linux-stable/include/linux/mmu_notifier.h
Alistair Popple 1af5a81099 mmu_notifiers: rename invalidate_range notifier
There are two main use cases for mmu notifiers.  One is by KVM which uses
mmu_notifier_invalidate_range_start()/end() to manage a software TLB.

The other is to manage hardware TLBs which need to use the
invalidate_range() callback because HW can establish new TLB entries at
any time.  Hence using start/end() can lead to memory corruption as these
callbacks happen too soon/late during page unmap.

mmu notifier users should therefore either use the start()/end() callbacks
or the invalidate_range() callbacks.  To make this usage clearer rename
the invalidate_range() callback to arch_invalidate_secondary_tlbs() and
update documention.

Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:41 -07:00

697 lines
23 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MMU_NOTIFIER_H
#define _LINUX_MMU_NOTIFIER_H
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/mm_types.h>
#include <linux/mmap_lock.h>
#include <linux/srcu.h>
#include <linux/interval_tree.h>
struct mmu_notifier_subscriptions;
struct mmu_notifier;
struct mmu_notifier_range;
struct mmu_interval_notifier;
/**
* enum mmu_notifier_event - reason for the mmu notifier callback
* @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
* move the range
*
* @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
* madvise() or replacing a page by another one, ...).
*
* @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
* ie using the vma access permission (vm_page_prot) to update the whole range
* is enough no need to inspect changes to the CPU page table (mprotect()
* syscall)
*
* @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
* pages in the range so to mirror those changes the user must inspect the CPU
* page table (from the end callback).
*
* @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
* access flags). User should soft dirty the page in the end callback to make
* sure that anyone relying on soft dirtiness catch pages that might be written
* through non CPU mappings.
*
* @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
* that the mm refcount is zero and the range is no longer accessible.
*
* @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal
* a device driver to possibly ignore the invalidation if the
* owner field matches the driver's device private pgmap owner.
*
* @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no
* longer have exclusive access to the page. When sent during creation of an
* exclusive range the owner will be initialised to the value provided by the
* caller of make_device_exclusive_range(), otherwise the owner will be NULL.
*/
enum mmu_notifier_event {
MMU_NOTIFY_UNMAP = 0,
MMU_NOTIFY_CLEAR,
MMU_NOTIFY_PROTECTION_VMA,
MMU_NOTIFY_PROTECTION_PAGE,
MMU_NOTIFY_SOFT_DIRTY,
MMU_NOTIFY_RELEASE,
MMU_NOTIFY_MIGRATE,
MMU_NOTIFY_EXCLUSIVE,
};
#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
struct mmu_notifier_ops {
/*
* Called either by mmu_notifier_unregister or when the mm is
* being destroyed by exit_mmap, always before all pages are
* freed. This can run concurrently with other mmu notifier
* methods (the ones invoked outside the mm context) and it
* should tear down all secondary mmu mappings and freeze the
* secondary mmu. If this method isn't implemented you've to
* be sure that nothing could possibly write to the pages
* through the secondary mmu by the time the last thread with
* tsk->mm == mm exits.
*
* As side note: the pages freed after ->release returns could
* be immediately reallocated by the gart at an alias physical
* address with a different cache model, so if ->release isn't
* implemented because all _software_ driven memory accesses
* through the secondary mmu are terminated by the time the
* last thread of this mm quits, you've also to be sure that
* speculative _hardware_ operations can't allocate dirty
* cachelines in the cpu that could not be snooped and made
* coherent with the other read and write operations happening
* through the gart alias address, so leading to memory
* corruption.
*/
void (*release)(struct mmu_notifier *subscription,
struct mm_struct *mm);
/*
* clear_flush_young is called after the VM is
* test-and-clearing the young/accessed bitflag in the
* pte. This way the VM will provide proper aging to the
* accesses to the page through the secondary MMUs and not
* only to the ones through the Linux pte.
* Start-end is necessary in case the secondary MMU is mapping the page
* at a smaller granularity than the primary MMU.
*/
int (*clear_flush_young)(struct mmu_notifier *subscription,
struct mm_struct *mm,
unsigned long start,
unsigned long end);
/*
* clear_young is a lightweight version of clear_flush_young. Like the
* latter, it is supposed to test-and-clear the young/accessed bitflag
* in the secondary pte, but it may omit flushing the secondary tlb.
*/
int (*clear_young)(struct mmu_notifier *subscription,
struct mm_struct *mm,
unsigned long start,
unsigned long end);
/*
* test_young is called to check the young/accessed bitflag in
* the secondary pte. This is used to know if the page is
* frequently used without actually clearing the flag or tearing
* down the secondary mapping on the page.
