linux-stable/mm/hugetlb_vmemmap.c
Muchun Song ebc20dcac4 mm: hugetlb_vmemmap: convert page to folio
There are still some places where it does not be converted to folio, this
patch convert all of them to folio.  And this patch also does some trival
cleanup to fix the code style problems.

Link: https://lkml.kernel.org/r/20231127084645.27017-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 16:51:54 -08:00

709 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* HugeTLB Vmemmap Optimization (HVO)
*
* Copyright (c) 2020, ByteDance. All rights reserved.
*
* Author: Muchun Song <songmuchun@bytedance.com>
*
* See Documentation/mm/vmemmap_dedup.rst
*/
#define pr_fmt(fmt) "HugeTLB: " fmt
#include <linux/pgtable.h>
#include <linux/moduleparam.h>
#include <linux/bootmem_info.h>
#include <linux/mmdebug.h>
#include <linux/pagewalk.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include "hugetlb_vmemmap.h"
/**
* struct vmemmap_remap_walk - walk vmemmap page table
*
* @remap_pte: called for each lowest-level entry (PTE).
* @nr_walked: the number of walked pte.
* @reuse_page: the page which is reused for the tail vmemmap pages.
* @reuse_addr: the virtual address of the @reuse_page page.
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
* or is mapped from.
* @flags: used to modify behavior in vmemmap page table walking
* operations.
*/
struct vmemmap_remap_walk {
void (*remap_pte)(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk);
unsigned long nr_walked;
struct page *reuse_page;
unsigned long reuse_addr;
struct list_head *vmemmap_pages;
/* Skip the TLB flush when we split the PMD */
#define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
/* Skip the TLB flush when we remap the PTE */
#define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
unsigned long flags;
};
static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
struct vmemmap_remap_walk *walk)
{
pmd_t __pmd;
int i;
unsigned long addr = start;
pte_t *pgtable;
pgtable = pte_alloc_one_kernel(&init_mm);
if (!pgtable)
return -ENOMEM;
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
pte_t entry, *pte;
pgprot_t pgprot = PAGE_KERNEL;
entry = mk_pte(head + i, pgprot);
pte = pte_offset_kernel(&__pmd, addr);
set_pte_at(&init_mm, addr, pte, entry);
}
spin_lock(&init_mm.page_table_lock);
if (likely(pmd_leaf(*pmd))) {
/*
* Higher order allocations from buddy allocator must be able to
* be treated as indepdenent small pages (as they can be freed
* individually).
*/
if (!PageReserved(head))
split_page(head, get_order(PMD_SIZE));
/* Make pte visible before pmd. See comment in pmd_install(). */
smp_wmb();
pmd_populate_kernel(&init_mm, pmd, pgtable);
if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
flush_tlb_kernel_range(start, start + PMD_SIZE);
} else {
pte_free_kernel(&init_mm, pgtable);
}
spin_unlock(&init_mm.page_table_lock);
return 0;
}
static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
int ret = 0;
struct page *head;
struct vmemmap_remap_walk *vmemmap_walk = walk->private;
/* Only splitting, not remapping the vmemmap pages. */
if (!vmemmap_walk->remap_pte)
walk->action = ACTION_CONTINUE;
spin_lock(&init_mm.page_table_lock);
head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
/*
* Due to HugeTLB alignment requirements and the vmemmap
* pages being at the start of the hotplugged memory
* region in memory_hotplug.memmap_on_memory case. Checking
* the vmemmap page associated with the first vmemmap page
* if it is self-hosted is sufficient.
*
* [ hotplugged memory ]
* [ section ][...][ section ]
* [ vmemmap ][ usable memory ]
* ^ | ^ |
* +--+ | |
* +------------------------+
*/
if (unlikely(!vmemmap_walk->nr_walked)) {
struct page *page = head ? head + pte_index(addr) :
pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
if (PageVmemmapSelfHosted(page))
ret = -ENOTSUPP;
}
spin_unlock(&init_mm.page_table_lock);
if (!head || ret)
return ret;
return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
}
static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
struct vmemmap_remap_walk *vmemmap_walk = walk->private;
/*
* The reuse_page is found 'first' in page table walking before
* starting remapping.
