linux-stable/mm/sparse-vmemmap.c
Muchun Song 3bc2b6a725 mm: sparsemem: split the huge PMD mapping of vmemmap pages
Patch series "Split huge PMD mapping of vmemmap pages", v4.

In order to reduce the difficulty of code review in series[1].  We disable
huge PMD mapping of vmemmap pages when that feature is enabled.  In this
series, we do not disable huge PMD mapping of vmemmap pages anymore.  We
will split huge PMD mapping when needed.  When HugeTLB pages are freed
from the pool we do not attempt coalasce and move back to a PMD mapping
because it is much more complex.

[1] https://lore.kernel.org/linux-doc/20210510030027.56044-1-songmuchun@bytedance.com/

This patch (of 3):

In [1], PMD mappings of vmemmap pages were disabled if the the feature
hugetlb_free_vmemmap was enabled.  This was done to simplify the initial
implementation of vmmemap freeing for hugetlb pages.  Now, remove this
simplification by allowing PMD mapping and switching to PTE mappings as
needed for allocated hugetlb pages.

When a hugetlb page is allocated, the vmemmap page tables are walked to
free vmemmap pages.  During this walk, split huge PMD mappings to PTE
mappings as required.  In the unlikely case PTE pages can not be
allocated, return error(ENOMEM) and do not optimize vmemmap of the hugetlb
page.

When HugeTLB pages are freed from the pool, we do not attempt to
coalesce and move back to a PMD mapping because it is much more complex.

[1] https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com

Link: https://lkml.kernel.org/r/20210616094915.34432-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210616094915.34432-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00