*/
int (*test_young)(struct mmu_notifier *subscription,
struct mm_struct *mm,
unsigned long address);
/*
* change_pte is called in cases that pte mapping to page is changed:
* for example, when ksm remaps pte to point to a new shared page.
*/
void (*change_pte)(struct mmu_notifier *subscription,
struct mm_struct *mm,
unsigned long address,
pte_t pte);
/*
* invalidate_range_start() and invalidate_range_end() must be
* paired and are called only when the mmap_lock and/or the
* locks protecting the reverse maps are held. If the subsystem
* can't guarantee that no additional references are taken to
* the pages in the range, it has to implement the
* invalidate_range() notifier to remove any references taken
* after invalidate_range_start().
*
* Invalidation of multiple concurrent ranges may be
* optionally permitted by the driver. Either way the
* establishment of sptes is forbidden in the range passed to
* invalidate_range_begin/end for the whole duration of the
* invalidate_range_begin/end critical section.
*
* invalidate_range_start() is called when all pages in the
* range are still mapped and have at least a refcount of one.
*
* invalidate_range_end() is called when all pages in the
* range have been unmapped and the pages have been freed by
* the VM.
*
* The VM will remove the page table entries and potentially
* the page between invalidate_range_start() and
* invalidate_range_end(). If the page must not be freed
* because of pending I/O or other circumstances then the
* invalidate_range_start() callback (or the initial mapping
* by the driver) must make sure that the refcount is kept
* elevated.
*
* If the driver increases the refcount when the pages are
* initially mapped into an address space then either
* invalidate_range_start() or invalidate_range_end() may
* decrease the refcount. If the refcount is decreased on
* invalidate_range_start() then the VM can free pages as page
* table entries are removed. If the refcount is only
* dropped on invalidate_range_end() then the driver itself
* will drop the last refcount but it must take care to flush
* any secondary tlb before doing the final free on the
* page. Pages will no longer be referenced by the linux
* address space but may still be referenced by sptes until
* the last refcount is dropped.
*
* If blockable argument is set to false then the callback cannot
* sleep and has to return with -EAGAIN if sleeping would be required.
* 0 should be returned otherwise. Please note that notifiers that can
* fail invalidate_range_start are not allowed to implement
* invalidate_range_end, as there is no mechanism for informing the
* notifier that its start failed.
*/
int (*invalidate_range_start)(struct mmu_notifier *subscription,
const struct mmu_notifier_range *range);
void (*invalidate_range_end)(struct mmu_notifier *subscription,
const struct mmu_notifier_range *range);
/*
* arch_invalidate_secondary_tlbs() is used to manage a non-CPU TLB
* which shares page-tables with the CPU. The
* invalidate_range_start()/end() callbacks should not be implemented as
* invalidate_secondary_tlbs() already catches the points in time when
* an external TLB needs to be flushed.
*
* This requires arch_invalidate_secondary_tlbs() to be called while
* holding the ptl spin-lock and therefore this callback is not allowed
* to sleep.
*
* This is called by architecture code whenever invalidating a TLB
* entry. It is assumed that any secondary TLB has the same rules for
* when invalidations are required. If this is not the case architecture
* code will need to call this explicitly when required for secondary
* TLB invalidation.
*/
void (*arch_invalidate_secondary_tlbs)(
struct mmu_notifier *subscription,
struct mm_struct *mm,
unsigned long start,
unsigned long end);
/*
* These callbacks are used with the get/put interface to manage the
* lifetime of the mmu_notifier memory. alloc_notifier() returns a new
* notifier for use with the mm.
*
* free_notifier() is only called after the mmu_notifier has been
* fully put, calls to any ops callback are prevented and no ops
* callbacks are currently running. It is called from a SRCU callback
* and cannot sleep.
*/
struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
void (*free_notifier)(struct mmu_notifier *subscription);
};
/*
* The notifier chains are protected by mmap_lock and/or the reverse map
* semaphores. Notifier chains are only changed when all reverse maps and
* the mmap_lock locks are taken.
*
* Therefore notifier chains can only be traversed when either
*
* 1. mmap_lock is held.
* 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
* 3. No other concurrent thread can access the list (release)
*/
struct mmu_notifier {
struct hlist_node hlist;
const struct mmu_notifier_ops *ops;
struct mm_struct *mm;
struct rcu_head rcu;
unsigned int users;
};
/**
* struct mmu_interval_notifier_ops
* @invalidate: Upon return the caller must stop using any SPTEs within this
* range. This function can sleep. Return false only if sleeping
* was required but mmu_notifier_range_blockable(range) is false.