*/
if (!vmemmap_walk->reuse_page)
vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
else
vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
vmemmap_walk->nr_walked++;
return 0;
}
static const struct mm_walk_ops vmemmap_remap_ops = {
.pmd_entry = vmemmap_pmd_entry,
.pte_entry = vmemmap_pte_entry,
};
static int vmemmap_remap_range(unsigned long start, unsigned long end,
struct vmemmap_remap_walk *walk)
{
int ret;
VM_BUG_ON(!PAGE_ALIGNED(start | end));
ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
NULL, walk);
if (ret)
return ret;
if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
flush_tlb_kernel_range(start, end);
return 0;
}
/*
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
* allocator or buddy allocator. If the PG_reserved flag is set, it means
* that it allocated from the memblock allocator, just free it via the
* free_bootmem_page(). Otherwise, use __free_page().
*/
static inline void free_vmemmap_page(struct page *page)
{
if (PageReserved(page))
free_bootmem_page(page);
else
__free_page(page);
}
/* Free a list of the vmemmap pages */
static void free_vmemmap_page_list(struct list_head *list)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru)
free_vmemmap_page(page);
}
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
/*
* Remap the tail pages as read-only to catch illegal write operation
* to the tail pages.
*/
pgprot_t pgprot = PAGE_KERNEL_RO;
struct page *page = pte_page(ptep_get(pte));
pte_t entry;
/* Remapping the head page requires r/w */
if (unlikely(addr == walk->reuse_addr)) {
pgprot = PAGE_KERNEL;
list_del(&walk->reuse_page->lru);
/*
* Makes sure that preceding stores to the page contents from
* vmemmap_remap_free() become visible before the set_pte_at()
* write.
*/
smp_wmb();
}
entry = mk_pte(walk->reuse_page, pgprot);
list_add(&page->lru, walk->vmemmap_pages);
set_pte_at(&init_mm, addr, pte, entry);
}
/*
* How many struct page structs need to be reset. When we reuse the head
* struct page, the special metadata (e.g. page->flags or page->mapping)
* cannot copy to the tail struct page structs. The invalid value will be
* checked in the free_tail_page_prepare(). In order to avoid the message
* of "corrupted mapping in tail page". We need to reset at least 3 (one
* head struct page struct and two tail struct page structs) struct page
* structs.
*/
#define NR_RESET_STRUCT_PAGE 3
static inline void reset_struct_pages(struct page *start)
{
struct page *from = start + NR_RESET_STRUCT_PAGE;
BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
}
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
struct vmemmap_remap_walk *walk)
{
pgprot_t pgprot = PAGE_KERNEL;
struct page *page;
void *to;
BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
list_del(&page->lru);
to = page_to_virt(page);
copy_page(to, (void *)walk->reuse_addr);
reset_struct_pages(to);
/*
* Makes sure that preceding stores to the page contents become visible
* before the set_pte_at() write.
*/
smp_wmb();
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
}
/**
* vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
* backing PMDs of the directmap into PTEs
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_split(unsigned long start, unsigned long end,
unsigned long reuse)
{
int ret;
struct vmemmap_remap_walk walk = {
.remap_pte = NULL,
.flags = VMEMMAP_SPLIT_NO_TLB_FLUSH,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
mmap_read_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
mmap_read_unlock(&init_mm);
return ret;
}
/**
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
* to the page which @reuse is mapped to, then free vmemmap
* which the range are mapped to.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
* @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
* responsibility to free pages.
* @flags: modifications to vmemmap_remap_walk flags
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_free(unsigned long start, unsigned long end,
unsigned long reuse,
struct list_head *vmemmap_pages,
unsigned long flags)
{
int ret;
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_remap_pte,
.reuse_addr = reuse,
.vmemmap_pages = vmemmap_pages,
.flags = flags,
};
int nid = page_to_nid((struct page *)reuse);
gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
/*
* Allocate a new head vmemmap page to avoid breaking a contiguous
* block of struct page memory when freeing it back to page allocator
* in free_vmemmap_page_list(). This will allow the likely contiguous
* struct page backing memory to be kept contiguous and allowing for
* more allocations of hugepages. Fallback to the currently
* mapped head page in case should it fail to allocate.
*/
walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
if (walk.reuse_page) {
copy_page(page_to_virt(walk.reuse_page),
(void *)walk.reuse_addr);
list_add(&walk.reuse_page->lru, vmemmap_pages);
}
/*
* In order to make remapping routine most efficient for the huge pages,
* the routine of vmemmap page table walking has the following rules
* (see more details from the vmemmap_pte_range()):
*
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
* should be continuous.
