mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
2f064a59a1
Change the type and name of task_struct::state. Drop the volatile and shrink it to an 'unsigned int'. Rename it in order to find all uses such that we can use READ_ONCE/WRITE_ONCE as appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
1465 lines
38 KiB
C
1465 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/kernel/ptrace.c
|
|
*
|
|
* (C) Copyright 1999 Linus Torvalds
|
|
*
|
|
* Common interfaces for "ptrace()" which we do not want
|
|
* to continually duplicate across every architecture.
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/security.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/regset.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/minmax.h>
|
|
|
|
#include <asm/syscall.h> /* for syscall_get_* */
|
|
|
|
/*
|
|
* Access another process' address space via ptrace.
|
|
* Source/target buffer must be kernel space,
|
|
* Do not walk the page table directly, use get_user_pages
|
|
*/
|
|
int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags)
|
|
{
|
|
struct mm_struct *mm;
|
|
int ret;
|
|
|
|
mm = get_task_mm(tsk);
|
|
if (!mm)
|
|
return 0;
|
|
|
|
if (!tsk->ptrace ||
|
|
(current != tsk->parent) ||
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptracer_capable(tsk, mm->user_ns))) {
|
|
mmput(mm);
|
|
return 0;
|
|
}
|
|
|
|
ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
|
|
mmput(mm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
|
|
const struct cred *ptracer_cred)
|
|
{
|
|
BUG_ON(!list_empty(&child->ptrace_entry));
|
|
list_add(&child->ptrace_entry, &new_parent->ptraced);
|
|
child->parent = new_parent;
|
|
child->ptracer_cred = get_cred(ptracer_cred);
|
|
}
|
|
|
|
/*
|
|
* ptrace a task: make the debugger its new parent and
|
|
* move it to the ptrace list.
|
|
*
|
|
* Must be called with the tasklist lock write-held.
|
|
*/
|
|
static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
|
|
{
|
|
__ptrace_link(child, new_parent, current_cred());
|
|
}
|
|
|
|
/**
|
|
* __ptrace_unlink - unlink ptracee and restore its execution state
|
|
* @child: ptracee to be unlinked
|
|
*
|
|
* Remove @child from the ptrace list, move it back to the original parent,
|
|
* and restore the execution state so that it conforms to the group stop
|
|
* state.
|
|
*
|
|
* Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
|
|
* exiting. For PTRACE_DETACH, unless the ptracee has been killed between
|
|
* ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
|
|
* If the ptracer is exiting, the ptracee can be in any state.
|
|
*
|
|
* After detach, the ptracee should be in a state which conforms to the
|
|
* group stop. If the group is stopped or in the process of stopping, the
|
|
* ptracee should be put into TASK_STOPPED; otherwise, it should be woken
|
|
* up from TASK_TRACED.
|
|
*
|
|
* If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
|
|
* it goes through TRACED -> RUNNING -> STOPPED transition which is similar
|
|
* to but in the opposite direction of what happens while attaching to a
|
|
* stopped task. However, in this direction, the intermediate RUNNING
|
|
* state is not hidden even from the current ptracer and if it immediately
|
|
* re-attaches and performs a WNOHANG wait(2), it may fail.
|
|
*
|
|
* CONTEXT:
|
|
* write_lock_irq(tasklist_lock)
|
|
*/
|
|
void __ptrace_unlink(struct task_struct *child)
|
|
{
|
|
const struct cred *old_cred;
|
|
BUG_ON(!child->ptrace);
|
|
|
|
clear_task_syscall_work(child, SYSCALL_TRACE);
|
|
#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
|
|
clear_task_syscall_work(child, SYSCALL_EMU);
|
|
#endif
|
|
|
|
child->parent = child->real_parent;
|
|
list_del_init(&child->ptrace_entry);
|
|
old_cred = child->ptracer_cred;
|
|
child->ptracer_cred = NULL;
|
|
put_cred(old_cred);
|
|
|
|
spin_lock(&child->sighand->siglock);
|
|
child->ptrace = 0;
|
|
/*
|
|
* Clear all pending traps and TRAPPING. TRAPPING should be
|
|
* cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
|
|
*/
|
|
task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
|
|
task_clear_jobctl_trapping(child);
|
|
|
|
/*
|
|
* Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
|
|
* @child isn't dead.
|
|
*/
|
|
if (!(child->flags & PF_EXITING) &&
|
|
(child->signal->flags & SIGNAL_STOP_STOPPED ||
|
|
child->signal->group_stop_count)) {
|
|
child->jobctl |= JOBCTL_STOP_PENDING;
|
|
|
|
/*
|
|
* This is only possible if this thread was cloned by the
|
|
* traced task running in the stopped group, set the signal
|
|
* for the future reports.
|
|
* FIXME: we should change ptrace_init_task() to handle this
|
|
* case.
|
|
*/
|
|
if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
|
|
child->jobctl |= SIGSTOP;
|
|
}
|
|
|
|
/*
|
|
* If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
|
|
* @child in the butt. Note that @resume should be used iff @child
|
|
* is in TASK_TRACED; otherwise, we might unduly disrupt
|
|
* TASK_KILLABLE sleeps.
|
|
*/
|
|
if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
|
|
ptrace_signal_wake_up(child, true);
|
|
|
|
spin_unlock(&child->sighand->siglock);
|
|
}
|
|
|
|
static bool looks_like_a_spurious_pid(struct task_struct *task)
|
|
{
|
|
if (task->exit_code != ((PTRACE_EVENT_EXEC << 8) | SIGTRAP))
|
|
return false;
|
|
|
|
if (task_pid_vnr(task) == task->ptrace_message)
|
|
return false;
|
|
/*
|
|
* The tracee changed its pid but the PTRACE_EVENT_EXEC event
|
|
* was not wait()'ed, most probably debugger targets the old
|
|
* leader which was destroyed in de_thread().
