linux-stable/drivers/remoteproc/qcom_q6v5_mss.c
Linus Torvalds 617e7481d7 remoteproc updates for v5.9
This introduces a new "detached" state for remote processors that are
 deemed to be running at the time Linux boots and the infrastructure for
 "attaching" to these. It then introduces the support for performing this
 operation for the STM32 platform.
 
 The coredump functionality is moved out from the core file and gains
 support for an optional mode where the recovery phase awaits the
 notification from devcoredump that the dump should be released. This
 allows userspace to grab the coredump in scenarios where vmalloc space
 is too low for creating a complete copy of the coredump before handing
 this to devcoredump.
 
 A new character device based interface is introduced to allow tying the
 stoppage of a remote processor to the termination of a user space
 process. This is useful in situations when such process provides crucial
 resources/operations for the firmware running on the remote processor.
 
 The Texas Instrument K3 driver gains support for the C66x and C71x DSPs.
 
 Qualcomm remoteprocs gains support for stashing relocation information
 in IMEM, to aid post mortem debugging and the crash notification
 mechanism is generalized to be reusable in cases where loosely coupled
 drivers needs to know about the status of a remote processor. One such
 example is the IPA hardware block, which is jointly owned with the
 modem and migrated to this improved interface.
 
 It also introduces a number of bug fixes and debug improvements for the
 Qualcomm modem remoteproc driver.
 
 And it cleans up the inconsistent interface for remoteproc drivers to
 implement power management.
 -----BEGIN PGP SIGNATURE-----
 
 iQJPBAABCAA5FiEEBd4DzF816k8JZtUlCx85Pw2ZrcUFAl8yKn4bHGJqb3JuLmFu
 ZGVyc3NvbkBsaW5hcm8ub3JnAAoJEAsfOT8Nma3FwNQQAMH8rbJ1wY+FM5vYfchF
 IIruKUAuiUYf3Wtx96nRRM81nWQWE0+gh37CGdQ0J+5XMhtVVgHH5cIcTcTqHfAG
 J8rdkcFP4ntyLPa2qP5tPeMj0rqD/cHvzD10PyrJjvP12i9+0mJGR/nDHRRAhyg1
 HMTfq5kQsIRt3SYnHrwzD3nvk+O6aEtyogjDX9VhQ3Qx62pKVLiPCUy4FIZ2XzY2
 XvNdITqN1IbqMMEgWNLBrFbU8RDnFZgGUFjuVmy+9SalKifh1s0nmdDxmFihbbhj
 pltc8mLRabhkkdqctvz6nh85epkqmoA15WL+BTLDVIpQ4zSJxFeRq+yK5m3V5EzZ
 Ld5ukS3IYaLLFOT1OvwjUVbrSVYnb3SMFI6W2v8J/BouBzFzzfYaq4QmvW4GGPEw
 MWMoicpmZousVGfUREFkmYj/8XqfgoVZ8gpLVxNDuluFU5swjoAK2FfQet4KCf0d
 /+A77nWvcRuHFYLv8FAiAxxRY2Dnx8rPnIm8wNd4Nj9Lx7lhkVPRwCgBr4SyXX60
 FAGqZmg5S0Q5JUVA1s76n/1jbDywr6+a9ez48izivck1eYqAwSOAtt57Ol4A9tEq
 OGX8bvnJBXM9mDOV2jRCOr3vfn9Y3kqn8ia20gNsmifUM6RkvvSzz4bdhwd0Aj2H
 0PWNiyPI+OKV8L64Q4sASbDR
 =9cjt
 -----END PGP SIGNATURE-----

Merge tag 'rproc-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson/remoteproc

Pull remoteproc updates from Bjorn Andersson:
 "This introduces a new "detached" state for remote processors that are
  deemed to be running at the time Linux boots and the infrastructure
  for "attaching" to these. It then introduces the support for
  performing this operation for the STM32 platform.

  The coredump functionality is moved out from the core file and gains
  support for an optional mode where the recovery phase awaits the
  notification from devcoredump that the dump should be released. This
  allows userspace to grab the coredump in scenarios where vmalloc space
  is too low for creating a complete copy of the coredump before handing
  this to devcoredump.

  A new character device based interface is introduced to allow tying
  the stoppage of a remote processor to the termination of a user space
  process. This is useful in situations when such process provides
  crucial resources/operations for the firmware running on the remote
  processor.

  The Texas Instrument K3 driver gains support for the C66x and C71x
  DSPs.

  Qualcomm remoteprocs gains support for stashing relocation information
  in IMEM, to aid post mortem debugging and the crash notification
  mechanism is generalized to be reusable in cases where loosely coupled
  drivers needs to know about the status of a remote processor. One such
  example is the IPA hardware block, which is jointly owned with the
  modem and migrated to this improved interface.

  It also introduces a number of bug fixes and debug improvements for
  the Qualcomm modem remoteproc driver.

  And it cleans up the inconsistent interface for remoteproc drivers to
  implement power management"

* tag 'rproc-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson/remoteproc: (56 commits)
  remoteproc: core: Register the character device interface
  remoteproc: Add remoteproc character device interface
  remoteproc: kill IPA notify code
  net: ipa: new notification infrastructure
  remoteproc: k3-dsp: Add support for C71x DSPs
  dt-bindings: remoteproc: k3-dsp: Update bindings for C71x DSPs
  remoteproc: k3-dsp: Add support for L2RAM loading on C66x DSPs
  remoteproc: k3-dsp: Add a remoteproc driver of K3 C66x DSPs
  dt-bindings: remoteproc: Add bindings for C66x DSPs on TI K3 SoCs
  remoteproc: k3: Add TI-SCI processor control helper functions
  remoteproc: Introduce rproc_of_parse_firmware() helper
  dt-bindings: arm: keystone: Add common TI SCI bindings
  remoteproc: qcom_q6v5_mss: Remove redundant running state
  remoteproc: qcom: q6v5: Update running state before requesting stop
  remoteproc: qcom_q6v5_mss: Add modem debug policy support
  remoteproc: qcom_q6v5_mss: Validate modem blob firmware size before load
  remoteproc: qcom_q6v5_mss: Validate MBA firmware size before load
  rpmsg: update documentation
  remoteproc: qcom_q6v5_mss: Add MBA log extraction support
  remoteproc: Add coredump debugfs entry
  ...
2020-08-11 11:17:45 -07:00