* - The @reuse address is part of the range [@reuse, @end) that we are
* walking which is passed to vmemmap_remap_range().
* - The @reuse address is the first in the complete range.
*
* So we need to make sure that @start and @reuse meet the above rules.
*/
BUG_ON(start - reuse != PAGE_SIZE);
mmap_read_lock(&init_mm);
ret = vmemmap_remap_range(reuse, end, &walk);
if (ret && walk.nr_walked) {
end = reuse + walk.nr_walked * PAGE_SIZE;
/*
* vmemmap_pages contains pages from the previous
* vmemmap_remap_range call which failed. These
* are pages which were removed from the vmemmap.
* They will be restored in the following call.
*/
walk = (struct vmemmap_remap_walk) {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = vmemmap_pages,
.flags = 0,
};
vmemmap_remap_range(reuse, end, &walk);
}
mmap_read_unlock(&init_mm);
return ret;
}
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
struct list_head *list)
{
gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
int nid = page_to_nid((struct page *)start);
struct page *page, *next;
while (nr_pages--) {
page = alloc_pages_node(nid, gfp_mask, 0);
if (!page)
goto out;
list_add(&page->lru, list);
}
return 0;
out:
list_for_each_entry_safe(page, next, list, lru)
__free_page(page);
return -ENOMEM;
}
/**
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
* to the page which is from the @vmemmap_pages
* respectively.
* @start: start address of the vmemmap virtual address range that we want
* to remap.
* @end: end address of the vmemmap virtual address range that we want to
* remap.
* @reuse: reuse address.
* @flags: modifications to vmemmap_remap_walk flags
*
* Return: %0 on success, negative error code otherwise.
*/
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
unsigned long reuse, unsigned long flags)
{
LIST_HEAD(vmemmap_pages);
struct vmemmap_remap_walk walk = {
.remap_pte = vmemmap_restore_pte,
.reuse_addr = reuse,
.vmemmap_pages = &vmemmap_pages,
.flags = flags,
};
/* See the comment in the vmemmap_remap_free(). */
BUG_ON(start - reuse != PAGE_SIZE);
if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
return -ENOMEM;
mmap_read_lock(&init_mm);
vmemmap_remap_range(reuse, end, &walk);
mmap_read_unlock(&init_mm);
return 0;
}
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
struct folio *folio, unsigned long flags)
{
int ret;
unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
unsigned long vmemmap_reuse;
VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
if (!folio_test_hugetlb_vmemmap_optimized(folio))
return 0;
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
* The pages which the vmemmap virtual address range [@vmemmap_start,
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
* the range is mapped to the page which @vmemmap_reuse is mapped to.
* When a HugeTLB page is freed to the buddy allocator, previously
* discarded vmemmap pages must be allocated and remapping.
*/
ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
if (!ret) {
folio_clear_hugetlb_vmemmap_optimized(folio);
static_branch_dec(&hugetlb_optimize_vmemmap_key);
}
return ret;
}
/**
* hugetlb_vmemmap_restore_folio - restore previously optimized (by
* hugetlb_vmemmap_optimize_folio()) vmemmap pages which
* will be reallocated and remapped.
* @h: struct hstate.
* @folio: the folio whose vmemmap pages will be restored.
*
* Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
* negative error code otherwise.
*/
int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
{
return __hugetlb_vmemmap_restore_folio(h, folio, 0);
}
/**
* hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
* @h: hstate.
* @folio_list: list of folios.
* @non_hvo_folios: Output list of folios for which vmemmap exists.
*
* Return: number of folios for which vmemmap was restored, or an error code
* if an error was encountered restoring vmemmap for a folio.
* Folios that have vmemmap are moved to the non_hvo_folios
* list. Processing of entries stops when the first error is
* encountered. The folio that experienced the error and all
* non-processed folios will remain on folio_list.