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/* Ensure that nothing can wake it up, even SIGKILL */
|
|
static bool ptrace_freeze_traced(struct task_struct *task)
|
|
{
|
|
bool ret = false;
|
|
|
|
/* Lockless, nobody but us can set this flag */
|
|
if (task->jobctl & JOBCTL_LISTENING)
|
|
return ret;
|
|
|
|
spin_lock_irq(&task->sighand->siglock);
|
|
if (task_is_traced(task) && !looks_like_a_spurious_pid(task) &&
|
|
!__fatal_signal_pending(task)) {
|
|
WRITE_ONCE(task->__state, __TASK_TRACED);
|
|
ret = true;
|
|
}
|
|
spin_unlock_irq(&task->sighand->siglock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ptrace_unfreeze_traced(struct task_struct *task)
|
|
{
|
|
if (READ_ONCE(task->__state) != __TASK_TRACED)
|
|
return;
|
|
|
|
WARN_ON(!task->ptrace || task->parent != current);
|
|
|
|
/*
|
|
* PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
|
|
* Recheck state under the lock to close this race.
|
|
*/
|
|
spin_lock_irq(&task->sighand->siglock);
|
|
if (READ_ONCE(task->__state) == __TASK_TRACED) {
|
|
if (__fatal_signal_pending(task))
|
|
wake_up_state(task, __TASK_TRACED);
|
|
else
|
|
WRITE_ONCE(task->__state, TASK_TRACED);
|
|
}
|
|
spin_unlock_irq(&task->sighand->siglock);
|
|
}
|
|
|
|
/**
|
|
* ptrace_check_attach - check whether ptracee is ready for ptrace operation
|
|
* @child: ptracee to check for
|
|
* @ignore_state: don't check whether @child is currently %TASK_TRACED
|
|
*
|
|
* Check whether @child is being ptraced by %current and ready for further
|
|
* ptrace operations. If @ignore_state is %false, @child also should be in
|
|
* %TASK_TRACED state and on return the child is guaranteed to be traced
|
|
* and not executing. If @ignore_state is %true, @child can be in any
|
|
* state.
|
|
*
|
|
* CONTEXT:
|
|
* Grabs and releases tasklist_lock and @child->sighand->siglock.
|
|
*
|
|
* RETURNS:
|
|
* 0 on success, -ESRCH if %child is not ready.
|
|
*/
|
|
static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
|
|
{
|
|
int ret = -ESRCH;
|
|
|
|
/*
|
|
* We take the read lock around doing both checks to close a
|
|
* possible race where someone else was tracing our child and
|
|
* detached between these two checks. After this locked check,
|
|
* we are sure that this is our traced child and that can only
|
|
* be changed by us so it's not changing right after this.
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
if (child->ptrace && child->parent == current) {
|
|
WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED);
|
|
/*
|
|
* child->sighand can't be NULL, release_task()
|
|
* does ptrace_unlink() before __exit_signal().
|
|
*/
|
|
if (ignore_state || ptrace_freeze_traced(child))
|
|
ret = 0;
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
if (!ret && !ignore_state) {
|
|
if (!wait_task_inactive(child, __TASK_TRACED)) {
|
|
/*
|
|
* This can only happen if may_ptrace_stop() fails and
|
|
* ptrace_stop() changes ->state back to TASK_RUNNING,
|
|
* so we should not worry about leaking __TASK_TRACED.
|
|
*/
|
|
WARN_ON(READ_ONCE(child->__state) == __TASK_TRACED);
|
|
ret = -ESRCH;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
|
|
{
|
|
if (mode & PTRACE_MODE_NOAUDIT)
|
|
return ns_capable_noaudit(ns, CAP_SYS_PTRACE);
|
|
return ns_capable(ns, CAP_SYS_PTRACE);
|
|
}
|
|
|
|
/* Returns 0 on success, -errno on denial. */
|
|
static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
{
|
|
const struct cred *cred = current_cred(), *tcred;
|
|
struct mm_struct *mm;
|
|
kuid_t caller_uid;
|
|
kgid_t caller_gid;
|
|
|
|
if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
|
|
WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* May we inspect the given task?
|
|
* This check is used both for attaching with ptrace
|
|
* and for allowing access to sensitive information in /proc.
|
|
*
|
|
* ptrace_attach denies several cases that /proc allows
|
|
* because setting up the necessary parent/child relationship
|
|
* or halting the specified task is impossible.
|
|
*/
|
|
|
|
/* Don't let security modules deny introspection */
|
|
if (same_thread_group(task, current))
|
|
return 0;
|
|
rcu_read_lock();
|
|
if (mode & PTRACE_MODE_FSCREDS) {
|
|
caller_uid = cred->fsuid;
|
|
caller_gid = cred->fsgid;
|
|
} else {
|
|
/*
|
|
* Using the euid would make more sense here, but something
|
|
* in userland might rely on the old behavior, and this
|
|
* shouldn't be a security problem since
|
|
* PTRACE_MODE_REALCREDS implies that the caller explicitly
|
|
* used a syscall that requests access to another process
|
|
* (and not a filesystem syscall to procfs).
|
|
*/
|
|
caller_uid = cred->uid;
|
|
caller_gid = cred->gid;
|
|
}
|
|
tcred = __task_cred(task);
|
|
if (uid_eq(caller_uid, tcred->euid) &&
|
|
uid_eq(caller_uid, tcred->suid) &&
|
|
uid_eq(caller_uid, tcred->uid) &&
|
|
gid_eq(caller_gid, tcred->egid) &&
|
|
gid_eq(caller_gid, tcred->sgid) &&
|
|
gid_eq(caller_gid, tcred->gid))
|
|
goto ok;
|
|
if (ptrace_has_cap(tcred->user_ns, mode))
|
|
goto ok;
|
|
rcu_read_unlock();
|
|
return -EPERM;
|
|
ok:
|
|
rcu_read_unlock();
|
|
/*
|
|
* If a task drops privileges and becomes nondumpable (through a syscall
|
|
* like setresuid()) while we are trying to access it, we must ensure
|
|
* that the dumpability is read after the credentials; otherwise,
|
|
* we may be able to attach to a task that we shouldn't be able to
|
|
* attach to (as if the task had dropped privileges without becoming
|
|
* nondumpable).