2011 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm self-authenticating modem subsystem remoteproc driver
*
* Copyright (C) 2016 Linaro Ltd.
* Copyright (C) 2014 Sony Mobile Communications AB
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/devcoredump.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/remoteproc.h>
#include <linux/reset.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/iopoll.h>
#include <linux/slab.h>
#include "remoteproc_internal.h"
#include "qcom_common.h"
#include "qcom_pil_info.h"
#include "qcom_q6v5.h"
#include <linux/qcom_scm.h>
#define MPSS_CRASH_REASON_SMEM 421
#define MBA_LOG_SIZE SZ_4K
/* RMB Status Register Values */
#define RMB_PBL_SUCCESS 0x1
#define RMB_MBA_XPU_UNLOCKED 0x1
#define RMB_MBA_XPU_UNLOCKED_SCRIBBLED 0x2
#define RMB_MBA_META_DATA_AUTH_SUCCESS 0x3
#define RMB_MBA_AUTH_COMPLETE 0x4
/* PBL/MBA interface registers */
#define RMB_MBA_IMAGE_REG 0x00
#define RMB_PBL_STATUS_REG 0x04
#define RMB_MBA_COMMAND_REG 0x08
#define RMB_MBA_STATUS_REG 0x0C
#define RMB_PMI_META_DATA_REG 0x10
#define RMB_PMI_CODE_START_REG 0x14
#define RMB_PMI_CODE_LENGTH_REG 0x18
#define RMB_MBA_MSS_STATUS 0x40
#define RMB_MBA_ALT_RESET 0x44
#define RMB_CMD_META_DATA_READY 0x1
#define RMB_CMD_LOAD_READY 0x2
/* QDSP6SS Register Offsets */
#define QDSP6SS_RESET_REG 0x014
#define QDSP6SS_GFMUX_CTL_REG 0x020
#define QDSP6SS_PWR_CTL_REG 0x030
#define QDSP6SS_MEM_PWR_CTL 0x0B0
#define QDSP6V6SS_MEM_PWR_CTL 0x034
#define QDSP6SS_STRAP_ACC 0x110
/* AXI Halt Register Offsets */
#define AXI_HALTREQ_REG 0x0
#define AXI_HALTACK_REG 0x4
#define AXI_IDLE_REG 0x8
#define AXI_GATING_VALID_OVERRIDE BIT(0)
#define HALT_ACK_TIMEOUT_US 100000
/* QDSP6SS_RESET */
#define Q6SS_STOP_CORE BIT(0)
#define Q6SS_CORE_ARES BIT(1)
#define Q6SS_BUS_ARES_ENABLE BIT(2)
/* QDSP6SS CBCR */
#define Q6SS_CBCR_CLKEN BIT(0)
#define Q6SS_CBCR_CLKOFF BIT(31)
#define Q6SS_CBCR_TIMEOUT_US 200
/* QDSP6SS_GFMUX_CTL */
#define Q6SS_CLK_ENABLE BIT(1)
/* QDSP6SS_PWR_CTL */
#define Q6SS_L2DATA_SLP_NRET_N_0 BIT(0)
#define Q6SS_L2DATA_SLP_NRET_N_1 BIT(1)
#define Q6SS_L2DATA_SLP_NRET_N_2 BIT(2)
#define Q6SS_L2TAG_SLP_NRET_N BIT(16)
#define Q6SS_ETB_SLP_NRET_N BIT(17)
#define Q6SS_L2DATA_STBY_N BIT(18)
#define Q6SS_SLP_RET_N BIT(19)
#define Q6SS_CLAMP_IO BIT(20)
#define QDSS_BHS_ON BIT(21)
#define QDSS_LDO_BYP BIT(22)
/* QDSP6v56 parameters */
#define QDSP6v56_LDO_BYP BIT(25)
#define QDSP6v56_BHS_ON BIT(24)
#define QDSP6v56_CLAMP_WL BIT(21)
#define QDSP6v56_CLAMP_QMC_MEM BIT(22)
#define QDSP6SS_XO_CBCR 0x0038
#define QDSP6SS_ACC_OVERRIDE_VAL 0x20
/* QDSP6v65 parameters */
#define QDSP6SS_CORE_CBCR 0x20
#define QDSP6SS_SLEEP 0x3C
#define QDSP6SS_BOOT_CORE_START 0x400
#define QDSP6SS_BOOT_CMD 0x404
#define BOOT_FSM_TIMEOUT 10000
struct reg_info {
struct regulator *reg;
int uV;
int uA;
};
struct qcom_mss_reg_res {
const char *supply;
int uV;
int uA;
};
struct rproc_hexagon_res {
const char *hexagon_mba_image;
struct qcom_mss_reg_res *proxy_supply;
struct qcom_mss_reg_res *active_supply;
char **proxy_clk_names;
char **reset_clk_names;
char **active_clk_names;
char **active_pd_names;
char **proxy_pd_names;
int version;
bool need_mem_protection;
bool has_alt_reset;
bool has_mba_logs;
bool has_spare_reg;
};
struct q6v5 {
struct device *dev;
struct rproc *rproc;
void __iomem *reg_base;
void __iomem *rmb_base;
struct regmap *halt_map;
struct regmap *conn_map;
u32 halt_q6;
u32 halt_modem;
u32 halt_nc;
u32 conn_box;
struct reset_control *mss_restart;
struct reset_control *pdc_reset;
struct qcom_q6v5 q6v5;
struct clk *active_clks[8];
struct clk *reset_clks[4];
struct clk *proxy_clks[4];
struct device *active_pds[1];
struct device *proxy_pds[3];
int active_clk_count;
int reset_clk_count;
int proxy_clk_count;
int active_pd_count;
int proxy_pd_count;
struct reg_info active_regs[1];
struct reg_info proxy_regs[3];
int active_reg_count;
int proxy_reg_count;
bool dump_mba_loaded;
size_t current_dump_size;
size_t total_dump_size;
phys_addr_t mba_phys;
void *mba_region;
size_t mba_size;
size_t dp_size;
phys_addr_t mpss_phys;
phys_addr_t mpss_reloc;
size_t mpss_size;
struct qcom_rproc_glink glink_subdev;
struct qcom_rproc_subdev smd_subdev;
struct qcom_rproc_ssr ssr_subdev;
struct qcom_sysmon *sysmon;
bool need_mem_protection;
bool has_alt_reset;
bool has_mba_logs;
bool has_spare_reg;
int mpss_perm;
int mba_perm;
const char *hexagon_mdt_image;
int version;
};
enum {
MSS_MSM8916,
MSS_MSM8974,
MSS_MSM8996,
MSS_MSM8998,
MSS_SC7180,
MSS_SDM845,
};
static int q6v5_regulator_init(struct device *dev, struct reg_info *regs,
const struct qcom_mss_reg_res *reg_res)
{
int rc;
int i;
if (!reg_res)
return 0;
for (i = 0; reg_res[i].supply; i++) {
regs[i].reg = devm_regulator_get(dev, reg_res[i].supply);
if (IS_ERR(regs[i].reg)) {
rc = PTR_ERR(regs[i].reg);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s\n regulator",
reg_res[i].supply);
return rc;
}
regs[i].uV = reg_res[i].uV;
regs[i].uA = reg_res[i].uA;
}
return i;
}
static int q6v5_regulator_enable(struct q6v5 *qproc,
struct reg_info *regs, int count)
{
int ret;
int i;
for (i = 0; i < count; i++) {
if (regs[i].uV > 0) {
ret = regulator_set_voltage(regs[i].reg,
regs[i].uV, INT_MAX);
if (ret) {
dev_err(qproc->dev,
"Failed to request voltage for %d.\n",
i);
goto err;
}
}
if (regs[i].uA > 0) {
ret = regulator_set_load(regs[i].reg,
regs[i].uA);
if (ret < 0) {
dev_err(qproc->dev,
"Failed to set regulator mode\n");
goto err;
}
}
ret = regulator_enable(regs[i].reg);
if (ret) {
dev_err(qproc->dev, "Regulator enable failed\n");
goto err;
}
}
return 0;
err:
for (; i >= 0; i--) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
regulator_disable(regs[i].reg);
}
return ret;
}
static void q6v5_regulator_disable(struct q6v5 *qproc,
struct reg_info *regs, int count)
{
int i;
for (i = 0; i < count; i++) {
if (regs[i].uV > 0)
regulator_set_voltage(regs[i].reg, 0, INT_MAX);
if (regs[i].uA > 0)
regulator_set_load(regs[i].reg, 0);
regulator_disable(regs[i].reg);
}
}
static int q6v5_clk_enable(struct device *dev,
struct clk **clks, int count)
{
int rc;
int i;
for (i = 0; i < count; i++) {
rc = clk_prepare_enable(clks[i]);
if (rc) {
dev_err(dev, "Clock enable failed\n");
goto err;
}
}
return 0;
err:
for (i--; i >= 0; i--)
