linux-stable/kernel/locking/test-ww_mutex.c
John Stultz cfa92b6d52 locking/ww_mutex/test: Make sure we bail out instead of livelock
I've seen what appears to be livelocks in the stress_inorder_work()
function, and looking at the code it is clear we can have a case
where we continually retry acquiring the locks and never check to
see if we have passed the specified timeout.

This patch reworks that function so we always check the timeout
before iterating through the loop again.

I believe others may have hit this previously here:

  https://lore.kernel.org/lkml/895ef450-4fb3-5d29-a6ad-790657106a5a@intel.com/

Reported-by: Li Zhijian <zhijianx.li@intel.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230922043616.19282-4-jstultz@google.com
2023-09-22 09:43:41 +02:00

699 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Module-based API test facility for ww_mutexes
*/
#include <linux/kernel.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/prandom.h>
#include <linux/slab.h>
#include <linux/ww_mutex.h>
static DEFINE_WD_CLASS(ww_class);
struct workqueue_struct *wq;
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
#define ww_acquire_init_noinject(a, b) do { \
ww_acquire_init((a), (b)); \
(a)->deadlock_inject_countdown = ~0U; \
} while (0)
#else
#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
#endif
struct test_mutex {
struct work_struct work;
struct ww_mutex mutex;
struct completion ready, go, done;
unsigned int flags;
};
#define TEST_MTX_SPIN BIT(0)
#define TEST_MTX_TRY BIT(1)
#define TEST_MTX_CTX BIT(2)
#define __TEST_MTX_LAST BIT(3)
static void test_mutex_work(struct work_struct *work)
{
struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
complete(&mtx->ready);
wait_for_completion(&mtx->go);
if (mtx->flags & TEST_MTX_TRY) {
while (!ww_mutex_trylock(&mtx->mutex, NULL))
cond_resched();
} else {
ww_mutex_lock(&mtx->mutex, NULL);
}
complete(&mtx->done);
ww_mutex_unlock(&mtx->mutex);
}
static int __test_mutex(unsigned int flags)
{
#define TIMEOUT (HZ / 16)
struct test_mutex mtx;
struct ww_acquire_ctx ctx;
int ret;
ww_mutex_init(&mtx.mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
init_completion(&mtx.ready);
init_completion(&mtx.go);
init_completion(&mtx.done);
mtx.flags = flags;
schedule_work(&mtx.work);
wait_for_completion(&mtx.ready);
ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
complete(&mtx.go);
if (flags & TEST_MTX_SPIN) {
unsigned long timeout = jiffies + TIMEOUT;
ret = 0;
do {
if (completion_done(&mtx.done)) {
ret = -EINVAL;
break;
}
cond_resched();
} while (time_before(jiffies, timeout));
} else {
ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
}
ww_mutex_unlock(&mtx.mutex);
ww_acquire_fini(&ctx);
if (ret) {
pr_err("%s(flags=%x): mutual exclusion failure\n",
__func__, flags);
ret = -EINVAL;
}
flush_work(&mtx.work);
destroy_work_on_stack(&mtx.work);
return ret;
#undef TIMEOUT
}
static int test_mutex(void)
{
int ret;
int i;
for (i = 0; i < __TEST_MTX_LAST; i++) {
ret = __test_mutex(i);
if (ret)
return ret;
}
return 0;
}
static int test_aa(bool trylock)
{
struct ww_mutex mutex;
struct ww_acquire_ctx ctx;
int ret;
const char *from = trylock ? "trylock" : "lock";
ww_mutex_init(&mutex, &ww_class);
ww_acquire_init(&ctx, &ww_class);
if (!trylock) {
ret = ww_mutex_lock(&mutex, &ctx);
if (ret) {
pr_err("%s: initial lock failed!\n", __func__);
goto out;
