runtime->period_size * 2 /
|
|
runtime->rate;
|
|
wait_time = max(t, wait_time);
|
|
}
|
|
wait_time = msecs_to_jiffies(wait_time * 1000);
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
if (signal_pending(current)) {
|
|
err = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We need to check if space became available already
|
|
* (and thus the wakeup happened already) first to close
|
|
* the race of space already having become available.
|
|
* This check must happen after been added to the waitqueue
|
|
* and having current state be INTERRUPTIBLE.
|
|
*/
|
|
avail = snd_pcm_avail(substream);
|
|
if (avail >= runtime->twake)
|
|
break;
|
|
snd_pcm_stream_unlock_irq(substream);
|
|
|
|
tout = schedule_timeout(wait_time);
|
|
|
|
snd_pcm_stream_lock_irq(substream);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
switch (runtime->status->state) {
|
|
case SNDRV_PCM_STATE_SUSPENDED:
|
|
err = -ESTRPIPE;
|
|
goto _endloop;
|
|
case SNDRV_PCM_STATE_XRUN:
|
|
err = -EPIPE;
|
|
goto _endloop;
|
|
case SNDRV_PCM_STATE_DRAINING:
|
|
if (is_playback)
|
|
err = -EPIPE;
|
|
else
|
|
avail = 0; /* indicate draining */
|
|
goto _endloop;
|
|
case SNDRV_PCM_STATE_OPEN:
|
|
case SNDRV_PCM_STATE_SETUP:
|
|
case SNDRV_PCM_STATE_DISCONNECTED:
|
|
err = -EBADFD;
|
|
goto _endloop;
|
|
case SNDRV_PCM_STATE_PAUSED:
|
|
continue;
|
|
}
|
|
if (!tout) {
|
|
pcm_dbg(substream->pcm,
|
|
"%s write error (DMA or IRQ trouble?)\n",
|
|
is_playback ? "playback" : "capture");
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
_endloop:
|
|
set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&runtime->tsleep, &wait);
|
|
*availp = avail;
|
|
return err;
|
|
}
|
|
|
|
typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
|
|
int channel, unsigned long hwoff,
|
|
void *buf, unsigned long bytes);
|
|
|
|
typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
|
|
snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
|
|
|
|
/* calculate the target DMA-buffer position to be written/read */
|
|
static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
|
|
int channel, unsigned long hwoff)
|
|
{
|
|
return runtime->dma_area + hwoff +
|
|
channel * (runtime->dma_bytes / runtime->channels);
|
|
}
|
|
|
|
/* default copy_user ops for write; used for both interleaved and non- modes */
|
|
static int default_write_copy(struct snd_pcm_substream *substream,
|
|
int channel, unsigned long hwoff,
|
|
void *buf, unsigned long bytes)
|
|
{
|
|
if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
|
|
(void __user *)buf, bytes))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* default copy_kernel ops for write */
|
|
static int default_write_copy_kernel(struct snd_pcm_substream *substream,
|
|
int channel, unsigned long hwoff,
|
|
void *buf, unsigned long bytes)
|
|
{
|
|
memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
|
|
return 0;
|
|
}
|
|
|
|
/* fill silence instead of copy data; called as a transfer helper
|
|
* from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
|
|
* a NULL buffer is passed
|
|
*/
|
|
static int fill_silence(struct snd_pcm_substream *substream, int channel,
|
|
unsigned long hwoff, void *buf, unsigned long bytes)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
|
|
if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
|
|
return 0;
|
|
if (substream->ops->fill_silence)
|
|
return substream->ops->fill_silence(substream, channel,
|
|
hwoff, bytes);
|
|
|
|
snd_pcm_format_set_silence(runtime->format,
|
|
get_dma_ptr(runtime, channel, hwoff),
|
|
bytes_to_samples(runtime, bytes));
|
|
return 0;
|
|
}
|
|
|
|
/* default copy_user ops for read; used for both interleaved and non- modes */
|
|
static int default_read_copy(struct snd_pcm_substream *substream,