|
|
* Pairs with a write barrier in commit_creds().
|
|
*/
|
|
smp_rmb();
|
|
mm = task->mm;
|
|
if (mm &&
|
|
((get_dumpable(mm) != SUID_DUMP_USER) &&
|
|
!ptrace_has_cap(mm->user_ns, mode)))
|
|
return -EPERM;
|
|
|
|
return security_ptrace_access_check(task, mode);
|
|
}
|
|
|
|
bool ptrace_may_access(struct task_struct *task, unsigned int mode)
|
|
{
|
|
int err;
|
|
task_lock(task);
|
|
err = __ptrace_may_access(task, mode);
|
|
task_unlock(task);
|
|
return !err;
|
|
}
|
|
|
|
static int ptrace_attach(struct task_struct *task, long request,
|
|
unsigned long addr,
|
|
unsigned long flags)
|
|
{
|
|
bool seize = (request == PTRACE_SEIZE);
|
|
int retval;
|
|
|
|
retval = -EIO;
|
|
if (seize) {
|
|
if (addr != 0)
|
|
goto out;
|
|
if (flags & ~(unsigned long)PTRACE_O_MASK)
|
|
goto out;
|
|
flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
|
|
} else {
|
|
flags = PT_PTRACED;
|
|
}
|
|
|
|
audit_ptrace(task);
|
|
|
|
retval = -EPERM;
|
|
if (unlikely(task->flags & PF_KTHREAD))
|
|
goto out;
|
|
if (same_thread_group(task, current))
|
|
goto out;
|
|
|
|
/*
|
|
* Protect exec's credential calculations against our interference;
|
|
* SUID, SGID and LSM creds get determined differently
|
|
* under ptrace.
|
|
*/
|
|
retval = -ERESTARTNOINTR;
|
|
if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
|
|
goto out;
|
|
|
|
task_lock(task);
|
|
retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
|
|
task_unlock(task);
|
|
if (retval)
|
|
goto unlock_creds;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
retval = -EPERM;
|
|
if (unlikely(task->exit_state))
|
|
goto unlock_tasklist;
|
|
if (task->ptrace)
|
|
goto unlock_tasklist;
|
|
|
|
if (seize)
|
|
flags |= PT_SEIZED;
|
|
task->ptrace = flags;
|
|
|
|
ptrace_link(task, current);
|
|
|
|
/* SEIZE doesn't trap tracee on attach */
|
|
if (!seize)
|
|
send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
|
|
|
|
spin_lock(&task->sighand->siglock);
|
|
|
|
/*
|
|
* If the task is already STOPPED, set JOBCTL_TRAP_STOP and
|
|
* TRAPPING, and kick it so that it transits to TRACED. TRAPPING
|
|
* will be cleared if the child completes the transition or any
|
|
* event which clears the group stop states happens. We'll wait
|
|
* for the transition to complete before returning from this
|
|
* function.
|
|
*
|
|
* This hides STOPPED -> RUNNING -> TRACED transition from the
|
|
* attaching thread but a different thread in the same group can
|
|
* still observe the transient RUNNING state. IOW, if another
|
|
* thread's WNOHANG wait(2) on the stopped tracee races against
|
|
* ATTACH, the wait(2) may fail due to the transient RUNNING.
|
|
*
|
|
* The following task_is_stopped() test is safe as both transitions
|
|
* in and out of STOPPED are protected by siglock.
|
|
*/
|
|
if (task_is_stopped(task) &&
|
|
task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
|
|
signal_wake_up_state(task, __TASK_STOPPED);
|
|
|
|
spin_unlock(&task->sighand->siglock);
|
|
|
|
retval = 0;
|
|
unlock_tasklist:
|
|
write_unlock_irq(&tasklist_lock);
|
|
unlock_creds:
|
|
mutex_unlock(&task->signal->cred_guard_mutex);
|
|
out:
|
|
if (!retval) {
|
|
/*
|
|
* We do not bother to change retval or clear JOBCTL_TRAPPING
|
|
* if wait_on_bit() was interrupted by SIGKILL. The tracer will
|
|
* not return to user-mode, it will exit and clear this bit in
|
|
* __ptrace_unlink() if it wasn't already cleared by the tracee;
|
|
* and until then nobody can ptrace this task.
|
|
*/
|
|
wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
|
|
proc_ptrace_connector(task, PTRACE_ATTACH);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ptrace_traceme -- helper for PTRACE_TRACEME
|
|
*
|
|
* Performs checks and sets PT_PTRACED.
|
|
* Should be used by all ptrace implementations for PTRACE_TRACEME.
|
|
*/
|
|
static int ptrace_traceme(void)
|
|
{
|
|
int ret = -EPERM;
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/* Are we already being traced? */
|
|
if (!current->ptrace) {
|
|
ret = security_ptrace_traceme(current->parent);
|
|
/*
|
|
* Check PF_EXITING to ensure ->real_parent has not passed
|
|
* exit_ptrace(). Otherwise we don't report the error but
|
|
* pretend ->real_parent untraces us right after return.
|
|
*/
|
|
if (!ret && !(current->real_parent->flags & PF_EXITING)) {
|
|
current->ptrace = PT_PTRACED;
|
|
ptrace_link(current, current->real_parent);
|
|
}
|
|
}
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called with irqs disabled, returns true if childs should reap themselves.