}
} else {
ret = !ww_mutex_trylock(&mutex, &ctx);
if (ret) {
pr_err("%s: initial trylock failed!\n", __func__);
goto out;
}
}
if (ww_mutex_trylock(&mutex, NULL)) {
pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
if (ww_mutex_trylock(&mutex, &ctx)) {
pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ret = ww_mutex_lock(&mutex, &ctx);
if (ret != -EALREADY) {
pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
__func__, ret, from);
if (!ret)
ww_mutex_unlock(&mutex);
ret = -EINVAL;
goto out;
}
ww_mutex_unlock(&mutex);
ret = 0;
out:
ww_acquire_fini(&ctx);
return ret;
}
struct test_abba {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex b_mutex;
struct completion a_ready;
struct completion b_ready;
bool resolve, trylock;
int result;
};
static void test_abba_work(struct work_struct *work)
{
struct test_abba *abba = container_of(work, typeof(*abba), work);
struct ww_acquire_ctx ctx;
int err;
ww_acquire_init_noinject(&ctx, &ww_class);
if (!abba->trylock)
ww_mutex_lock(&abba->b_mutex, &ctx);
else
WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
complete(&abba->b_ready);
wait_for_completion(&abba->a_ready);
err = ww_mutex_lock(&abba->a_mutex, &ctx);
if (abba->resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba->b_mutex);
ww_mutex_lock_slow(&abba->a_mutex, &ctx);
err = ww_mutex_lock(&abba->b_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba->a_mutex);
ww_mutex_unlock(&abba->b_mutex);
ww_acquire_fini(&ctx);
abba->result = err;
}
static int test_abba(bool trylock, bool resolve)
{
struct test_abba abba;
struct ww_acquire_ctx ctx;
int err, ret;
ww_mutex_init(&abba.a_mutex, &ww_class);
ww_mutex_init(&abba.b_mutex, &ww_class);
INIT_WORK_ONSTACK(&abba.work, test_abba_work);
init_completion(&abba.a_ready);
init_completion(&abba.b_ready);
abba.trylock = trylock;
abba.resolve = resolve;
schedule_work(&abba.work);
ww_acquire_init_noinject(&ctx, &ww_class);
if (!trylock)
ww_mutex_lock(&abba.a_mutex, &ctx);
else
WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
complete(&abba.a_ready);
wait_for_completion(&abba.b_ready);
err = ww_mutex_lock(&abba.b_mutex, &ctx);
if (resolve && err == -EDEADLK) {
ww_mutex_unlock(&abba.a_mutex);
ww_mutex_lock_slow(&abba.b_mutex, &ctx);
err = ww_mutex_lock(&abba.a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(&abba.b_mutex);
ww_mutex_unlock(&abba.a_mutex);
ww_acquire_fini(&ctx);
flush_work(&abba.work);
destroy_work_on_stack(&abba.work);
ret = 0;
if (resolve) {
if (err || abba.result) {
pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
} else {
if (err != -EDEADLK && abba.result != -EDEADLK) {
pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
__func__, err, abba.result);
ret = -EINVAL;
}
}
return ret;
}
struct test_cycle {
struct work_struct work;
struct ww_mutex a_mutex;
struct ww_mutex *b_mutex;
struct completion *a_signal;
struct completion b_signal;
int result;
};
static void test_cycle_work(struct work_struct *work)
{
struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
struct ww_acquire_ctx ctx;
int err, erra = 0;
ww_acquire_init_noinject(&ctx, &ww_class);
ww_mutex_lock(&cycle->a_mutex, &ctx);
complete(cycle->a_signal);
wait_for_completion(&cycle->b_signal);
err = ww_mutex_lock(cycle->b_mutex, &ctx);
if (err == -EDEADLK) {
err = 0;
ww_mutex_unlock(&cycle->a_mutex);
ww_mutex_lock_slow(cycle->b_mutex, &ctx);
erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
}
if (!err)
ww_mutex_unlock(cycle->b_mutex);
if (!erra)
ww_mutex_unlock(&cycle->a_mutex);
ww_acquire_fini(&ctx);
cycle->result = err ?: erra;
}
static int __test_cycle(unsigned int nthreads)
{
struct test_cycle *cycles;
unsigned int n, last = nthreads - 1;
int ret;
cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
if (!cycles)
return -ENOMEM;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
ww_mutex_init(&cycle->a_mutex, &ww_class);
if (n == last)
cycle->b_mutex = &cycles[0].a_mutex;
else
cycle->b_mutex = &cycles[n + 1].a_mutex;
if (n == 0)
cycle->a_signal = &cycles[last].b_signal;
else
cycle->a_signal = &cycles[n - 1].b_signal;
init_completion(&cycle->b_signal);
INIT_WORK(&cycle->work, test_cycle_work);
cycle->result = 0;
}
for (n = 0; n < nthreads; n++)
queue_work(wq, &cycles[n].work);
flush_workqueue(wq);
ret = 0;
for (n = 0; n < nthreads; n++) {
struct test_cycle *cycle = &cycles[n];
if (!cycle->result)
continue;
pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
n, nthreads, cycle->result);
ret = -EINVAL;
break;
}
for (n = 0; n < nthreads; n++)
ww_mutex_destroy(&cycles[n].a_mutex);
kfree(cycles);
return ret;
}
static int test_cycle(unsigned int ncpus)
{
unsigned int n;
int ret;
for (n = 2; n <= ncpus + 1; n++) {
ret = __test_cycle(n);
if (ret)
return ret;
}
return 0;
}
struct stress {
struct work_struct work;
struct ww_mutex *locks;
unsigned long timeout;
int nlocks;
};
struct rnd_state rng;
DEFINE_SPINLOCK(rng_lock);
static inline u32 prandom_u32_below(u32 ceil)
{
u32 ret;
spin_lock(&rng_lock);
ret = prandom_u32_state(&rng) % ceil;
spin_unlock(&rng_lock);
return ret;
}
static int *get_random_order(int count)
{
int *order;
int n, r, tmp;
order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
if (!order)
return order;
for (n = 0; n < count; n++)
order[n] = n;
for (n = count - 1; n > 1; n--) {
r = prandom_u32_below(n + 1);
if (r != n) {
tmp = order[n];
order[n] = order[r];
order[r] = tmp;
}
}
return order;
}
static void dummy_load(struct stress *stress)
{
usleep_range(1000, 2000);
}
static void stress_inorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *locks = stress->locks;
struct ww_acquire_ctx ctx;
int *order;
order = get_random_order(nlocks);
if (!order)
return;
do {
int contended = -1;
int n, err;
ww_acquire_init(&ctx, &ww_class);
retry:
err = 0;
for (n = 0; n < nlocks; n++) {
if (n == contended)
continue;
err = ww_mutex_lock(&locks[order[n]], &ctx);
if (err < 0)
break;
}
if (!err)
dummy_load(stress);
if (contended > n)
ww_mutex_unlock(&locks[order[contended]]);
contended = n;
while (n--)
ww_mutex_unlock(&locks[order[n]]);
if (err == -EDEADLK) {
if (!time_after(jiffies, stress->timeout)) {
ww_mutex_lock_slow(&locks[order[contended]], &ctx);
goto retry;
}
}
ww_acquire_fini(&ctx);
if (err) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
} while (!time_after(jiffies, stress->timeout));
kfree(order);
}
struct reorder_lock {
struct list_head link;
struct ww_mutex *lock;
};
static void stress_reorder_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
LIST_HEAD(locks);
struct ww_acquire_ctx ctx;
struct reorder_lock *ll, *ln;
int *order;
int n, err;
order = get_random_order(stress->nlocks);
if (!order)
return;
for (n = 0; n < stress->nlocks; n++) {
ll = kmalloc(sizeof(*ll), GFP_KERNEL);
if (!ll)
goto out;