|
|
int channel, unsigned long hwoff,
|
|
void *buf, unsigned long bytes)
|
|
{
|
|
if (copy_to_user((void __user *)buf,
|
|
get_dma_ptr(substream->runtime, channel, hwoff),
|
|
bytes))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* default copy_kernel ops for read */
|
|
static int default_read_copy_kernel(struct snd_pcm_substream *substream,
|
|
int channel, unsigned long hwoff,
|
|
void *buf, unsigned long bytes)
|
|
{
|
|
memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
|
|
return 0;
|
|
}
|
|
|
|
/* call transfer function with the converted pointers and sizes;
|
|
* for interleaved mode, it's one shot for all samples
|
|
*/
|
|
static int interleaved_copy(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t hwoff, void *data,
|
|
snd_pcm_uframes_t off,
|
|
snd_pcm_uframes_t frames,
|
|
pcm_transfer_f transfer)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
|
|
/* convert to bytes */
|
|
hwoff = frames_to_bytes(runtime, hwoff);
|
|
off = frames_to_bytes(runtime, off);
|
|
frames = frames_to_bytes(runtime, frames);
|
|
return transfer(substream, 0, hwoff, data + off, frames);
|
|
}
|
|
|
|
/* call transfer function with the converted pointers and sizes for each
|
|
* non-interleaved channel; when buffer is NULL, silencing instead of copying
|
|
*/
|
|
static int noninterleaved_copy(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t hwoff, void *data,
|
|
snd_pcm_uframes_t off,
|
|
snd_pcm_uframes_t frames,
|
|
pcm_transfer_f transfer)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
int channels = runtime->channels;
|
|
void **bufs = data;
|
|
int c, err;
|
|
|
|
/* convert to bytes; note that it's not frames_to_bytes() here.
|
|
* in non-interleaved mode, we copy for each channel, thus
|
|
* each copy is n_samples bytes x channels = whole frames.
|
|
*/
|
|
off = samples_to_bytes(runtime, off);
|
|
frames = samples_to_bytes(runtime, frames);
|
|
hwoff = samples_to_bytes(runtime, hwoff);
|
|
for (c = 0; c < channels; ++c, ++bufs) {
|
|
if (!data || !*bufs)
|
|
err = fill_silence(substream, c, hwoff, NULL, frames);
|
|
else
|
|
err = transfer(substream, c, hwoff, *bufs + off,
|
|
frames);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* fill silence on the given buffer position;
|
|
* called from snd_pcm_playback_silence()
|
|
*/
|
|
static int fill_silence_frames(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
|
|
{
|
|
if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
|
|
substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
|
|
return interleaved_copy(substream, off, NULL, 0, frames,
|
|
fill_silence);
|
|
else
|
|
return noninterleaved_copy(substream, off, NULL, 0, frames,
|
|
fill_silence);
|
|
}
|
|
|
|
/* sanity-check for read/write methods */
|
|
static int pcm_sanity_check(struct snd_pcm_substream *substream)
|
|
{
|
|
struct snd_pcm_runtime *runtime;
|
|
if (PCM_RUNTIME_CHECK(substream))
|
|
return -ENXIO;
|
|
runtime = substream->runtime;
|
|
if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
|
|
return -EINVAL;
|
|
if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
|
|
return -EBADFD;
|
|
return 0;
|
|
}
|
|
|
|
static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
|
|
{
|
|
switch (runtime->status->state) {
|
|
case SNDRV_PCM_STATE_PREPARED:
|
|
case SNDRV_PCM_STATE_RUNNING:
|
|
case SNDRV_PCM_STATE_PAUSED:
|
|
return 0;
|
|
case SNDRV_PCM_STATE_XRUN:
|
|
return -EPIPE;
|
|
case SNDRV_PCM_STATE_SUSPENDED:
|
|
return -ESTRPIPE;
|
|
default:
|
|
return -EBADFD;
|
|
}
|
|
}
|
|
|
|
/* update to the given appl_ptr and call ack callback if needed;
|
|
* when an error is returned, take back to the original value
|
|
*/
|
|