|
|
*/
|
|
static int ignoring_children(struct sighand_struct *sigh)
|
|
{
|
|
int ret;
|
|
spin_lock(&sigh->siglock);
|
|
ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
|
|
(sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
|
|
spin_unlock(&sigh->siglock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called with tasklist_lock held for writing.
|
|
* Unlink a traced task, and clean it up if it was a traced zombie.
|
|
* Return true if it needs to be reaped with release_task().
|
|
* (We can't call release_task() here because we already hold tasklist_lock.)
|
|
*
|
|
* If it's a zombie, our attachedness prevented normal parent notification
|
|
* or self-reaping. Do notification now if it would have happened earlier.
|
|
* If it should reap itself, return true.
|
|
*
|
|
* If it's our own child, there is no notification to do. But if our normal
|
|
* children self-reap, then this child was prevented by ptrace and we must
|
|
* reap it now, in that case we must also wake up sub-threads sleeping in
|
|
* do_wait().
|
|
*/
|
|
static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
|
|
{
|
|
bool dead;
|
|
|
|
__ptrace_unlink(p);
|
|
|
|
if (p->exit_state != EXIT_ZOMBIE)
|
|
return false;
|
|
|
|
dead = !thread_group_leader(p);
|
|
|
|
if (!dead && thread_group_empty(p)) {
|
|
if (!same_thread_group(p->real_parent, tracer))
|
|
dead = do_notify_parent(p, p->exit_signal);
|
|
else if (ignoring_children(tracer->sighand)) {
|
|
__wake_up_parent(p, tracer);
|
|
dead = true;
|
|
}
|
|
}
|
|
/* Mark it as in the process of being reaped. */
|
|
if (dead)
|
|
p->exit_state = EXIT_DEAD;
|
|
return dead;
|
|
}
|
|
|
|
static int ptrace_detach(struct task_struct *child, unsigned int data)
|
|
{
|
|
if (!valid_signal(data))
|
|
return -EIO;
|
|
|
|
/* Architecture-specific hardware disable .. */
|
|
ptrace_disable(child);
|
|
|
|
write_lock_irq(&tasklist_lock);
|
|
/*
|
|
* We rely on ptrace_freeze_traced(). It can't be killed and
|
|
* untraced by another thread, it can't be a zombie.
|
|
*/
|
|
WARN_ON(!child->ptrace || child->exit_state);
|
|
/*
|
|
* tasklist_lock avoids the race with wait_task_stopped(), see
|
|
* the comment in ptrace_resume().
|
|
*/
|
|
child->exit_code = data;
|
|
__ptrace_detach(current, child);
|
|
write_unlock_irq(&tasklist_lock);
|
|
|
|
proc_ptrace_connector(child, PTRACE_DETACH);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detach all tasks we were using ptrace on. Called with tasklist held
|
|
* for writing.
|
|
*/
|
|
void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
|
|
{
|
|
struct task_struct *p, *n;
|
|
|
|
list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
|
|
if (unlikely(p->ptrace & PT_EXITKILL))
|
|
send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
|
|
|
|
if (__ptrace_detach(tracer, p))
|
|
list_add(&p->ptrace_entry, dead);
|
|
}
|
|
}
|
|
|
|
int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
|
|
{
|
|
int copied = 0;
|
|
|
|
while (len > 0) {
|
|
char buf[128];
|
|
int this_len, retval;
|
|
|
|
this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
|
|
|
|
if (!retval) {
|
|
if (copied)
|
|
break;
|
|
return -EIO;
|
|
}
|
|
if (copy_to_user(dst, buf, retval))
|
|
return -EFAULT;
|
|
copied += retval;
|
|
src += retval;
|
|
dst += retval;
|
|
len -= retval;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
|
|
{
|
|
int copied = 0;
|
|
|
|
while (len > 0) {
|
|
char buf[128];
|
|
int this_len, retval;
|
|
|
|
this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
|
|
if (copy_from_user(buf, src, this_len))
|
|
return -EFAULT;
|
|
retval = ptrace_access_vm(tsk, dst, buf, this_len,
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
if (!retval) {
|
|
if (copied)
|
|
break;
|
|
return -EIO;
|
|
}
|
|
copied += retval;
|
|
src += retval;
|
|
dst += retval;
|
|
len -= retval;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
static int ptrace_setoptions(struct task_struct *child, unsigned long data)
|
|
{
|
|
unsigned flags;
|
|
|
|
if (data & ~(unsigned long)PTRACE_O_MASK)
|
|
return -EINVAL;
|
|
|
|
if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
|
|
if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
|
|
!IS_ENABLED(CONFIG_SECCOMP))
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED ||
|
|
current->ptrace & PT_SUSPEND_SECCOMP)
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Avoid intermediate state when all opts are cleared */
|
|
flags = child->ptrace;
|
|
flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
|
|
flags |= (data << PT_OPT_FLAG_SHIFT);
|
|
child->ptrace = flags;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
|
|
{
|
|
unsigned long flags;
|
|
int error = -ESRCH;
|
|
|
|
if (lock_task_sighand(child, &flags)) {
|
|
error = -EINVAL;
|
|
if (likely(child->last_siginfo != NULL)) {
|
|
copy_siginfo(info, child->last_siginfo);
|
|
error = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
|
|
{
|
|
unsigned long flags;
|
|
int error = -ESRCH;
|
|
|
|
if (lock_task_sighand(child, &flags)) {
|
|
error = -EINVAL;
|
|
if (likely(child->last_siginfo != NULL)) {
|
|
copy_siginfo(child->last_siginfo, info);
|
|
error = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int ptrace_peek_siginfo(struct task_struct *child,
|
|
unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
struct ptrace_peeksiginfo_args arg;
|
|
struct sigpending *pending;
|
|
struct sigqueue *q;
|
|