clk_disable_unprepare(clks[i]);
return rc;
}
static void q6v5_clk_disable(struct device *dev,
struct clk **clks, int count)
{
int i;
for (i = 0; i < count; i++)
clk_disable_unprepare(clks[i]);
}
static int q6v5_pds_enable(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int ret;
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], INT_MAX);
ret = pm_runtime_get_sync(pds[i]);
if (ret < 0)
goto unroll_pd_votes;
}
return 0;
unroll_pd_votes:
for (i--; i >= 0; i--) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
return ret;
}
static void q6v5_pds_disable(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int i;
for (i = 0; i < pd_count; i++) {
dev_pm_genpd_set_performance_state(pds[i], 0);
pm_runtime_put(pds[i]);
}
}
static int q6v5_xfer_mem_ownership(struct q6v5 *qproc, int *current_perm,
bool local, bool remote, phys_addr_t addr,
size_t size)
{
struct qcom_scm_vmperm next[2];
int perms = 0;
if (!qproc->need_mem_protection)
return 0;
if (local == !!(*current_perm & BIT(QCOM_SCM_VMID_HLOS)) &&
remote == !!(*current_perm & BIT(QCOM_SCM_VMID_MSS_MSA)))
return 0;
if (local) {
next[perms].vmid = QCOM_SCM_VMID_HLOS;
next[perms].perm = QCOM_SCM_PERM_RWX;
perms++;
}
if (remote) {
next[perms].vmid = QCOM_SCM_VMID_MSS_MSA;
next[perms].perm = QCOM_SCM_PERM_RW;
perms++;
}
return qcom_scm_assign_mem(addr, ALIGN(size, SZ_4K),
current_perm, next, perms);
}
static void q6v5_debug_policy_load(struct q6v5 *qproc)
{
const struct firmware *dp_fw;
if (request_firmware_direct(&dp_fw, "msadp", qproc->dev))
return;
if (SZ_1M + dp_fw->size <= qproc->mba_size) {
memcpy(qproc->mba_region + SZ_1M, dp_fw->data, dp_fw->size);
qproc->dp_size = dp_fw->size;
}
release_firmware(dp_fw);
}
static int q6v5_load(struct rproc *rproc, const struct firmware *fw)
{
struct q6v5 *qproc = rproc->priv;
/* MBA is restricted to a maximum size of 1M */
if (fw->size > qproc->mba_size || fw->size > SZ_1M) {
dev_err(qproc->dev, "MBA firmware load failed\n");
return -EINVAL;
}
memcpy(qproc->mba_region, fw->data, fw->size);
q6v5_debug_policy_load(qproc);
return 0;
}
static int q6v5_reset_assert(struct q6v5 *qproc)
{
int ret;
if (qproc->has_alt_reset) {
reset_control_assert(qproc->pdc_reset);
ret = reset_control_reset(qproc->mss_restart);
reset_control_deassert(qproc->pdc_reset);
} else if (qproc->has_spare_reg) {
/*
* When the AXI pipeline is being reset with the Q6 modem partly
* operational there is possibility of AXI valid signal to
* glitch, leading to spurious transactions and Q6 hangs. A work
* around is employed by asserting the AXI_GATING_VALID_OVERRIDE
* BIT before triggering Q6 MSS reset. AXI_GATING_VALID_OVERRIDE
* is withdrawn post MSS assert followed by a MSS deassert,
* while holding the PDC reset.
*/
reset_control_assert(qproc->pdc_reset);
regmap_update_bits(qproc->conn_map, qproc->conn_box,
AXI_GATING_VALID_OVERRIDE, 1);
reset_control_assert(qproc->mss_restart);
reset_control_deassert(qproc->pdc_reset);
regmap_update_bits(qproc->conn_map, qproc->conn_box,
AXI_GATING_VALID_OVERRIDE, 0);
ret = reset_control_deassert(qproc->mss_restart);
} else {
ret = reset_control_assert(qproc->mss_restart);
}
return ret;
}
static int q6v5_reset_deassert(struct q6v5 *qproc)
{
int ret;
if (qproc->has_alt_reset) {
reset_control_assert(qproc->pdc_reset);
writel(1, qproc->rmb_base + RMB_MBA_ALT_RESET);
ret = reset_control_reset(qproc->mss_restart);
writel(0, qproc->rmb_base + RMB_MBA_ALT_RESET);
reset_control_deassert(qproc->pdc_reset);
} else if (qproc->has_spare_reg) {
ret = reset_control_reset(qproc->mss_restart);
} else {
ret = reset_control_deassert(qproc->mss_restart);
}
return ret;
}
static int q6v5_rmb_pbl_wait(struct q6v5 *qproc, int ms)
{
unsigned long timeout;
s32 val;
timeout = jiffies + msecs_to_jiffies(ms);
for (;;) {
val = readl(qproc->rmb_base + RMB_PBL_STATUS_REG);
if (val)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(1);
}
return val;
}
static int q6v5_rmb_mba_wait(struct q6v5 *qproc, u32 status, int ms)
{
unsigned long timeout;
s32 val;
timeout = jiffies + msecs_to_jiffies(ms);
for (;;) {
val = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
if (val < 0)
break;
if (!status && val)
break;
else if (status && val == status)
break;
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
msleep(1);
}
return val;
}
static void q6v5_dump_mba_logs(struct q6v5 *qproc)
{
struct rproc *rproc = qproc->rproc;
void *data;
if (!qproc->has_mba_logs)
return;
if (q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false, qproc->mba_phys,
qproc->mba_size))
return;
data = vmalloc(MBA_LOG_SIZE);
if (!data)
return;
memcpy(data, qproc->mba_region, MBA_LOG_SIZE);
dev_coredumpv(&rproc->dev, data, MBA_LOG_SIZE, GFP_KERNEL);
}
static int q6v5proc_reset(struct q6v5 *qproc)
{
u32 val;
int ret;
int i;
if (qproc->version == MSS_SDM845) {
val = readl(qproc->reg_base + QDSP6SS_SLEEP);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_SLEEP);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
return -ETIMEDOUT;
}
/* De-assert QDSP6 stop core */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);
/* Trigger boot FSM */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);
ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
if (ret) {
dev_err(qproc->dev, "Boot FSM failed to complete.\n");
/* Reset the modem so that boot FSM is in reset state */
q6v5_reset_deassert(qproc);
return ret;
}
goto pbl_wait;
} else if (qproc->version == MSS_SC7180) {
val = readl(qproc->reg_base + QDSP6SS_SLEEP);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_SLEEP);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_SLEEP,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS Sleep clock timed out\n");
return -ETIMEDOUT;
}
/* Turn on the XO clock needed for PLL setup */
val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev, "QDSP6SS XO clock timed out\n");
return -ETIMEDOUT;
}
/* Configure Q6 core CBCR to auto-enable after reset sequence */
val = readl(qproc->reg_base + QDSP6SS_CORE_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_CORE_CBCR);
/* De-assert the Q6 stop core signal */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CORE_START);
/* Wait for 10 us for any staggering logic to settle */
usleep_range(10, 20);