int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
|
|
snd_pcm_uframes_t appl_ptr)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
|
|
int ret;
|
|
|
|
if (old_appl_ptr == appl_ptr)
|
|
return 0;
|
|
|
|
runtime->control->appl_ptr = appl_ptr;
|
|
if (substream->ops->ack) {
|
|
ret = substream->ops->ack(substream);
|
|
if (ret < 0) {
|
|
runtime->control->appl_ptr = old_appl_ptr;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
trace_applptr(substream, old_appl_ptr, appl_ptr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* the common loop for read/write data */
|
|
snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
|
|
void *data, bool interleaved,
|
|
snd_pcm_uframes_t size, bool in_kernel)
|
|
{
|
|
struct snd_pcm_runtime *runtime = substream->runtime;
|
|
snd_pcm_uframes_t xfer = 0;
|
|
snd_pcm_uframes_t offset = 0;
|
|
snd_pcm_uframes_t avail;
|
|
pcm_copy_f writer;
|
|
pcm_transfer_f transfer;
|
|
bool nonblock;
|
|
bool is_playback;
|
|
int err;
|
|
|
|
err = pcm_sanity_check(substream);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
|
|
if (interleaved) {
|
|
if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
|
|
runtime->channels > 1)
|
|
return -EINVAL;
|
|
writer = interleaved_copy;
|
|
} else {
|
|
if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
|
|
return -EINVAL;
|
|
writer = noninterleaved_copy;
|
|
}
|
|
|
|
if (!data) {
|
|
if (is_playback)
|
|
transfer = fill_silence;
|
|
else
|
|
return -EINVAL;
|
|
} else if (in_kernel) {
|
|
if (substream->ops->copy_kernel)
|
|
transfer = substream->ops->copy_kernel;
|
|
else
|
|
transfer = is_playback ?
|
|
default_write_copy_kernel : default_read_copy_kernel;
|
|
} else {
|
|
if (substream->ops->copy_user)
|
|
transfer = (pcm_transfer_f)substream->ops->copy_user;
|
|
else
|
|
transfer = is_playback ?
|
|
default_write_copy : default_read_copy;
|
|
}
|
|
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
nonblock = !!(substream->f_flags & O_NONBLOCK);
|
|
|
|
snd_pcm_stream_lock_irq(substream);
|
|
err = pcm_accessible_state(runtime);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
|
|
runtime->twake = runtime->control->avail_min ? : 1;
|
|
if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
|
|
snd_pcm_update_hw_ptr(substream);
|
|
|
|
/*
|
|
* If size < start_threshold, wait indefinitely. Another
|
|
* thread may start capture
|
|
*/
|
|
if (!is_playback &&
|
|
runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
|
|
size >= runtime->start_threshold) {
|
|
err = snd_pcm_start(substream);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
}
|
|
|
|
avail = snd_pcm_avail(substream);
|
|
|
|
while (size > 0) {
|
|
snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
|
|
snd_pcm_uframes_t cont;
|
|
if (!avail) {
|
|
if (!is_playback &&
|
|
runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
|
|
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
|
|
goto _end_unlock;
|
|
}
|
|
if (nonblock) {
|
|
err = -EAGAIN;
|
|
goto _end_unlock;
|
|
}
|
|
runtime->twake = min_t(snd_pcm_uframes_t, size,
|
|
runtime->control->avail_min ? : 1);
|
|
err = wait_for_avail(substream, &avail);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
if (!avail)
|
|
continue; /* draining */
|
|
}
|
|
frames = size > avail ? avail : size;
|
|
appl_ptr = READ_ONCE(runtime->control->appl_ptr);
|
|
appl_ofs = appl_ptr % runtime->buffer_size;
|
|
cont = runtime->buffer_size - appl_ofs;
|
|
if (frames > cont)
|
|
frames = cont;
|
|
if (snd_BUG_ON(!frames)) {
|
|
err = -EINVAL;
|
|
goto _end_unlock;
|
|
}
|
|
snd_pcm_stream_unlock_irq(substream);
|
|
err = writer(substream, appl_ofs, data, offset, frames,
|
|
transfer);
|
|
snd_pcm_stream_lock_irq(substream);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