int ret, i;
|
|
|
|
ret = copy_from_user(&arg, (void __user *) addr,
|
|
sizeof(struct ptrace_peeksiginfo_args));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
|
|
return -EINVAL; /* unknown flags */
|
|
|
|
if (arg.nr < 0)
|
|
return -EINVAL;
|
|
|
|
/* Ensure arg.off fits in an unsigned long */
|
|
if (arg.off > ULONG_MAX)
|
|
return 0;
|
|
|
|
if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
|
|
pending = &child->signal->shared_pending;
|
|
else
|
|
pending = &child->pending;
|
|
|
|
for (i = 0; i < arg.nr; ) {
|
|
kernel_siginfo_t info;
|
|
unsigned long off = arg.off + i;
|
|
bool found = false;
|
|
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
list_for_each_entry(q, &pending->list, list) {
|
|
if (!off--) {
|
|
found = true;
|
|
copy_siginfo(&info, &q->info);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
if (!found) /* beyond the end of the list */
|
|
break;
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
if (unlikely(in_compat_syscall())) {
|
|
compat_siginfo_t __user *uinfo = compat_ptr(data);
|
|
|
|
if (copy_siginfo_to_user32(uinfo, &info)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
} else
|
|
#endif
|
|
{
|
|
siginfo_t __user *uinfo = (siginfo_t __user *) data;
|
|
|
|
if (copy_siginfo_to_user(uinfo, &info)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
data += sizeof(siginfo_t);
|
|
i++;
|
|
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (i > 0)
|
|
return i;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_RSEQ
|
|
static long ptrace_get_rseq_configuration(struct task_struct *task,
|
|
unsigned long size, void __user *data)
|
|
{
|
|
struct ptrace_rseq_configuration conf = {
|
|
.rseq_abi_pointer = (u64)(uintptr_t)task->rseq,
|
|
.rseq_abi_size = sizeof(*task->rseq),
|
|
.signature = task->rseq_sig,
|
|
.flags = 0,
|
|
};
|
|
|
|
size = min_t(unsigned long, size, sizeof(conf));
|
|
if (copy_to_user(data, &conf, size))
|
|
return -EFAULT;
|
|
return sizeof(conf);
|
|
}
|
|
#endif
|
|
|
|
#ifdef PTRACE_SINGLESTEP
|
|
#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
|
|
#else
|
|
#define is_singlestep(request) 0
|
|
#endif
|
|
|
|
#ifdef PTRACE_SINGLEBLOCK
|
|
#define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
|
|
#else
|
|
#define is_singleblock(request) 0
|
|
#endif
|
|
|
|
#ifdef PTRACE_SYSEMU
|
|
#define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
|
|
#else
|
|
#define is_sysemu_singlestep(request) 0
|
|
#endif
|
|
|
|
static int ptrace_resume(struct task_struct *child, long request,
|
|
unsigned long data)
|
|
{
|
|
bool need_siglock;
|
|
|
|
if (!valid_signal(data))
|
|
return -EIO;
|
|
|
|
if (request == PTRACE_SYSCALL)
|
|
set_task_syscall_work(child, SYSCALL_TRACE);
|
|
else
|
|
clear_task_syscall_work(child, SYSCALL_TRACE);
|
|
|
|
#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
|
|
if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
|
|
set_task_syscall_work(child, SYSCALL_EMU);
|
|
else
|
|
clear_task_syscall_work(child, SYSCALL_EMU);
|
|
#endif
|
|
|
|
if (is_singleblock(request)) {
|
|
if (unlikely(!arch_has_block_step()))
|
|
return -EIO;
|
|
user_enable_block_step(child);
|
|
} else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
|
|
if (unlikely(!arch_has_single_step()))
|
|
return -EIO;
|
|
user_enable_single_step(child);
|
|
} else {
|
|
user_disable_single_step(child);
|
|
}
|
|
|
|
/*
|
|
* Change ->exit_code and ->state under siglock to avoid the race
|
|
* with wait_task_stopped() in between; a non-zero ->exit_code will
|
|
* wrongly look like another report from tracee.
|
|
*
|
|
* Note that we need siglock even if ->exit_code == data and/or this
|
|
* status was not reported yet, the new status must not be cleared by
|
|
* wait_task_stopped() after resume.
|
|
*
|
|
* If data == 0 we do not care if wait_task_stopped() reports the old
|
|
* status and clears the code too; this can't race with the tracee, it
|
|
* takes siglock after resume.
|
|
*/
|
|
need_siglock = data && !thread_group_empty(current);
|
|
if (need_siglock)
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
child->exit_code = data;
|
|
wake_up_state(child, __TASK_TRACED);
|
|
if (need_siglock)
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
|
|
static const struct user_regset *
|
|
find_regset(const struct user_regset_view *view, unsigned int type)
|
|
{
|
|
const struct user_regset *regset;
|
|
int n;
|
|
|
|
for (n = 0; n < view->n; ++n) {
|
|
regset = view->regsets + n;
|
|
if (regset->core_note_type == type)
|
|
return regset;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
|
|
struct iovec *kiov)
|
|
{
|
|
const struct user_regset_view *view = task_user_regset_view(task);
|
|
const struct user_regset *regset = find_regset(view, type);
|
|
int regset_no;
|
|
|
|
if (!regset || (kiov->iov_len % regset->size) != 0)
|
|
return -EINVAL;
|
|
|
|
regset_no = regset - view->regsets;
|
|
kiov->iov_len = min(kiov->iov_len,
|
|
(__kernel_size_t) (regset->n * regset->size));
|
|
|
|
if (req == PTRACE_GETREGSET)
|
|
return copy_regset_to_user(task, view, regset_no, 0,
|
|
kiov->iov_len, kiov->iov_base);
|
|
else
|
|
return copy_regset_from_user(task, view, regset_no, 0,
|
|
kiov->iov_len, kiov->iov_base);
|
|
}
|
|
|
|
/*
|
|
* This is declared in linux/regset.h and defined in machine-dependent
|
|
* code. We put the export here, near the primary machine-neutral use,
|
|
* to ensure no machine forgets it.