/* Trigger the boot FSM to start the Q6 out-of-reset sequence */
writel(1, qproc->reg_base + QDSP6SS_BOOT_CMD);
/* Poll the MSS_STATUS for FSM completion */
ret = readl_poll_timeout(qproc->rmb_base + RMB_MBA_MSS_STATUS,
val, (val & BIT(0)) != 0, 10, BOOT_FSM_TIMEOUT);
if (ret) {
dev_err(qproc->dev, "Boot FSM failed to complete.\n");
/* Reset the modem so that boot FSM is in reset state */
q6v5_reset_deassert(qproc);
return ret;
}
goto pbl_wait;
} else if (qproc->version == MSS_MSM8996 ||
qproc->version == MSS_MSM8998) {
int mem_pwr_ctl;
/* Override the ACC value if required */
writel(QDSP6SS_ACC_OVERRIDE_VAL,
qproc->reg_base + QDSP6SS_STRAP_ACC);
/* Assert resets, stop core */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* BHS require xo cbcr to be enabled */
val = readl(qproc->reg_base + QDSP6SS_XO_CBCR);
val |= Q6SS_CBCR_CLKEN;
writel(val, qproc->reg_base + QDSP6SS_XO_CBCR);
/* Read CLKOFF bit to go low indicating CLK is enabled */
ret = readl_poll_timeout(qproc->reg_base + QDSP6SS_XO_CBCR,
val, !(val & Q6SS_CBCR_CLKOFF), 1,
Q6SS_CBCR_TIMEOUT_US);
if (ret) {
dev_err(qproc->dev,
"xo cbcr enabling timed out (rc:%d)\n", ret);
return ret;
}
/* Enable power block headswitch and wait for it to stabilize */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= QDSP6v56_BHS_ON;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
udelay(1);
/* Put LDO in bypass mode */
val |= QDSP6v56_LDO_BYP;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Deassert QDSP6 compiler memory clamp */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val &= ~QDSP6v56_CLAMP_QMC_MEM;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Deassert memory peripheral sleep and L2 memory standby */
val |= Q6SS_L2DATA_STBY_N | Q6SS_SLP_RET_N;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Turn on L1, L2, ETB and JU memories 1 at a time */
if (qproc->version == MSS_MSM8996) {
mem_pwr_ctl = QDSP6SS_MEM_PWR_CTL;
i = 19;
} else {
/* MSS_MSM8998 */
mem_pwr_ctl = QDSP6V6SS_MEM_PWR_CTL;
i = 28;
}
val = readl(qproc->reg_base + mem_pwr_ctl);
for (; i >= 0; i--) {
val |= BIT(i);
writel(val, qproc->reg_base + mem_pwr_ctl);
/*
* Read back value to ensure the write is done then
* wait for 1us for both memory peripheral and data
* array to turn on.
*/
val |= readl(qproc->reg_base + mem_pwr_ctl);
udelay(1);
}
/* Remove word line clamp */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val &= ~QDSP6v56_CLAMP_WL;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
} else {
/* Assert resets, stop core */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val |= Q6SS_CORE_ARES | Q6SS_BUS_ARES_ENABLE | Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* Enable power block headswitch and wait for it to stabilize */
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= QDSS_BHS_ON | QDSS_LDO_BYP;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
udelay(1);
/*
* Turn on memories. L2 banks should be done individually
* to minimize inrush current.
*/
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_SLP_RET_N | Q6SS_L2TAG_SLP_NRET_N |
Q6SS_ETB_SLP_NRET_N | Q6SS_L2DATA_STBY_N;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_2;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_1;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_L2DATA_SLP_NRET_N_0;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
}
/* Remove IO clamp */
val &= ~Q6SS_CLAMP_IO;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
/* Bring core out of reset */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val &= ~Q6SS_CORE_ARES;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
/* Turn on core clock */
val = readl(qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);
val |= Q6SS_CLK_ENABLE;
writel(val, qproc->reg_base + QDSP6SS_GFMUX_CTL_REG);
/* Start core execution */
val = readl(qproc->reg_base + QDSP6SS_RESET_REG);
val &= ~Q6SS_STOP_CORE;
writel(val, qproc->reg_base + QDSP6SS_RESET_REG);
pbl_wait:
/* Wait for PBL status */
ret = q6v5_rmb_pbl_wait(qproc, 1000);
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "PBL boot timed out\n");
} else if (ret != RMB_PBL_SUCCESS) {
dev_err(qproc->dev, "PBL returned unexpected status %d\n", ret);
ret = -EINVAL;
} else {
ret = 0;
}
return ret;
}
static void q6v5proc_halt_axi_port(struct q6v5 *qproc,
struct regmap *halt_map,
u32 offset)
{
unsigned int val;
int ret;
/* Check if we're already idle */
ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
if (!ret && val)
return;
/* Assert halt request */
regmap_write(halt_map, offset + AXI_HALTREQ_REG, 1);
/* Wait for halt */
regmap_read_poll_timeout(halt_map, offset + AXI_HALTACK_REG, val,
val, 1000, HALT_ACK_TIMEOUT_US);
ret = regmap_read(halt_map, offset + AXI_IDLE_REG, &val);
if (ret || !val)
dev_err(qproc->dev, "port failed halt\n");
/* Clear halt request (port will remain halted until reset) */
regmap_write(halt_map, offset + AXI_HALTREQ_REG, 0);
}
static int q6v5_mpss_init_image(struct q6v5 *qproc, const struct firmware *fw)
{
unsigned long dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
dma_addr_t phys;
void *metadata;
int mdata_perm;
int xferop_ret;
size_t size;
void *ptr;
int ret;
metadata = qcom_mdt_read_metadata(fw, &size);
if (IS_ERR(metadata))
return PTR_ERR(metadata);
ptr = dma_alloc_attrs(qproc->dev, size, &phys, GFP_KERNEL, dma_attrs);
if (!ptr) {
kfree(metadata);
dev_err(qproc->dev, "failed to allocate mdt buffer\n");
return -ENOMEM;
}
memcpy(ptr, metadata, size);
/* Hypervisor mapping to access metadata by modem */
mdata_perm = BIT(QCOM_SCM_VMID_HLOS);
ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, false, true,
phys, size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to metadata failed: %d\n", ret);
ret = -EAGAIN;
goto free_dma_attrs;
}
writel(phys, qproc->rmb_base + RMB_PMI_META_DATA_REG);
writel(RMB_CMD_META_DATA_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);
ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_META_DATA_AUTH_SUCCESS, 1000);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "MPSS header authentication timed out\n");
else if (ret < 0)
dev_err(qproc->dev, "MPSS header authentication failed: %d\n", ret);
/* Metadata authentication done, remove modem access */
xferop_ret = q6v5_xfer_mem_ownership(qproc, &mdata_perm, true, false,