*/
struct mmu_interval_notifier_ops {
bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
const struct mmu_notifier_range *range,
unsigned long cur_seq);
};
struct mmu_interval_notifier {
struct interval_tree_node interval_tree;
const struct mmu_interval_notifier_ops *ops;
struct mm_struct *mm;
struct hlist_node deferred_item;
unsigned long invalidate_seq;
};
#ifdef CONFIG_MMU_NOTIFIER
#ifdef CONFIG_LOCKDEP
extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
#endif
struct mmu_notifier_range {
struct mm_struct *mm;
unsigned long start;
unsigned long end;
unsigned flags;
enum mmu_notifier_event event;
void *owner;
};
static inline int mm_has_notifiers(struct mm_struct *mm)
{
return unlikely(mm->notifier_subscriptions);
}
struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
struct mm_struct *mm);
static inline struct mmu_notifier *
mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
{
struct mmu_notifier *ret;
mmap_write_lock(mm);
ret = mmu_notifier_get_locked(ops, mm);
mmap_write_unlock(mm);
return ret;
}
void mmu_notifier_put(struct mmu_notifier *subscription);
void mmu_notifier_synchronize(void);
extern int mmu_notifier_register(struct mmu_notifier *subscription,
struct mm_struct *mm);
extern int __mmu_notifier_register(struct mmu_notifier *subscription,
struct mm_struct *mm);
extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
struct mm_struct *mm);
unsigned long
mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
struct mm_struct *mm, unsigned long start,
unsigned long length,
const struct mmu_interval_notifier_ops *ops);
int mmu_interval_notifier_insert_locked(
struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
unsigned long start, unsigned long length,
const struct mmu_interval_notifier_ops *ops);
void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
/**
* mmu_interval_set_seq - Save the invalidation sequence
* @interval_sub - The subscription passed to invalidate
* @cur_seq - The cur_seq passed to the invalidate() callback
*
* This must be called unconditionally from the invalidate callback of a
* struct mmu_interval_notifier_ops under the same lock that is used to call
* mmu_interval_read_retry(). It updates the sequence number for later use by
* mmu_interval_read_retry(). The provided cur_seq will always be odd.
*
* If the caller does not call mmu_interval_read_begin() or
* mmu_interval_read_retry() then this call is not required.
*/
static inline void
mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
unsigned long cur_seq)
{
WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
}
/**
* mmu_interval_read_retry - End a read side critical section against a VA range
* interval_sub: The subscription
* seq: The return of the paired mmu_interval_read_begin()
*
* This MUST be called under a user provided lock that is also held
* unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
*
* Each call should be paired with a single mmu_interval_read_begin() and
* should be used to conclude the read side.
*
* Returns true if an invalidation collided with this critical section, and
* the caller should retry.
*/
static inline bool
mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
unsigned long seq)
{
return interval_sub->invalidate_seq != seq;
}
/**
* mmu_interval_check_retry - Test if a collision has occurred
* interval_sub: The subscription
* seq: The return of the matching mmu_interval_read_begin()
*
* This can be used in the critical section between mmu_interval_read_begin()
* and mmu_interval_read_retry(). A return of true indicates an invalidation
* has collided with this critical region and a future
* mmu_interval_read_retry() will return true.
*
* False is not reliable and only suggests a collision may not have
* occurred. It can be called many times and does not have to hold the user
* provided lock.
*
* This call can be used as part of loops and other expensive operations to
* expedite a retry.