|
|
*/
|
|
EXPORT_SYMBOL_GPL(task_user_regset_view);
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
unsigned long args[ARRAY_SIZE(info->entry.args)];
|
|
int i;
|
|
|
|
info->op = PTRACE_SYSCALL_INFO_ENTRY;
|
|
info->entry.nr = syscall_get_nr(child, regs);
|
|
syscall_get_arguments(child, regs, args);
|
|
for (i = 0; i < ARRAY_SIZE(args); i++)
|
|
info->entry.args[i] = args[i];
|
|
|
|
/* args is the last field in struct ptrace_syscall_info.entry */
|
|
return offsetofend(struct ptrace_syscall_info, entry.args);
|
|
}
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
/*
|
|
* As struct ptrace_syscall_info.entry is currently a subset
|
|
* of struct ptrace_syscall_info.seccomp, it makes sense to
|
|
* initialize that subset using ptrace_get_syscall_info_entry().
|
|
* This can be reconsidered in the future if these structures
|
|
* diverge significantly enough.
|
|
*/
|
|
ptrace_get_syscall_info_entry(child, regs, info);
|
|
info->op = PTRACE_SYSCALL_INFO_SECCOMP;
|
|
info->seccomp.ret_data = child->ptrace_message;
|
|
|
|
/* ret_data is the last field in struct ptrace_syscall_info.seccomp */
|
|
return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
|
|
}
|
|
|
|
static unsigned long
|
|
ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
|
|
struct ptrace_syscall_info *info)
|
|
{
|
|
info->op = PTRACE_SYSCALL_INFO_EXIT;
|
|
info->exit.rval = syscall_get_error(child, regs);
|
|
info->exit.is_error = !!info->exit.rval;
|
|
if (!info->exit.is_error)
|
|
info->exit.rval = syscall_get_return_value(child, regs);
|
|
|
|
/* is_error is the last field in struct ptrace_syscall_info.exit */
|
|
return offsetofend(struct ptrace_syscall_info, exit.is_error);
|
|
}
|
|
|
|
static int
|
|
ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
|
|
void __user *datavp)
|
|
{
|
|
struct pt_regs *regs = task_pt_regs(child);
|
|
struct ptrace_syscall_info info = {
|
|
.op = PTRACE_SYSCALL_INFO_NONE,
|
|
.arch = syscall_get_arch(child),
|
|
.instruction_pointer = instruction_pointer(regs),
|
|
.stack_pointer = user_stack_pointer(regs),
|
|
};
|
|
unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
|
|
unsigned long write_size;
|
|
|
|
/*
|
|
* This does not need lock_task_sighand() to access
|
|
* child->last_siginfo because ptrace_freeze_traced()
|
|
* called earlier by ptrace_check_attach() ensures that
|
|
* the tracee cannot go away and clear its last_siginfo.
|
|
*/
|
|
switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
|
|
case SIGTRAP | 0x80:
|
|
switch (child->ptrace_message) {
|
|
case PTRACE_EVENTMSG_SYSCALL_ENTRY:
|
|
actual_size = ptrace_get_syscall_info_entry(child, regs,
|
|
&info);
|
|
break;
|
|
case PTRACE_EVENTMSG_SYSCALL_EXIT:
|
|
actual_size = ptrace_get_syscall_info_exit(child, regs,
|
|
&info);
|
|
break;
|
|
}
|
|
break;
|
|
case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
|
|
actual_size = ptrace_get_syscall_info_seccomp(child, regs,
|
|
&info);
|
|
break;
|
|
}
|
|
|
|
write_size = min(actual_size, user_size);
|
|
return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
|
|
|
|
int ptrace_request(struct task_struct *child, long request,
|
|
unsigned long addr, unsigned long data)
|
|
{
|
|
bool seized = child->ptrace & PT_SEIZED;
|
|
int ret = -EIO;
|
|
kernel_siginfo_t siginfo, *si;
|
|
void __user *datavp = (void __user *) data;
|
|
unsigned long __user *datalp = datavp;
|
|
unsigned long flags;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
return generic_ptrace_peekdata(child, addr, data);
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
return generic_ptrace_pokedata(child, addr, data);
|
|
|
|
#ifdef PTRACE_OLDSETOPTIONS
|
|
case PTRACE_OLDSETOPTIONS:
|
|
#endif
|
|
case PTRACE_SETOPTIONS:
|
|
ret = ptrace_setoptions(child, data);
|
|
break;
|
|
case PTRACE_GETEVENTMSG:
|
|
ret = put_user(child->ptrace_message, datalp);
|
|
break;
|
|
|
|
case PTRACE_PEEKSIGINFO:
|
|
ret = ptrace_peek_siginfo(child, addr, data);
|
|
break;
|
|
|
|
case PTRACE_GETSIGINFO:
|
|
ret = ptrace_getsiginfo(child, &siginfo);
|
|
if (!ret)
|
|
ret = copy_siginfo_to_user(datavp, &siginfo);
|
|
break;
|
|
|
|
case PTRACE_SETSIGINFO:
|
|
ret = copy_siginfo_from_user(&siginfo, datavp);
|
|
if (!ret)
|
|
ret = ptrace_setsiginfo(child, &siginfo);
|
|
break;
|
|
|
|
case PTRACE_GETSIGMASK: {
|
|
sigset_t *mask;
|
|
|
|
if (addr != sizeof(sigset_t)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (test_tsk_restore_sigmask(child))
|
|
mask = &child->saved_sigmask;
|
|
else
|
|
mask = &child->blocked;
|
|
|
|
if (copy_to_user(datavp, mask, sizeof(sigset_t)))
|
|
ret = -EFAULT;
|
|
else
|
|
ret = 0;
|
|
|
|
break;
|
|
}
|
|
|
|
case PTRACE_SETSIGMASK: {
|
|
sigset_t new_set;
|
|
|
|
if (addr != sizeof(sigset_t)) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
|
|
/*
|
|
* Every thread does recalc_sigpending() after resume, so
|
|
* retarget_shared_pending() and recalc_sigpending() are not
|
|
* called here.