phys, size);
if (xferop_ret)
dev_warn(qproc->dev,
"mdt buffer not reclaimed system may become unstable\n");
free_dma_attrs:
dma_free_attrs(qproc->dev, size, ptr, phys, dma_attrs);
kfree(metadata);
return ret < 0 ? ret : 0;
}
static bool q6v5_phdr_valid(const struct elf32_phdr *phdr)
{
if (phdr->p_type != PT_LOAD)
return false;
if ((phdr->p_flags & QCOM_MDT_TYPE_MASK) == QCOM_MDT_TYPE_HASH)
return false;
if (!phdr->p_memsz)
return false;
return true;
}
static int q6v5_mba_load(struct q6v5 *qproc)
{
int ret;
int xfermemop_ret;
bool mba_load_err = false;
qcom_q6v5_prepare(&qproc->q6v5);
ret = q6v5_pds_enable(qproc, qproc->active_pds, qproc->active_pd_count);
if (ret < 0) {
dev_err(qproc->dev, "failed to enable active power domains\n");
goto disable_irqs;
}
ret = q6v5_pds_enable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
if (ret < 0) {
dev_err(qproc->dev, "failed to enable proxy power domains\n");
goto disable_active_pds;
}
ret = q6v5_regulator_enable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
if (ret) {
dev_err(qproc->dev, "failed to enable proxy supplies\n");
goto disable_proxy_pds;
}
ret = q6v5_clk_enable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable proxy clocks\n");
goto disable_proxy_reg;
}
ret = q6v5_regulator_enable(qproc, qproc->active_regs,
qproc->active_reg_count);
if (ret) {
dev_err(qproc->dev, "failed to enable supplies\n");
goto disable_proxy_clk;
}
ret = q6v5_clk_enable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable reset clocks\n");
goto disable_vdd;
}
ret = q6v5_reset_deassert(qproc);
if (ret) {
dev_err(qproc->dev, "failed to deassert mss restart\n");
goto disable_reset_clks;
}
ret = q6v5_clk_enable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
if (ret) {
dev_err(qproc->dev, "failed to enable clocks\n");
goto assert_reset;
}
/* Assign MBA image access in DDR to q6 */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, false, true,
qproc->mba_phys, qproc->mba_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mba memory failed: %d\n", ret);
goto disable_active_clks;
}
writel(qproc->mba_phys, qproc->rmb_base + RMB_MBA_IMAGE_REG);
if (qproc->dp_size) {
writel(qproc->mba_phys + SZ_1M, qproc->rmb_base + RMB_PMI_CODE_START_REG);
writel(qproc->dp_size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
}
ret = q6v5proc_reset(qproc);
if (ret)
goto reclaim_mba;
ret = q6v5_rmb_mba_wait(qproc, 0, 5000);
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "MBA boot timed out\n");
goto halt_axi_ports;
} else if (ret != RMB_MBA_XPU_UNLOCKED &&
ret != RMB_MBA_XPU_UNLOCKED_SCRIBBLED) {
dev_err(qproc->dev, "MBA returned unexpected status %d\n", ret);
ret = -EINVAL;
goto halt_axi_ports;
}
qproc->dump_mba_loaded = true;
return 0;
halt_axi_ports:
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
mba_load_err = true;
reclaim_mba:
xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
false, qproc->mba_phys,
qproc->mba_size);
if (xfermemop_ret) {
dev_err(qproc->dev,
"Failed to reclaim mba buffer, system may become unstable\n");
} else if (mba_load_err) {
q6v5_dump_mba_logs(qproc);
}
disable_active_clks:
q6v5_clk_disable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
assert_reset:
q6v5_reset_assert(qproc);
disable_reset_clks:
q6v5_clk_disable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
disable_vdd:
q6v5_regulator_disable(qproc, qproc->active_regs,
qproc->active_reg_count);
disable_proxy_clk:
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
disable_proxy_reg:
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
disable_proxy_pds:
q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
disable_active_pds:
q6v5_pds_disable(qproc, qproc->active_pds, qproc->active_pd_count);
disable_irqs:
qcom_q6v5_unprepare(&qproc->q6v5);
return ret;
}
static void q6v5_mba_reclaim(struct q6v5 *qproc)
{
int ret;
u32 val;
qproc->dump_mba_loaded = false;
qproc->dp_size = 0;
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_q6);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_modem);
q6v5proc_halt_axi_port(qproc, qproc->halt_map, qproc->halt_nc);
if (qproc->version == MSS_MSM8996) {
/*
* To avoid high MX current during LPASS/MSS restart.
*/
val = readl(qproc->reg_base + QDSP6SS_PWR_CTL_REG);
val |= Q6SS_CLAMP_IO | QDSP6v56_CLAMP_WL |
QDSP6v56_CLAMP_QMC_MEM;
writel(val, qproc->reg_base + QDSP6SS_PWR_CTL_REG);
}
q6v5_reset_assert(qproc);
q6v5_clk_disable(qproc->dev, qproc->reset_clks,
qproc->reset_clk_count);
q6v5_clk_disable(qproc->dev, qproc->active_clks,
qproc->active_clk_count);
q6v5_regulator_disable(qproc, qproc->active_regs,
qproc->active_reg_count);
q6v5_pds_disable(qproc, qproc->active_pds, qproc->active_pd_count);
/* In case of failure or coredump scenario where reclaiming MBA memory
* could not happen reclaim it here.
*/
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true, false,
qproc->mba_phys,
qproc->mba_size);
WARN_ON(ret);
ret = qcom_q6v5_unprepare(&qproc->q6v5);
if (ret) {
q6v5_pds_disable(qproc, qproc->proxy_pds,
qproc->proxy_pd_count);
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
}
}
static int q6v5_reload_mba(struct rproc *rproc)
{
struct q6v5 *qproc = rproc->priv;
const struct firmware *fw;
int ret;
ret = request_firmware(&fw, rproc->firmware, qproc->dev);
if (ret < 0)
return ret;
q6v5_load(rproc, fw);
ret = q6v5_mba_load(qproc);
release_firmware(fw);
return ret;
}
static int q6v5_mpss_load(struct q6v5 *qproc)
{
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct firmware *seg_fw;
const struct firmware *fw;
struct elf32_hdr *ehdr;
phys_addr_t mpss_reloc;
phys_addr_t boot_addr;
phys_addr_t min_addr = PHYS_ADDR_MAX;
phys_addr_t max_addr = 0;
u32 code_length;
bool relocate = false;
char *fw_name;
size_t fw_name_len;
ssize_t offset;
size_t size = 0;
void *ptr;
int ret;
int i;
fw_name_len = strlen(qproc->hexagon_mdt_image);
if (fw_name_len <= 4)
return -EINVAL;
fw_name = kstrdup(qproc->hexagon_mdt_image, GFP_KERNEL);
if (!fw_name)
return -ENOMEM;
ret = request_firmware(&fw, fw_name, qproc->dev);
if (ret < 0) {
dev_err(qproc->dev, "unable to load %s\n", fw_name);
goto out;
}
/* Initialize the RMB validator */
writel(0, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
ret = q6v5_mpss_init_image(qproc, fw);