619 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Virtual Memory Map support
*
* (C) 2007 sgi. Christoph Lameter.
*
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
* virt_to_page, page_address() to be implemented as a base offset
* calculation without memory access.
*
* However, virtual mappings need a page table and TLBs. Many Linux
* architectures already map their physical space using 1-1 mappings
* via TLBs. For those arches the virtual memory map is essentially
* for free if we use the same page size as the 1-1 mappings. In that
* case the overhead consists of a few additional pages that are
* allocated to create a view of memory for vmemmap.
*
* The architecture is expected to provide a vmemmap_populate() function
* to instantiate the mapping.
*/
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/memremap.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <linux/pgtable.h>
#include <linux/bootmem_info.h>
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
/**
* struct vmemmap_remap_walk - walk vmemmap page table
*
* @remap_pte: called for each lowest-level entry (PTE).
* @nr_walked: the number of walked pte.
* @reuse_page: the page which is reused for the tail vmemmap pages.
* @reuse_addr: the virtual address of the @reuse_page page.
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
* or is mapped from.
*/
struct vmemmap_remap_walk {
void (*remap_pte)(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk);
unsigned long nr_walked;
struct page *reuse_page;
unsigned long reuse_addr;
struct list_head *vmemmap_pages;
};
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
struct vmemmap_remap_walk *walk)
{
pmd_t __pmd;
int i;
unsigned long addr = start;
struct page *page = pmd_page(*pmd);
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
if (!pgtable)
return -ENOMEM;
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
pgprot_t pgprot = PAGE_KERNEL;
entry = mk_pte(page + i, pgprot);
pte = pte_offset_kernel(&__pmd, addr);
set_pte_at(&init_mm, addr, pte, entry);
}
/* Make pte visible before pmd. See comment in __pte_alloc(). */
smp_wmb();
pmd_populate_kernel(&init_mm, pmd, pgtable);
flush_tlb_kernel_range(start, start + PMD_SIZE);
return 0;
}
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
/*
* The reuse_page is found 'first' in table walk before we start
* remapping (which is calling @walk->remap_pte).
*/
if (!walk->reuse_page) {
walk->reuse_page = pte_page(*pte);
/*
* Because the reuse address is part of the range that we are
* walking, skip the reuse address range.
*/
addr += PAGE_SIZE;
pte++;
walk->nr_walked++;
}
for (; addr != end; addr += PAGE_SIZE, pte++) {
walk->remap_pte(pte, addr, walk);
walk->nr_walked++;
}
}
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_offset(pud, addr);
do {
if (pmd_leaf(*pmd)) {
int ret;
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
if (ret)
return ret;
}
next = pmd_addr_end(addr, end);
vmemmap_pte_range(pmd, addr, next, walk);
} while (pmd++, addr = next, addr != end);
return 0;
}
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
pud_t *pud;
unsigned long next;
pud = pud_offset(p4d, addr);
do {
int ret;
next = pud_addr_end(addr, end);
ret = vmemmap_pmd_range(pud, addr, next, walk);
if (ret)
return ret;
} while (pud++, addr = next, addr != end);
return 0;
}
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
unsigned long end,
struct vmemmap_remap_walk *walk)
{
p4d_t *p4d;
unsigned long next;
p4d = p4d_offset(pgd, addr);
do {
int ret;
next = p4d_addr_end(addr, end);
ret = vmemmap_pud_range(p4d, addr, next, walk);
if (ret)
return ret;
} while (p4d++, addr = next, addr != end);
return 0;
}
static int vmemmap_remap_range(unsigned long start, unsigned long end,
struct vmemmap_remap_walk *walk)
{
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
pgd = pgd_offset_k(addr);
do {
int ret;
next = pgd_addr_end(addr, end);
ret = vmemmap_p4d_range(pgd, addr, next, walk);
if (ret)
return ret;
} while (pgd++, addr = next, addr != end);
/*
* We only change the mapping of the vmemmap virtual address range
* [@start + PAGE_SIZE, end), so we only need to flush the TLB which
* belongs to the range.
*/
flush_tlb_kernel_range(start + PAGE_SIZE, end);
return 0;
}
/*
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
* allocator or buddy allocator. If the PG_reserved flag is set, it means
* that it allocated from the memblock allocator, just free it via the
* free_bootmem_page(). Otherwise, use __free_page().
*/
static inline void free_vmemmap_page(struct page *page)
{
if (PageReserved(page))
free_bootmem_page(page);
else
__free_page(page);
}
/* Free a list of the vmemmap pages */
static void free_vmemmap_page_list(struct list_head *list)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
list_del(&page->lru);
free_vmemmap_page(page);
}
}
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
/*
* Remap the tail pages as read-only to catch illegal write operation
* to the tail pages.
*/
pgprot_t pgprot = PAGE_KERNEL_RO;
pte_t entry = mk_pte(walk->reuse_page, pgprot);
struct page *page = pte_page(*pte);
list_add_tail(&page->lru, walk->vmemmap_pages);
set_pte_at(&init_mm, addr, pte, entry);
}
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
pgprot_t pgprot = PAGE_KERNEL;
struct page *page;
void *to;
BUG_ON(pte_page(*pte) != walk->reuse_page);
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
list_del(&page->lru);
to = page_to_virt(page);
copy_page(to, (void *)walk->reuse_addr);
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}
/**
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
* to the page which @reuse is mapped to, then free vmemmap
* which the range are mapped to.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
*
* Return: %0 on success, negative error code otherwise.
*/
int vmemmap_remap_free(unsigned long start, unsigned long end,
unsigned long reuse)
{
int ret;
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_remap_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/*
* In order to make remapping routine most efficient for the huge pages,
* the routine of vmemmap page table walking has the following rules
* (see more details from the vmemmap_pte_range()):
*
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
* should be continuous.
* - The @reuse address is part of the range [@reuse, @end) that we are
* walking which is passed to vmemmap_remap_range().
* - The @reuse address is the first in the complete range.
*
* So we need to make sure that @start and @reuse meet the above rules.