err = pcm_accessible_state(runtime);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
appl_ptr += frames;
|
|
if (appl_ptr >= runtime->boundary)
|
|
appl_ptr -= runtime->boundary;
|
|
err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
|
|
offset += frames;
|
|
size -= frames;
|
|
xfer += frames;
|
|
avail -= frames;
|
|
if (is_playback &&
|
|
runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
|
|
snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
|
|
err = snd_pcm_start(substream);
|
|
if (err < 0)
|
|
goto _end_unlock;
|
|
}
|
|
}
|
|
_end_unlock:
|
|
runtime->twake = 0;
|
|
if (xfer > 0 && err >= 0)
|
|
snd_pcm_update_state(substream, runtime);
|
|
snd_pcm_stream_unlock_irq(substream);
|
|
return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
|
|
}
|
|
EXPORT_SYMBOL(__snd_pcm_lib_xfer);
|
|
|
|
/*
|
|
* standard channel mapping helpers
|
|
*/
|
|
|
|
/* default channel maps for multi-channel playbacks, up to 8 channels */
|
|
const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
|
|
{ .channels = 1,
|
|
.map = { SNDRV_CHMAP_MONO } },
|
|
{ .channels = 2,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
|
|
{ .channels = 4,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
|
|
{ .channels = 6,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
|
|
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
|
|
{ .channels = 8,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
|
|
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
|
|
SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
|
|
{ }
|
|
};
|
|
EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
|
|
|
|
/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
|
|
const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
|
|
{ .channels = 1,
|
|
.map = { SNDRV_CHMAP_MONO } },
|
|
{ .channels = 2,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
|
|
{ .channels = 4,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
|
|
{ .channels = 6,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
|
|
{ .channels = 8,
|
|
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
|
|
SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
|
|
SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
|
|
SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
|
|
{ }
|
|
};
|
|
EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
|
|
|
|
static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
|
|
{
|
|
if (ch > info->max_channels)
|
|
return false;
|
|
return !info->channel_mask || (info->channel_mask & (1U << ch));
|
|
}
|
|
|
|
static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_info *uinfo)
|
|
{
|
|
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
|
|
|
|
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
|
|
uinfo->count = info->max_channels;
|
|
uinfo->value.integer.min = 0;
|
|
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
|
|
return 0;
|
|
}
|
|
|
|
/* get callback for channel map ctl element
|
|
* stores the channel position firstly matching with the current channels
|
|
*/
|
|
static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
|
|
struct snd_ctl_elem_value *ucontrol)
|
|
{
|
|
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
|
|
unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
|
|
struct snd_pcm_substream *substream;
|
|
const struct snd_pcm_chmap_elem *map;
|
|
|
|
if (!info->chmap)
|
|
return -EINVAL;
|
|
substream = snd_pcm_chmap_substream(info, idx);
|
|
if (!substream)
|
|
return -ENODEV;
|
|
memset(ucontrol->value.integer.value, 0,
|
|
sizeof(long) * info->max_channels);
|
|
if (!substream->runtime)
|
|
return 0; /* no channels set */
|
|
for (map = info->chmap; map->channels; map++) {