if (ret)
goto release_firmware;
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
if (phdr->p_flags & QCOM_MDT_RELOCATABLE)
relocate = true;
if (phdr->p_paddr < min_addr)
min_addr = phdr->p_paddr;
if (phdr->p_paddr + phdr->p_memsz > max_addr)
max_addr = ALIGN(phdr->p_paddr + phdr->p_memsz, SZ_4K);
}
/**
* In case of a modem subsystem restart on secure devices, the modem
* memory can be reclaimed only after MBA is loaded. For modem cold
* boot this will be a nop
*/
q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, false,
qproc->mpss_phys, qproc->mpss_size);
/* Share ownership between Linux and MSS, during segment loading */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, true, true,
qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mpss memory failed: %d\n", ret);
ret = -EAGAIN;
goto release_firmware;
}
mpss_reloc = relocate ? min_addr : qproc->mpss_phys;
qproc->mpss_reloc = mpss_reloc;
/* Load firmware segments */
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
offset = phdr->p_paddr - mpss_reloc;
if (offset < 0 || offset + phdr->p_memsz > qproc->mpss_size) {
dev_err(qproc->dev, "segment outside memory range\n");
ret = -EINVAL;
goto release_firmware;
}
ptr = ioremap_wc(qproc->mpss_phys + offset, phdr->p_memsz);
if (!ptr) {
dev_err(qproc->dev,
"unable to map memory region: %pa+%zx-%x\n",
&qproc->mpss_phys, offset, phdr->p_memsz);
goto release_firmware;
}
if (phdr->p_filesz && phdr->p_offset < fw->size) {
/* Firmware is large enough to be non-split */
if (phdr->p_offset + phdr->p_filesz > fw->size) {
dev_err(qproc->dev,
"failed to load segment %d from truncated file %s\n",
i, fw_name);
ret = -EINVAL;
iounmap(ptr);
goto release_firmware;
}
memcpy(ptr, fw->data + phdr->p_offset, phdr->p_filesz);
} else if (phdr->p_filesz) {
/* Replace "xxx.xxx" with "xxx.bxx" */
sprintf(fw_name + fw_name_len - 3, "b%02d", i);
ret = request_firmware_into_buf(&seg_fw, fw_name, qproc->dev,
ptr, phdr->p_filesz);
if (ret) {
dev_err(qproc->dev, "failed to load %s\n", fw_name);
iounmap(ptr);
goto release_firmware;
}
release_firmware(seg_fw);
}
if (phdr->p_memsz > phdr->p_filesz) {
memset(ptr + phdr->p_filesz, 0,
phdr->p_memsz - phdr->p_filesz);
}
iounmap(ptr);
size += phdr->p_memsz;
code_length = readl(qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
if (!code_length) {
boot_addr = relocate ? qproc->mpss_phys : min_addr;
writel(boot_addr, qproc->rmb_base + RMB_PMI_CODE_START_REG);
writel(RMB_CMD_LOAD_READY, qproc->rmb_base + RMB_MBA_COMMAND_REG);
}
writel(size, qproc->rmb_base + RMB_PMI_CODE_LENGTH_REG);
ret = readl(qproc->rmb_base + RMB_MBA_STATUS_REG);
if (ret < 0) {
dev_err(qproc->dev, "MPSS authentication failed: %d\n",
ret);
goto release_firmware;
}
}
/* Transfer ownership of modem ddr region to q6 */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm, false, true,
qproc->mpss_phys, qproc->mpss_size);
if (ret) {
dev_err(qproc->dev,
"assigning Q6 access to mpss memory failed: %d\n", ret);
ret = -EAGAIN;
goto release_firmware;
}
ret = q6v5_rmb_mba_wait(qproc, RMB_MBA_AUTH_COMPLETE, 10000);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "MPSS authentication timed out\n");
else if (ret < 0)
dev_err(qproc->dev, "MPSS authentication failed: %d\n", ret);
qcom_pil_info_store("modem", qproc->mpss_phys, qproc->mpss_size);
release_firmware:
release_firmware(fw);
out:
kfree(fw_name);
return ret < 0 ? ret : 0;
}
static void qcom_q6v5_dump_segment(struct rproc *rproc,
struct rproc_dump_segment *segment,
void *dest, size_t cp_offset, size_t size)
{
int ret = 0;
struct q6v5 *qproc = rproc->priv;
int offset = segment->da - qproc->mpss_reloc;
void *ptr = NULL;
/* Unlock mba before copying segments */
if (!qproc->dump_mba_loaded) {
ret = q6v5_reload_mba(rproc);
if (!ret) {
/* Reset ownership back to Linux to copy segments */
ret = q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
true, false,
qproc->mpss_phys,
qproc->mpss_size);
}
}
if (!ret)
ptr = ioremap_wc(qproc->mpss_phys + offset + cp_offset, size);
if (ptr) {
memcpy(dest, ptr, size);
iounmap(ptr);
} else {
memset(dest, 0xff, size);
}
qproc->current_dump_size += size;
/* Reclaim mba after copying segments */
if (qproc->current_dump_size == qproc->total_dump_size) {
if (qproc->dump_mba_loaded) {
/* Try to reset ownership back to Q6 */
q6v5_xfer_mem_ownership(qproc, &qproc->mpss_perm,
false, true,
qproc->mpss_phys,
qproc->mpss_size);
q6v5_mba_reclaim(qproc);
}
}
}
static int q6v5_start(struct rproc *rproc)
{
struct q6v5 *qproc = (struct q6v5 *)rproc->priv;
int xfermemop_ret;
int ret;
ret = q6v5_mba_load(qproc);
if (ret)
return ret;
dev_info(qproc->dev, "MBA booted with%s debug policy, loading mpss\n",
qproc->dp_size ? "" : "out");
ret = q6v5_mpss_load(qproc);
if (ret)
goto reclaim_mpss;
ret = qcom_q6v5_wait_for_start(&qproc->q6v5, msecs_to_jiffies(5000));
if (ret == -ETIMEDOUT) {
dev_err(qproc->dev, "start timed out\n");
goto reclaim_mpss;
}
xfermemop_ret = q6v5_xfer_mem_ownership(qproc, &qproc->mba_perm, true,
false, qproc->mba_phys,
qproc->mba_size);
if (xfermemop_ret)
dev_err(qproc->dev,
"Failed to reclaim mba buffer system may become unstable\n");
/* Reset Dump Segment Mask */
qproc->current_dump_size = 0;
return 0;
reclaim_mpss:
q6v5_mba_reclaim(qproc);
q6v5_dump_mba_logs(qproc);
return ret;
}
static int q6v5_stop(struct rproc *rproc)
{
struct q6v5 *qproc = (struct q6v5 *)rproc->priv;
int ret;
ret = qcom_q6v5_request_stop(&qproc->q6v5);
if (ret == -ETIMEDOUT)
dev_err(qproc->dev, "timed out on wait\n");
q6v5_mba_reclaim(qproc);
return 0;
}
static int qcom_q6v5_register_dump_segments(struct rproc *rproc,
const struct firmware *mba_fw)
{
const struct firmware *fw;
const struct elf32_phdr *phdrs;
const struct elf32_phdr *phdr;
const struct elf32_hdr *ehdr;
struct q6v5 *qproc = rproc->priv;
unsigned long i;
int ret;
ret = request_firmware(&fw, qproc->hexagon_mdt_image, qproc->dev);
if (ret < 0) {
dev_err(qproc->dev, "unable to load %s\n",
qproc->hexagon_mdt_image);
return ret;
}
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
ehdr = (struct elf32_hdr *)fw->data;
phdrs = (struct elf32_phdr *)(ehdr + 1);
qproc->total_dump_size = 0;
for (i = 0; i < ehdr->e_phnum; i++) {
phdr = &phdrs[i];
if (!q6v5_phdr_valid(phdr))
continue;