|
|
*/
|
|
spin_lock_irq(&child->sighand->siglock);
|
|
child->blocked = new_set;
|
|
spin_unlock_irq(&child->sighand->siglock);
|
|
|
|
clear_tsk_restore_sigmask(child);
|
|
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
case PTRACE_INTERRUPT:
|
|
/*
|
|
* Stop tracee without any side-effect on signal or job
|
|
* control. At least one trap is guaranteed to happen
|
|
* after this request. If @child is already trapped, the
|
|
* current trap is not disturbed and another trap will
|
|
* happen after the current trap is ended with PTRACE_CONT.
|
|
*
|
|
* The actual trap might not be PTRACE_EVENT_STOP trap but
|
|
* the pending condition is cleared regardless.
|
|
*/
|
|
if (unlikely(!seized || !lock_task_sighand(child, &flags)))
|
|
break;
|
|
|
|
/*
|
|
* INTERRUPT doesn't disturb existing trap sans one
|
|
* exception. If ptracer issued LISTEN for the current
|
|
* STOP, this INTERRUPT should clear LISTEN and re-trap
|
|
* tracee into STOP.
|
|
*/
|
|
if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
|
|
ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
|
|
|
|
unlock_task_sighand(child, &flags);
|
|
ret = 0;
|
|
break;
|
|
|
|
case PTRACE_LISTEN:
|
|
/*
|
|
* Listen for events. Tracee must be in STOP. It's not
|
|
* resumed per-se but is not considered to be in TRACED by
|
|
* wait(2) or ptrace(2). If an async event (e.g. group
|
|
* stop state change) happens, tracee will enter STOP trap
|
|
* again. Alternatively, ptracer can issue INTERRUPT to
|
|
* finish listening and re-trap tracee into STOP.
|
|
*/
|
|
if (unlikely(!seized || !lock_task_sighand(child, &flags)))
|
|
break;
|
|
|
|
si = child->last_siginfo;
|
|
if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
|
|
child->jobctl |= JOBCTL_LISTENING;
|
|
/*
|
|
* If NOTIFY is set, it means event happened between
|
|
* start of this trap and now. Trigger re-trap.
|
|
*/
|
|
if (child->jobctl & JOBCTL_TRAP_NOTIFY)
|
|
ptrace_signal_wake_up(child, true);
|
|
ret = 0;
|
|
}
|
|
unlock_task_sighand(child, &flags);
|
|
break;
|
|
|
|
case PTRACE_DETACH: /* detach a process that was attached. */
|
|
ret = ptrace_detach(child, data);
|
|
break;
|
|
|
|
#ifdef CONFIG_BINFMT_ELF_FDPIC
|
|
case PTRACE_GETFDPIC: {
|
|
struct mm_struct *mm = get_task_mm(child);
|
|
unsigned long tmp = 0;
|
|
|
|
ret = -ESRCH;
|
|
if (!mm)
|
|
break;
|
|
|
|
switch (addr) {
|
|
case PTRACE_GETFDPIC_EXEC:
|
|
tmp = mm->context.exec_fdpic_loadmap;
|
|
break;
|
|
case PTRACE_GETFDPIC_INTERP:
|
|
tmp = mm->context.interp_fdpic_loadmap;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
mmput(mm);
|
|
|
|
ret = put_user(tmp, datalp);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef PTRACE_SINGLESTEP
|
|
case PTRACE_SINGLESTEP:
|
|
#endif
|
|
#ifdef PTRACE_SINGLEBLOCK
|
|
case PTRACE_SINGLEBLOCK:
|
|
#endif
|
|
#ifdef PTRACE_SYSEMU
|
|
case PTRACE_SYSEMU:
|
|
case PTRACE_SYSEMU_SINGLESTEP:
|
|
#endif
|
|
case PTRACE_SYSCALL:
|
|
case PTRACE_CONT:
|
|
return ptrace_resume(child, request, data);
|
|
|
|
case PTRACE_KILL:
|
|
if (child->exit_state) /* already dead */
|
|
return 0;
|
|
return ptrace_resume(child, request, SIGKILL);
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
case PTRACE_GETREGSET:
|
|
case PTRACE_SETREGSET: {
|
|
struct iovec kiov;
|
|
struct iovec __user *uiov = datavp;
|
|
|
|
if (!access_ok(uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
|
|
if (__get_user(kiov.iov_base, &uiov->iov_base) ||
|
|
__get_user(kiov.iov_len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
ret = ptrace_regset(child, request, addr, &kiov);
|
|
if (!ret)
|
|
ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
break;
|
|
}
|
|
|
|
case PTRACE_GET_SYSCALL_INFO:
|
|
ret = ptrace_get_syscall_info(child, addr, datavp);
|
|
break;
|
|
#endif
|
|
|
|
case PTRACE_SECCOMP_GET_FILTER:
|
|
ret = seccomp_get_filter(child, addr, datavp);
|
|
break;
|
|
|
|
case PTRACE_SECCOMP_GET_METADATA:
|
|
ret = seccomp_get_metadata(child, addr, datavp);
|
|
break;
|
|
|
|
#ifdef CONFIG_RSEQ
|
|
case PTRACE_GET_RSEQ_CONFIGURATION:
|
|
ret = ptrace_get_rseq_configuration(child, addr, datavp);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef arch_ptrace_attach
|
|
#define arch_ptrace_attach(child) do { } while (0)
|
|
#endif
|
|
|
|
SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
|
|
unsigned long, data)
|
|
{
|
|
struct task_struct *child;
|
|
long ret;
|
|
|
|
if (request == PTRACE_TRACEME) {
|
|
ret = ptrace_traceme();
|
|
if (!ret)
|
|
arch_ptrace_attach(current);
|
|
goto out;
|
|
}
|
|
|
|
child = find_get_task_by_vpid(pid);
|
|
if (!child) {
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
|
|
ret = ptrace_attach(child, request, addr, data);
|
|
/*
|
|
* Some architectures need to do book-keeping after
|
|
* a ptrace attach.