ll->lock = &stress->locks[order[n]];
list_add(&ll->link, &locks);
}
kfree(order);
order = NULL;
do {
ww_acquire_init(&ctx, &ww_class);
list_for_each_entry(ll, &locks, link) {
err = ww_mutex_lock(ll->lock, &ctx);
if (!err)
continue;
ln = ll;
list_for_each_entry_continue_reverse(ln, &locks, link)
ww_mutex_unlock(ln->lock);
if (err != -EDEADLK) {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
ww_mutex_lock_slow(ll->lock, &ctx);
list_move(&ll->link, &locks); /* restarts iteration */
}
dummy_load(stress);
list_for_each_entry(ll, &locks, link)
ww_mutex_unlock(ll->lock);
ww_acquire_fini(&ctx);
} while (!time_after(jiffies, stress->timeout));
out:
list_for_each_entry_safe(ll, ln, &locks, link)
kfree(ll);
kfree(order);
}
static void stress_one_work(struct work_struct *work)
{
struct stress *stress = container_of(work, typeof(*stress), work);
const int nlocks = stress->nlocks;
struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
int err;
do {
err = ww_mutex_lock(lock, NULL);
if (!err) {
dummy_load(stress);
ww_mutex_unlock(lock);
} else {
pr_err_once("stress (%s) failed with %d\n",
__func__, err);
break;
}
} while (!time_after(jiffies, stress->timeout));
}
#define STRESS_INORDER BIT(0)
#define STRESS_REORDER BIT(1)
#define STRESS_ONE BIT(2)
#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
static int stress(int nlocks, int nthreads, unsigned int flags)
{
struct ww_mutex *locks;
struct stress *stress_array;
int n, count;
locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
if (!locks)
return -ENOMEM;
stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
GFP_KERNEL);
if (!stress_array) {
kfree(locks);
return -ENOMEM;
}
for (n = 0; n < nlocks; n++)
ww_mutex_init(&locks[n], &ww_class);
count = 0;
for (n = 0; nthreads; n++) {
struct stress *stress;
void (*fn)(struct work_struct *work);
fn = NULL;
switch (n & 3) {
case 0:
if (flags & STRESS_INORDER)
fn = stress_inorder_work;
break;
case 1:
if (flags & STRESS_REORDER)
fn = stress_reorder_work;
break;
case 2:
if (flags & STRESS_ONE)
fn = stress_one_work;
break;
}
if (!fn)
continue;
stress = &stress_array[count++];
INIT_WORK(&stress->work, fn);
stress->locks = locks;
stress->nlocks = nlocks;
stress->timeout = jiffies + 2*HZ;
queue_work(wq, &stress->work);
nthreads--;
}
flush_workqueue(wq);
for (n = 0; n < nlocks; n++)
ww_mutex_destroy(&locks[n]);
kfree(stress_array);
kfree(locks);
return 0;
}
static int __init test_ww_mutex_init(void)
{
int ncpus = num_online_cpus();
int ret, i;
printk(KERN_INFO "Beginning ww mutex selftests\n");
prandom_seed_state(&rng, get_random_u64());
wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
if (!wq)
return -ENOMEM;
ret = test_mutex();
if (ret)
return ret;
ret = test_aa(false);
if (ret)
return ret;
ret = test_aa(true);
if (ret)
return ret;
for (i = 0; i < 4; i++) {
ret = test_abba(i & 1, i & 2);
if (ret)
return ret;
}
ret = test_cycle(ncpus);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_INORDER);
if (ret)
return ret;
ret = stress(16, 2*ncpus, STRESS_REORDER);
if (ret)
return ret;
ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
if (ret)
return ret;
printk(KERN_INFO "All ww mutex selftests passed\n");
return 0;
}
static void __exit test_ww_mutex_exit(void)
{
destroy_workqueue(wq);
}
module_init(test_ww_mutex_init);
module_exit(test_ww_mutex_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Intel Corporation");