ret = rproc_coredump_add_custom_segment(rproc, phdr->p_paddr,
phdr->p_memsz,
qcom_q6v5_dump_segment,
NULL);
if (ret)
break;
qproc->total_dump_size += phdr->p_memsz;
}
release_firmware(fw);
return ret;
}
static const struct rproc_ops q6v5_ops = {
.start = q6v5_start,
.stop = q6v5_stop,
.parse_fw = qcom_q6v5_register_dump_segments,
.load = q6v5_load,
};
static void qcom_msa_handover(struct qcom_q6v5 *q6v5)
{
struct q6v5 *qproc = container_of(q6v5, struct q6v5, q6v5);
q6v5_clk_disable(qproc->dev, qproc->proxy_clks,
qproc->proxy_clk_count);
q6v5_regulator_disable(qproc, qproc->proxy_regs,
qproc->proxy_reg_count);
q6v5_pds_disable(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
}
static int q6v5_init_mem(struct q6v5 *qproc, struct platform_device *pdev)
{
struct of_phandle_args args;
struct resource *res;
int ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qdsp6");
qproc->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(qproc->reg_base))
return PTR_ERR(qproc->reg_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rmb");
qproc->rmb_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(qproc->rmb_base))
return PTR_ERR(qproc->rmb_base);
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,halt-regs", 3, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse qcom,halt-regs\n");
return -EINVAL;
}
qproc->halt_map = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(qproc->halt_map))
return PTR_ERR(qproc->halt_map);
qproc->halt_q6 = args.args[0];
qproc->halt_modem = args.args[1];
qproc->halt_nc = args.args[2];
if (qproc->has_spare_reg) {
ret = of_parse_phandle_with_fixed_args(pdev->dev.of_node,
"qcom,spare-regs",
1, 0, &args);
if (ret < 0) {
dev_err(&pdev->dev, "failed to parse spare-regs\n");
return -EINVAL;
}
qproc->conn_map = syscon_node_to_regmap(args.np);
of_node_put(args.np);
if (IS_ERR(qproc->conn_map))
return PTR_ERR(qproc->conn_map);
qproc->conn_box = args.args[0];
}
return 0;
}
static int q6v5_init_clocks(struct device *dev, struct clk **clks,
char **clk_names)
{
int i;
if (!clk_names)
return 0;
for (i = 0; clk_names[i]; i++) {
clks[i] = devm_clk_get(dev, clk_names[i]);
if (IS_ERR(clks[i])) {
int rc = PTR_ERR(clks[i]);
if (rc != -EPROBE_DEFER)
dev_err(dev, "Failed to get %s clock\n",
clk_names[i]);
return rc;
}
}
return i;
}
static int q6v5_pds_attach(struct device *dev, struct device **devs,
char **pd_names)
{
size_t num_pds = 0;
int ret;
int i;
if (!pd_names)
return 0;
while (pd_names[num_pds])
num_pds++;
for (i = 0; i < num_pds; i++) {
devs[i] = dev_pm_domain_attach_by_name(dev, pd_names[i]);
if (IS_ERR_OR_NULL(devs[i])) {
ret = PTR_ERR(devs[i]) ? : -ENODATA;
goto unroll_attach;
}
}
return num_pds;
unroll_attach:
for (i--; i >= 0; i--)
dev_pm_domain_detach(devs[i], false);
return ret;
}
static void q6v5_pds_detach(struct q6v5 *qproc, struct device **pds,
size_t pd_count)
{
int i;
for (i = 0; i < pd_count; i++)
dev_pm_domain_detach(pds[i], false);
}
static int q6v5_init_reset(struct q6v5 *qproc)
{
qproc->mss_restart = devm_reset_control_get_exclusive(qproc->dev,
"mss_restart");
if (IS_ERR(qproc->mss_restart)) {
dev_err(qproc->dev, "failed to acquire mss restart\n");
return PTR_ERR(qproc->mss_restart);
}
if (qproc->has_alt_reset || qproc->has_spare_reg) {
qproc->pdc_reset = devm_reset_control_get_exclusive(qproc->dev,
"pdc_reset");
if (IS_ERR(qproc->pdc_reset)) {
dev_err(qproc->dev, "failed to acquire pdc reset\n");
return PTR_ERR(qproc->pdc_reset);
}
}
return 0;
}
static int q6v5_alloc_memory_region(struct q6v5 *qproc)
{
struct device_node *child;
struct device_node *node;
struct resource r;
int ret;
/*
* In the absence of mba/mpss sub-child, extract the mba and mpss
* reserved memory regions from device's memory-region property.
*/
child = of_get_child_by_name(qproc->dev->of_node, "mba");
if (!child)
node = of_parse_phandle(qproc->dev->of_node,
"memory-region", 0);
else
node = of_parse_phandle(child, "memory-region", 0);
ret = of_address_to_resource(node, 0, &r);
if (ret) {
dev_err(qproc->dev, "unable to resolve mba region\n");
return ret;
}
of_node_put(node);
qproc->mba_phys = r.start;
qproc->mba_size = resource_size(&r);
qproc->mba_region = devm_ioremap_wc(qproc->dev, qproc->mba_phys, qproc->mba_size);
if (!qproc->mba_region) {
dev_err(qproc->dev, "unable to map memory region: %pa+%zx\n",
&r.start, qproc->mba_size);
return -EBUSY;
}
if (!child) {
node = of_parse_phandle(qproc->dev->of_node,
"memory-region", 1);
} else {
child = of_get_child_by_name(qproc->dev->of_node, "mpss");
node = of_parse_phandle(child, "memory-region", 0);
}
ret = of_address_to_resource(node, 0, &r);
if (ret) {
dev_err(qproc->dev, "unable to resolve mpss region\n");
return ret;
}
of_node_put(node);
qproc->mpss_phys = qproc->mpss_reloc = r.start;
qproc->mpss_size = resource_size(&r);
return 0;
}
static int q6v5_probe(struct platform_device *pdev)
{
const struct rproc_hexagon_res *desc;
struct q6v5 *qproc;
struct rproc *rproc;
const char *mba_image;
int ret;
desc = of_device_get_match_data(&pdev->dev);
if (!desc)
return -EINVAL;
if (desc->need_mem_protection && !qcom_scm_is_available())
return -EPROBE_DEFER;
mba_image = desc->hexagon_mba_image;
ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
0, &mba_image);
if (ret < 0 && ret != -EINVAL)
return ret;
rproc = rproc_alloc(&pdev->dev, pdev->name, &q6v5_ops,
mba_image, sizeof(*qproc));
if (!rproc) {
dev_err(&pdev->dev, "failed to allocate rproc\n");
return -ENOMEM;
}
rproc->auto_boot = false;
rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE);
qproc = (struct q6v5 *)rproc->priv;
qproc->dev = &pdev->dev;
qproc->rproc = rproc;
qproc->hexagon_mdt_image = "modem.mdt";
ret = of_property_read_string_index(pdev->dev.of_node, "firmware-name",
1, &qproc->hexagon_mdt_image);
if (ret < 0 && ret != -EINVAL)
goto free_rproc;
platform_set_drvdata(pdev, qproc);
qproc->has_spare_reg = desc->has_spare_reg;
ret = q6v5_init_mem(qproc, pdev);
if (ret)
goto free_rproc;
ret = q6v5_alloc_memory_region(qproc);
if (ret)
goto free_rproc;
ret = q6v5_init_clocks(&pdev->dev, qproc->proxy_clks,
desc->proxy_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get proxy clocks.\n");
goto free_rproc;
}
qproc->proxy_clk_count = ret;
ret = q6v5_init_clocks(&pdev->dev, qproc->reset_clks,