*/
long hugetlb_vmemmap_restore_folios(const struct hstate *h,
struct list_head *folio_list,
struct list_head *non_hvo_folios)
{
struct folio *folio, *t_folio;
long restored = 0;
long ret = 0;
list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
if (folio_test_hugetlb_vmemmap_optimized(folio)) {
ret = __hugetlb_vmemmap_restore_folio(h, folio,
VMEMMAP_REMAP_NO_TLB_FLUSH);
if (ret)
break;
restored++;
}
/* Add non-optimized folios to output list */
list_move(&folio->lru, non_hvo_folios);
}
if (restored)
flush_tlb_all();
if (!ret)
ret = restored;
return ret;
}
/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
{
if (folio_test_hugetlb_vmemmap_optimized(folio))
return false;
if (!READ_ONCE(vmemmap_optimize_enabled))
return false;
if (!hugetlb_vmemmap_optimizable(h))
return false;
return true;
}
static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
struct folio *folio,
struct list_head *vmemmap_pages,
unsigned long flags)
{
int ret = 0;
unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
unsigned long vmemmap_reuse;
VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
if (!vmemmap_should_optimize_folio(h, folio))
return ret;
static_branch_inc(&hugetlb_optimize_vmemmap_key);
/*
* Very Subtle
* If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
* immediately after remapping. As a result, subsequent accesses
* and modifications to struct pages associated with the hugetlb
* page could be to the OLD struct pages. Set the vmemmap optimized
* flag here so that it is copied to the new head page. This keeps
* the old and new struct pages in sync.
* If there is an error during optimization, we will immediately FLUSH
* the TLB and clear the flag below.
*/
folio_set_hugetlb_vmemmap_optimized(folio);
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
* Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
* to the page which @vmemmap_reuse is mapped to. Add pages previously
* mapping the range to vmemmap_pages list so that they can be freed by
* the caller.
*/
ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
vmemmap_pages, flags);
if (ret) {
static_branch_dec(&hugetlb_optimize_vmemmap_key);
folio_clear_hugetlb_vmemmap_optimized(folio);
}
return ret;
}
/**
* hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
* @h: struct hstate.
* @folio: the folio whose vmemmap pages will be optimized.
*
* This function only tries to optimize @folio's vmemmap pages and does not
* guarantee that the optimization will succeed after it returns. The caller
* can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
* vmemmap pages have been optimized.
*/
void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
{
LIST_HEAD(vmemmap_pages);
__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
free_vmemmap_page_list(&vmemmap_pages);
}
static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
{
unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
unsigned long vmemmap_reuse;
if (!vmemmap_should_optimize_folio(h, folio))
return 0;
vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
vmemmap_reuse = vmemmap_start;
vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
/*
* Split PMDs on the vmemmap virtual address range [@vmemmap_start,
* @vmemmap_end]
*/
return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
}
void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
{
struct folio *folio;
LIST_HEAD(vmemmap_pages);
list_for_each_entry(folio, folio_list, lru) {
int ret = hugetlb_vmemmap_split_folio(h, folio);
/*
* Spliting the PMD requires allocating a page, thus lets fail
* early once we encounter the first OOM. No point in retrying
* as it can be dynamically done on remap with the memory
* we get back from the vmemmap deduplication.
*/
if (ret == -ENOMEM)
break;
}
flush_tlb_all();
list_for_each_entry(folio, folio_list, lru) {
int ret;
ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
VMEMMAP_REMAP_NO_TLB_FLUSH);
/*
* Pages to be freed may have been accumulated. If we
* encounter an ENOMEM, free what we have and try again.
* This can occur in the case that both spliting fails
* halfway and head page allocation also failed. In this
* case __hugetlb_vmemmap_optimize_folio() would free memory
* allowing more vmemmap remaps to occur.
*/
if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
flush_tlb_all();
free_vmemmap_page_list(&vmemmap_pages);
INIT_LIST_HEAD(&vmemmap_pages);
__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
VMEMMAP_REMAP_NO_TLB_FLUSH);
}
}
flush_tlb_all();
free_vmemmap_page_list(&vmemmap_pages);
}
static struct ctl_table hugetlb_vmemmap_sysctls[] = {
{
.procname = "hugetlb_optimize_vmemmap",
.data = &vmemmap_optimize_enabled,
.maxlen = sizeof(vmemmap_optimize_enabled),
.mode = 0644,
.proc_handler = proc_dobool,
},
{ }
};
static int __init hugetlb_vmemmap_init(void)
{
const struct hstate *h;
/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
for_each_hstate(h) {
if (hugetlb_vmemmap_optimizable(h)) {
register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
break;
}
}
return 0;
}
late_initcall(hugetlb_vmemmap_init);