|
|
int i;
|
|
if (map->channels == substream->runtime->channels &&
|
|
valid_chmap_channels(info, map->channels)) {
|
|
for (i = 0; i < map->channels; i++)
|
|
ucontrol->value.integer.value[i] = map->map[i];
|
|
return 0;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* tlv callback for channel map ctl element
|
|
* expands the pre-defined channel maps in a form of TLV
|
|
*/
|
|
static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
|
|
unsigned int size, unsigned int __user *tlv)
|
|
{
|
|
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
|
|
const struct snd_pcm_chmap_elem *map;
|
|
unsigned int __user *dst;
|
|
int c, count = 0;
|
|
|
|
if (!info->chmap)
|
|
return -EINVAL;
|
|
if (size < 8)
|
|
return -ENOMEM;
|
|
if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
|
|
return -EFAULT;
|
|
size -= 8;
|
|
dst = tlv + 2;
|
|
for (map = info->chmap; map->channels; map++) {
|
|
int chs_bytes = map->channels * 4;
|
|
if (!valid_chmap_channels(info, map->channels))
|
|
continue;
|
|
if (size < 8)
|
|
return -ENOMEM;
|
|
if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
|
|
put_user(chs_bytes, dst + 1))
|
|
return -EFAULT;
|
|
dst += 2;
|
|
size -= 8;
|
|
count += 8;
|
|
if (size < chs_bytes)
|
|
return -ENOMEM;
|
|
size -= chs_bytes;
|
|
count += chs_bytes;
|
|
for (c = 0; c < map->channels; c++) {
|
|
if (put_user(map->map[c], dst))
|
|
return -EFAULT;
|
|
dst++;
|
|
}
|
|
}
|
|
if (put_user(count, tlv + 1))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
|
|
{
|
|
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
|
|
info->pcm->streams[info->stream].chmap_kctl = NULL;
|
|
kfree(info);
|
|
}
|
|
|
|
/**
|
|
* snd_pcm_add_chmap_ctls - create channel-mapping control elements
|
|
* @pcm: the assigned PCM instance
|
|
* @stream: stream direction
|
|
* @chmap: channel map elements (for query)
|
|
* @max_channels: the max number of channels for the stream
|
|
* @private_value: the value passed to each kcontrol's private_value field
|
|
* @info_ret: store struct snd_pcm_chmap instance if non-NULL
|
|
*
|
|
* Create channel-mapping control elements assigned to the given PCM stream(s).
|
|
* Return: Zero if successful, or a negative error value.
|
|
*/
|
|
int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
|
|
const struct snd_pcm_chmap_elem *chmap,
|
|
int max_channels,
|
|
unsigned long private_value,
|
|
struct snd_pcm_chmap **info_ret)
|
|
{
|
|
struct snd_pcm_chmap *info;
|
|
struct snd_kcontrol_new knew = {
|
|
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
|
|
.access = SNDRV_CTL_ELEM_ACCESS_READ |
|
|
SNDRV_CTL_ELEM_ACCESS_TLV_READ |
|
|
SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
|
|
.info = pcm_chmap_ctl_info,
|
|
.get = pcm_chmap_ctl_get,
|
|
.tlv.c = pcm_chmap_ctl_tlv,
|
|
};
|
|
int err;
|
|
|
|
if (WARN_ON(pcm->streams[stream].chmap_kctl))
|
|
return -EBUSY;
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
info->pcm = pcm;
|
|
info->stream = stream;
|
|
info->chmap = chmap;
|
|
info->max_channels = max_channels;
|
|
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
|
|
knew.name = "Playback Channel Map";
|
|
else
|
|
knew.name = "Capture Channel Map";
|
|
knew.device = pcm->device;
|
|
knew.count = pcm->streams[stream].substream_count;
|
|
knew.private_value = private_value;
|
|
info->kctl = snd_ctl_new1(&knew, info);
|
|
if (!info->kctl) {
|
|
kfree(info);
|
|
return -ENOMEM;
|
|
}
|
|
info->kctl->private_free = pcm_chmap_ctl_private_free;
|
|
err = snd_ctl_add(pcm->card, info->kctl);
|
|
if (err < 0)
|
|
return err;
|
|
pcm->streams[stream].chmap_kctl = info->kctl;
|
|
if (info_ret)
|
|
*info_ret = info;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
|