desc->reset_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get reset clocks.\n");
goto free_rproc;
}
qproc->reset_clk_count = ret;
ret = q6v5_init_clocks(&pdev->dev, qproc->active_clks,
desc->active_clk_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get active clocks.\n");
goto free_rproc;
}
qproc->active_clk_count = ret;
ret = q6v5_regulator_init(&pdev->dev, qproc->proxy_regs,
desc->proxy_supply);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get proxy regulators.\n");
goto free_rproc;
}
qproc->proxy_reg_count = ret;
ret = q6v5_regulator_init(&pdev->dev, qproc->active_regs,
desc->active_supply);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to get active regulators.\n");
goto free_rproc;
}
qproc->active_reg_count = ret;
ret = q6v5_pds_attach(&pdev->dev, qproc->active_pds,
desc->active_pd_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to attach active power domains\n");
goto free_rproc;
}
qproc->active_pd_count = ret;
ret = q6v5_pds_attach(&pdev->dev, qproc->proxy_pds,
desc->proxy_pd_names);
if (ret < 0) {
dev_err(&pdev->dev, "Failed to init power domains\n");
goto detach_active_pds;
}
qproc->proxy_pd_count = ret;
qproc->has_alt_reset = desc->has_alt_reset;
ret = q6v5_init_reset(qproc);
if (ret)
goto detach_proxy_pds;
qproc->version = desc->version;
qproc->need_mem_protection = desc->need_mem_protection;
qproc->has_mba_logs = desc->has_mba_logs;
ret = qcom_q6v5_init(&qproc->q6v5, pdev, rproc, MPSS_CRASH_REASON_SMEM,
qcom_msa_handover);
if (ret)
goto detach_proxy_pds;
qproc->mpss_perm = BIT(QCOM_SCM_VMID_HLOS);
qproc->mba_perm = BIT(QCOM_SCM_VMID_HLOS);
qcom_add_glink_subdev(rproc, &qproc->glink_subdev, "mpss");
qcom_add_smd_subdev(rproc, &qproc->smd_subdev);
qcom_add_ssr_subdev(rproc, &qproc->ssr_subdev, "mpss");
qproc->sysmon = qcom_add_sysmon_subdev(rproc, "modem", 0x12);
if (IS_ERR(qproc->sysmon)) {
ret = PTR_ERR(qproc->sysmon);
goto remove_subdevs;
}
ret = rproc_add(rproc);
if (ret)
goto remove_sysmon_subdev;
return 0;
remove_sysmon_subdev:
qcom_remove_sysmon_subdev(qproc->sysmon);
remove_subdevs:
qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);
detach_proxy_pds:
q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
detach_active_pds:
q6v5_pds_detach(qproc, qproc->active_pds, qproc->active_pd_count);
free_rproc:
rproc_free(rproc);
return ret;
}
static int q6v5_remove(struct platform_device *pdev)
{
struct q6v5 *qproc = platform_get_drvdata(pdev);
struct rproc *rproc = qproc->rproc;
rproc_del(rproc);
qcom_remove_sysmon_subdev(qproc->sysmon);
qcom_remove_ssr_subdev(rproc, &qproc->ssr_subdev);
qcom_remove_smd_subdev(rproc, &qproc->smd_subdev);
qcom_remove_glink_subdev(rproc, &qproc->glink_subdev);
q6v5_pds_detach(qproc, qproc->proxy_pds, qproc->proxy_pd_count);
q6v5_pds_detach(qproc, qproc->active_pds, qproc->active_pd_count);
rproc_free(rproc);
return 0;
}
static const struct rproc_hexagon_res sc7180_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.reset_clk_names = (char*[]){
"iface",
"bus",
"snoc_axi",
NULL
},
.active_clk_names = (char*[]){
"mnoc_axi",
"nav",
NULL
},
.active_pd_names = (char*[]){
"load_state",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
"mss",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = true,
.has_spare_reg = true,
.version = MSS_SC7180,
};
static const struct rproc_hexagon_res sdm845_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"prng",
NULL
},
.reset_clk_names = (char*[]){
"iface",
"snoc_axi",
NULL
},
.active_clk_names = (char*[]){
"bus",
"mem",
"gpll0_mss",
"mnoc_axi",
NULL
},
.active_pd_names = (char*[]){
"load_state",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
"mss",
NULL
},
.need_mem_protection = true,
.has_alt_reset = true,
.has_mba_logs = false,
.has_spare_reg = false,
.version = MSS_SDM845,
};
static const struct rproc_hexagon_res msm8998_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_clk_names = (char*[]){
"xo",
"qdss",
"mem",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"gpll0_mss",
"mnoc_axi",
"snoc_axi",
NULL
},
.proxy_pd_names = (char*[]){
"cx",
"mx",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.version = MSS_MSM8998,
};
static const struct rproc_hexagon_res msm8996_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "pll",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
"pnoc",
"qdss",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
"gpll0_mss",
"snoc_axi",
"mnoc_axi",
NULL
},
.need_mem_protection = true,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.version = MSS_MSM8996,
};
static const struct rproc_hexagon_res msm8916_mss = {
.hexagon_mba_image = "mba.mbn",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mx",
.uV = 1050000,
},
{
.supply = "cx",
.uA = 100000,
},
{
.supply = "pll",
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.version = MSS_MSM8916,
};
static const struct rproc_hexagon_res msm8974_mss = {
.hexagon_mba_image = "mba.b00",
.proxy_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mx",
.uV = 1050000,
},
{
.supply = "cx",
.uA = 100000,
},
{
.supply = "pll",
.uA = 100000,
},
{}
},
.active_supply = (struct qcom_mss_reg_res[]) {
{
.supply = "mss",
.uV = 1050000,
.uA = 100000,
},
{}
},
.proxy_clk_names = (char*[]){
"xo",
NULL
},
.active_clk_names = (char*[]){
"iface",
"bus",
"mem",
NULL
},
.need_mem_protection = false,
.has_alt_reset = false,
.has_mba_logs = false,
.has_spare_reg = false,
.version = MSS_MSM8974,
};
static const struct of_device_id q6v5_of_match[] = {
{ .compatible = "qcom,q6v5-pil", .data = &msm8916_mss},
{ .compatible = "qcom,msm8916-mss-pil", .data = &msm8916_mss},
{ .compatible = "qcom,msm8974-mss-pil", .data = &msm8974_mss},
{ .compatible = "qcom,msm8996-mss-pil", .data = &msm8996_mss},
{ .compatible = "qcom,msm8998-mss-pil", .data = &msm8998_mss},
{ .compatible = "qcom,sc7180-mss-pil", .data = &sc7180_mss},
{ .compatible = "qcom,sdm845-mss-pil", .data = &sdm845_mss},
{ },
};
MODULE_DEVICE_TABLE(of, q6v5_of_match);
static struct platform_driver q6v5_driver = {
.probe = q6v5_probe,
.remove = q6v5_remove,
.driver = {
.name = "qcom-q6v5-mss",
.of_match_table = q6v5_of_match,
},
};
module_platform_driver(q6v5_driver);
MODULE_DESCRIPTION("Qualcomm Self-authenticating modem remoteproc driver");
MODULE_LICENSE("GPL v2");