*/
BUG_ON(start - reuse != PAGE_SIZE);
mmap_write_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
mmap_write_downgrade(&init_mm);
if (ret && walk.nr_walked) {
end = reuse + walk.nr_walked * PAGE_SIZE;
/*
* vmemmap_pages contains pages from the previous
* vmemmap_remap_range call which failed. These
* are pages which were removed from the vmemmap.
* They will be restored in the following call.
*/
walk = (struct vmemmap_remap_walk) {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
vmemmap_remap_range(reuse, end, &walk);
}
mmap_read_unlock(&init_mm);
free_vmemmap_page_list(&vmemmap_pages);
return ret;
}
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
gfp_t gfp_mask, struct list_head *list)
{
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
int nid = page_to_nid((struct page *)start);
struct page *page, *next;
while (nr_pages--) {
page = alloc_pages_node(nid, gfp_mask, 0);
if (!page)
goto out;
list_add_tail(&page->lru, list);
}
return 0;
out:
list_for_each_entry_safe(page, next, list, lru)
__free_pages(page, 0);
return -ENOMEM;
}
/**
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
* to the page which is from the @vmemmap_pages
* respectively.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
* @gfp_mask: GFP flag for allocating vmemmap pages.
*
* Return: %0 on success, negative error code otherwise.
*/
int vmemmap_remap_alloc(unsigned long start, unsigned long end,
unsigned long reuse, gfp_t gfp_mask)
{
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
return -ENOMEM;
mmap_read_lock(&init_mm);
vmemmap_remap_range(reuse, end, &walk);
mmap_read_unlock(&init_mm);
return 0;
}
/*
* Allocate a block of memory to be used to back the virtual memory map
* or to back the page tables that are used to create the mapping.
* Uses the main allocators if they are available, else bootmem.
*/
static void * __ref __earlyonly_bootmem_alloc(int node,
unsigned long size,
unsigned long align,
unsigned long goal)
{
return memblock_alloc_try_nid_raw(size, align, goal,
MEMBLOCK_ALLOC_ACCESSIBLE, node);
}
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
/* If the main allocator is up use that, fallback to bootmem. */
if (slab_is_available()) {
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
int order = get_order(size);
static bool warned;
struct page *page;
page = alloc_pages_node(node, gfp_mask, order);
if (page)
return page_address(page);
if (!warned) {
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
"vmemmap alloc failure: order:%u", order);
warned = true;
}
return NULL;
} else
return __earlyonly_bootmem_alloc(node, size, size,
__pa(MAX_DMA_ADDRESS));
}
static void * __meminit altmap_alloc_block_buf(unsigned long size,
struct vmem_altmap *altmap);
/* need to make sure size is all the same during early stage */
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap)
{
void *ptr;
if (altmap)
return altmap_alloc_block_buf(size, altmap);
ptr = sparse_buffer_alloc(size);
if (!ptr)
ptr = vmemmap_alloc_block(size, node);
return ptr;
}
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
{
return altmap->base_pfn + altmap->reserve + altmap->alloc
+ altmap->align;
}
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
{
unsigned long allocated = altmap->alloc + altmap->align;
if (altmap->free > allocated)
return altmap->free - allocated;
return 0;
}
static void * __meminit altmap_alloc_block_buf(unsigned long size,
struct vmem_altmap *altmap)
{
unsigned long pfn, nr_pfns, nr_align;
if (size & ~PAGE_MASK) {
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
__func__, size);
return NULL;
}
pfn = vmem_altmap_next_pfn(altmap);
nr_pfns = size >> PAGE_SHIFT;
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
nr_align = ALIGN(pfn, nr_align) - pfn;
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
return NULL;
altmap->alloc += nr_pfns;
altmap->align += nr_align;
pfn += nr_align;
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
return __va(__pfn_to_phys(pfn));
}
void __meminit vmemmap_verify(pte_t *pte, int node,
unsigned long start, unsigned long end)
{
unsigned long pfn = pte_pfn(*pte);
int actual_node = early_pfn_to_nid(pfn);
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
pr_warn("[%lx-%lx] potential offnode page_structs\n",
start, end - 1);
}
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
struct vmem_altmap *altmap)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte)) {
pte_t entry;
void *p;
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
if (!p)
return NULL;
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
}
return pte;
}
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
{
void *p = vmemmap_alloc_block(size, node);
if (!p)
return NULL;
memset(p, 0, size);
return p;
}
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
pmd_t *pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pmd_populate_kernel(&init_mm, pmd, p);
}
return pmd;
}
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
{
pud_t *pud = pud_offset(p4d, addr);
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pud_populate(&init_mm, pud, p);
}
return pud;
}
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
{
p4d_t *p4d = p4d_offset(pgd, addr);
if (p4d_none(*p4d)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
p4d_populate(&init_mm, p4d, p);
}
return p4d;
}
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
pgd_t *pgd = pgd_offset_k(addr);
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
if (!p)
return NULL;
pgd_populate(&init_mm, pgd, p);
}
return pgd;
}
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node, struct vmem_altmap *altmap)
{
unsigned long addr = start;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
for (; addr < end; addr += PAGE_SIZE) {
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
p4d = vmemmap_p4d_populate(pgd, addr, node);
if (!p4d)
return -ENOMEM;
pud = vmemmap_pud_populate(p4d, addr, node);
if (!pud)
return -ENOMEM;
pmd = vmemmap_pmd_populate(pud, addr, node);
if (!pmd)
return -ENOMEM;
pte = vmemmap_pte_populate(pmd, addr, node, altmap);
if (!pte)
return -ENOMEM;
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
}
return 0;
}
struct page * __meminit __populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
{
unsigned long start = (unsigned long) pfn_to_page(pfn);
unsigned long end = start + nr_pages * sizeof(struct page);
if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
return NULL;
if (vmemmap_populate(start, end, nid, altmap))
return NULL;
return pfn_to_page(pfn);
}