*/
static inline bool
mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
unsigned long seq)
{
/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
return READ_ONCE(interval_sub->invalidate_seq) != seq;
}
extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
extern void __mmu_notifier_release(struct mm_struct *mm);
extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end);
extern int __mmu_notifier_clear_young(struct mm_struct *mm,
unsigned long start,
unsigned long end);
extern int __mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address);
extern void __mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte);
extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r);
extern void __mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
unsigned long start, unsigned long end);
extern bool
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
{
return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
}
static inline void mmu_notifier_release(struct mm_struct *mm)
{
if (mm_has_notifiers(mm))
__mmu_notifier_release(mm);
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_clear_flush_young(mm, start, end);
return 0;
}
static inline int mmu_notifier_clear_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_clear_young(mm, start, end);
return 0;
}
static inline int mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address)
{
if (mm_has_notifiers(mm))
return __mmu_notifier_test_young(mm, address);
return 0;
}
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte)
{
if (mm_has_notifiers(mm))
__mmu_notifier_change_pte(mm, address, pte);
}
static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
{
might_sleep();
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
if (mm_has_notifiers(range->mm)) {
range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
__mmu_notifier_invalidate_range_start(range);
}
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
}
static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
{
int ret = 0;
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
if (mm_has_notifiers(range->mm)) {
range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
ret = __mmu_notifier_invalidate_range_start(range);
}
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
return ret;
}
static inline void
mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
{
if (mmu_notifier_range_blockable(range))
might_sleep();
if (mm_has_notifiers(range->mm))
__mmu_notifier_invalidate_range_end(range);
}
static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
if (mm_has_notifiers(mm))
__mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
}
static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
{
mm->notifier_subscriptions = NULL;
}
static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
{
if (mm_has_notifiers(mm))
__mmu_notifier_subscriptions_destroy(mm);
}
static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
enum mmu_notifier_event event,
unsigned flags,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
range->event = event;
range->mm = mm;
range->start = start;
range->end = end;
range->flags = flags;
}
static inline void mmu_notifier_range_init_owner(
struct mmu_notifier_range *range,
enum mmu_notifier_event event, unsigned int flags,
struct mm_struct *mm, unsigned long start,
unsigned long end, void *owner)
{
mmu_notifier_range_init(range, event, flags, mm, start, end);
range->owner = owner;
}
#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = ptep_clear_flush_young(___vma, ___address, __ptep); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address, \
___address + \
PAGE_SIZE); \
__young; \
})
#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
__young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
___address, \
___address + \
PMD_SIZE); \
__young; \
})
#define ptep_clear_young_notify(__vma, __address, __ptep) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
___address + PAGE_SIZE); \
__young; \
})
#define pmdp_clear_young_notify(__vma, __address, __pmdp) \
({ \
int __young; \
struct vm_area_struct *___vma = __vma; \
unsigned long ___address = __address; \
__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
___address + PMD_SIZE); \
__young; \
})
/*
* set_pte_at_notify() sets the pte _after_ running the notifier.
* This is safe to start by updating the secondary MMUs, because the primary MMU
* pte invalidate must have already happened with a ptep_clear_flush() before
* set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
* required when we change both the protection of the mapping from read-only to
* read-write and the pfn (like during copy on write page faults). Otherwise the
* old page would remain mapped readonly in the secondary MMUs after the new
* page is already writable by some CPU through the primary MMU.
*/
#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
({ \
struct mm_struct *___mm = __mm; \
unsigned long ___address = __address; \
pte_t ___pte = __pte; \
\
mmu_notifier_change_pte(___mm, ___address, ___pte); \
set_pte_at(___mm, ___address, __ptep, ___pte); \
})
#else /* CONFIG_MMU_NOTIFIER */
struct mmu_notifier_range {
unsigned long start;
unsigned long end;
};
static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
unsigned long start,
unsigned long end)
{
range->start = start;
range->end = end;
}
#define mmu_notifier_range_init(range,event,flags,mm,start,end) \
_mmu_notifier_range_init(range, start, end)
#define mmu_notifier_range_init_owner(range, event, flags, mm, start, \
end, owner) \
_mmu_notifier_range_init(range, start, end)
static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
{
return true;
}
static inline int mm_has_notifiers(struct mm_struct *mm)
{
return 0;
}
static inline void mmu_notifier_release(struct mm_struct *mm)
{
}
static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
return 0;
}
static inline int mmu_notifier_test_young(struct mm_struct *mm,
unsigned long address)
{
return 0;
}
static inline void mmu_notifier_change_pte(struct mm_struct *mm,
unsigned long address, pte_t pte)
{
}
static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
{
}
static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
{
return 0;
}
static inline
void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
{
}
static inline void mmu_notifier_arch_invalidate_secondary_tlbs(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
}
static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
{
}
static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
{
}
#define mmu_notifier_range_update_to_read_only(r) false
#define ptep_clear_flush_young_notify ptep_clear_flush_young
#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
#define ptep_clear_young_notify ptep_test_and_clear_young
#define pmdp_clear_young_notify pmdp_test_and_clear_young
#define ptep_clear_flush_notify ptep_clear_flush
#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
#define set_pte_at_notify set_pte_at
static inline void mmu_notifier_synchronize(void)
{
}
#endif /* CONFIG_MMU_NOTIFIER */
#endif /* _LINUX_MMU_NOTIFIER_H */