|
|
*/
|
|
if (!ret)
|
|
arch_ptrace_attach(child);
|
|
goto out_put_task_struct;
|
|
}
|
|
|
|
ret = ptrace_check_attach(child, request == PTRACE_KILL ||
|
|
request == PTRACE_INTERRUPT);
|
|
if (ret < 0)
|
|
goto out_put_task_struct;
|
|
|
|
ret = arch_ptrace(child, request, addr, data);
|
|
if (ret || request != PTRACE_DETACH)
|
|
ptrace_unfreeze_traced(child);
|
|
|
|
out_put_task_struct:
|
|
put_task_struct(child);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
unsigned long tmp;
|
|
int copied;
|
|
|
|
copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
|
|
if (copied != sizeof(tmp))
|
|
return -EIO;
|
|
return put_user(tmp, (unsigned long __user *)data);
|
|
}
|
|
|
|
int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
|
|
unsigned long data)
|
|
{
|
|
int copied;
|
|
|
|
copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
return (copied == sizeof(data)) ? 0 : -EIO;
|
|
}
|
|
|
|
#if defined CONFIG_COMPAT
|
|
|
|
int compat_ptrace_request(struct task_struct *child, compat_long_t request,
|
|
compat_ulong_t addr, compat_ulong_t data)
|
|
{
|
|
compat_ulong_t __user *datap = compat_ptr(data);
|
|
compat_ulong_t word;
|
|
kernel_siginfo_t siginfo;
|
|
int ret;
|
|
|
|
switch (request) {
|
|
case PTRACE_PEEKTEXT:
|
|
case PTRACE_PEEKDATA:
|
|
ret = ptrace_access_vm(child, addr, &word, sizeof(word),
|
|
FOLL_FORCE);
|
|
if (ret != sizeof(word))
|
|
ret = -EIO;
|
|
else
|
|
ret = put_user(word, datap);
|
|
break;
|
|
|
|
case PTRACE_POKETEXT:
|
|
case PTRACE_POKEDATA:
|
|
ret = ptrace_access_vm(child, addr, &data, sizeof(data),
|
|
FOLL_FORCE | FOLL_WRITE);
|
|
ret = (ret != sizeof(data) ? -EIO : 0);
|
|
break;
|
|
|
|
case PTRACE_GETEVENTMSG:
|
|
ret = put_user((compat_ulong_t) child->ptrace_message, datap);
|
|
break;
|
|
|
|
case PTRACE_GETSIGINFO:
|
|
ret = ptrace_getsiginfo(child, &siginfo);
|
|
if (!ret)
|
|
ret = copy_siginfo_to_user32(
|
|
(struct compat_siginfo __user *) datap,
|
|
&siginfo);
|
|
break;
|
|
|
|
case PTRACE_SETSIGINFO:
|
|
ret = copy_siginfo_from_user32(
|
|
&siginfo, (struct compat_siginfo __user *) datap);
|
|
if (!ret)
|
|
ret = ptrace_setsiginfo(child, &siginfo);
|
|
break;
|
|
#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
|
|
case PTRACE_GETREGSET:
|
|
case PTRACE_SETREGSET:
|
|
{
|
|
struct iovec kiov;
|
|
struct compat_iovec __user *uiov =
|
|
(struct compat_iovec __user *) datap;
|
|
compat_uptr_t ptr;
|
|
compat_size_t len;
|
|
|
|
if (!access_ok(uiov, sizeof(*uiov)))
|
|
return -EFAULT;
|
|
|
|
if (__get_user(ptr, &uiov->iov_base) ||
|
|
__get_user(len, &uiov->iov_len))
|
|
return -EFAULT;
|
|
|
|
kiov.iov_base = compat_ptr(ptr);
|
|
kiov.iov_len = len;
|
|
|
|
ret = ptrace_regset(child, request, addr, &kiov);
|
|
if (!ret)
|
|
ret = __put_user(kiov.iov_len, &uiov->iov_len);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
default:
|
|
ret = ptrace_request(child, request, addr, data);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
|
|
compat_long_t, addr, compat_long_t, data)
|
|
{
|
|
struct task_struct *child;
|
|
long ret;
|
|
|
|
if (request == PTRACE_TRACEME) {
|
|
ret = ptrace_traceme();
|
|
goto out;
|
|
}
|
|
|
|
child = find_get_task_by_vpid(pid);
|
|
if (!child) {
|
|
ret = -ESRCH;
|
|
goto out;
|
|
}
|
|
|
|
if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
|
|
ret = ptrace_attach(child, request, addr, data);
|
|
/*
|
|
* Some architectures need to do book-keeping after
|
|
* a ptrace attach.
|
|
*/
|
|
if (!ret)
|
|
arch_ptrace_attach(child);
|
|
goto out_put_task_struct;
|
|
}
|
|
|
|
ret = ptrace_check_attach(child, request == PTRACE_KILL ||
|
|
request == PTRACE_INTERRUPT);
|
|
if (!ret) {
|
|
ret = compat_arch_ptrace(child, request, addr, data);
|
|
if (ret || request != PTRACE_DETACH)
|
|
ptrace_unfreeze_traced(child);
|
|
}
|
|
|
|
out_put_task_struct:
|
|
put_task_struct(child);
|
|
out:
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_COMPAT */
|