linux-stable/drivers/gpu/drm/i915/display/intel_bios.c
Ville Syrjälä a868a1e57e drm/i915/bios: Throw out the !has_ddi_port_info() codepaths
Now that we parse the DDI port info from the VBT on all g4x+ platforms
we can throw out all the old codepaths in intel_bios_is_port_present(),
intel_bios_is_port_edp() and intel_bios_is_port_dp_dual_mode(). None
of these should be called on pre-g4x platforms.

For good measure throw in a WARN into intel_bios_is_port_present()
should someone get the urge to call it on older platforms. The
other two functions are specific to HDMI and DP so should not need
any protection as those encoder types don't even exist on older
platforms.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20211217155403.31477-5-ville.syrjala@linux.intel.com
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
2022-01-20 00:07:53 +02:00

3038 lines
81 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drm_dp_helper.h>
#include "display/intel_display.h"
#include "display/intel_display_types.h"
#include "display/intel_gmbus.h"
#include "i915_drv.h"
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/**
* DOC: Video BIOS Table (VBT)
*
* The Video BIOS Table, or VBT, provides platform and board specific
* configuration information to the driver that is not discoverable or available
* through other means. The configuration is mostly related to display
* hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
* the PCI ROM.
*
* The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
* Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
* contain the actual configuration information. The VBT Header, and thus the
* VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
* BDB Header. The data blocks are concatenated after the BDB Header. The data
* blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
* data. (Block 53, the MIPI Sequence Block is an exception.)
*
* The driver parses the VBT during load. The relevant information is stored in
* driver private data for ease of use, and the actual VBT is not read after
* that.
*/
/* Wrapper for VBT child device config */
struct intel_bios_encoder_data {
struct drm_i915_private *i915;
struct child_device_config child;
struct dsc_compression_parameters_entry *dsc;
struct list_head node;
};
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
/* Get BDB block size given a pointer to Block ID. */
static u32 _get_blocksize(const u8 *block_base)
{
/* The MIPI Sequence Block v3+ has a separate size field. */
if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
return *((const u32 *)(block_base + 4));
else
return *((const u16 *)(block_base + 1));
}
/* Get BDB block size give a pointer to data after Block ID and Block Size. */
static u32 get_blocksize(const void *block_data)
{
return _get_blocksize(block_data - 3);
}
static const void *
find_section(const void *_bdb, enum bdb_block_id section_id)
{
const struct bdb_header *bdb = _bdb;
const u8 *base = _bdb;
int index = 0;
u32 total, current_size;
enum bdb_block_id current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
current_size = _get_blocksize(base + index);
index += 3;
if (index + current_size > total)
return NULL;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
((dvo_timing->hsync_pulse_width_hi << 8) |
dvo_timing->hsync_pulse_width_lo);
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
((dvo_timing->vsync_pulse_width_hi << 4) |
dvo_timing->vsync_pulse_width_lo);
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
dvo_timing->himage_lo;
panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
dvo_timing->vimage_lo;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* get lvds_fp_timing entry
* this function may return NULL if the corresponding entry is invalid
*/
static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_header *bdb,
const struct bdb_lvds_lfp_data *data,
const struct bdb_lvds_lfp_data_ptrs *ptrs,
int index)
{
size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
size_t ofs;
if (index >= ARRAY_SIZE(ptrs->ptr))
return NULL;
ofs = ptrs->ptr[index].fp_timing_offset;
if (ofs < data_ofs ||
ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
return NULL;
return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
}
/* Parse general panel options */
static void
parse_panel_options(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
int panel_type;
int drrs_mode;
int ret;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
i915->vbt.lvds_dither = lvds_options->pixel_dither;
ret = intel_opregion_get_panel_type(i915);
if (ret >= 0) {
drm_WARN_ON(&i915->drm, ret > 0xf);
panel_type = ret;
drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
panel_type);
} else {
if (lvds_options->panel_type > 0xf) {
drm_dbg_kms(&i915->drm,
"Invalid VBT panel type 0x%x\n",
lvds_options->panel_type);
return;
}
panel_type = lvds_options->panel_type;
drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
panel_type);
}
i915->vbt.panel_type = panel_type;
drrs_mode = (lvds_options->dps_panel_type_bits
>> (panel_type * 2)) & MODE_MASK;
/*
* VBT has static DRRS = 0 and seamless DRRS = 2.
* The below piece of code is required to adjust vbt.drrs_type
* to match the enum drrs_support_type.
*/
switch (drrs_mode) {
case 0:
i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
break;
case 2:
i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
drm_dbg_kms(&i915->drm,
"DRRS supported mode is seamless\n");
break;
default:
i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
drm_dbg_kms(&i915->drm,
"DRRS not supported (VBT input)\n");
break;
}
}
/* Try to find integrated panel timing data */
static void
parse_lfp_panel_dtd(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
const struct lvds_fp_timing *fp_timing;
struct drm_display_mode *panel_fixed_mode;
int panel_type = i915->vbt.panel_type;
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
drm_dbg_kms(&i915->drm,
"Found panel mode in BIOS VBT legacy lfp table:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
lvds_lfp_data_ptrs,
panel_type);
if (fp_timing) {
/* check the resolution, just to be sure */
if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
fp_timing->y_res == panel_fixed_mode->vdisplay) {
i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
drm_dbg_kms(&i915->drm,
"VBT initial LVDS value %x\n",
i915->vbt.bios_lvds_val);
}
}
}
static void
parse_generic_dtd(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_generic_dtd *generic_dtd;
const struct generic_dtd_entry *dtd;
struct drm_display_mode *panel_fixed_mode;
int num_dtd;
generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
if (!generic_dtd)
return;
if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
drm_err(&i915->drm, "GDTD size %u is too small.\n",
generic_dtd->gdtd_size);
return;
} else if (generic_dtd->gdtd_size !=
sizeof(struct generic_dtd_entry)) {
drm_err(&i915->drm, "Unexpected GDTD size %u\n",
generic_dtd->gdtd_size);
/* DTD has unknown fields, but keep going */
}
num_dtd = (get_blocksize(generic_dtd) -
sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
if (i915->vbt.panel_type >= num_dtd) {
drm_err(&i915->drm,
"Panel type %d not found in table of %d DTD's\n",
i915->vbt.panel_type, num_dtd);
return;
}
dtd = &generic_dtd->dtd[i915->vbt.panel_type];
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
panel_fixed_mode->hdisplay = dtd->hactive;
panel_fixed_mode->hsync_start =
panel_fixed_mode->hdisplay + dtd->hfront_porch;
panel_fixed_mode->hsync_end =
panel_fixed_mode->hsync_start + dtd->hsync;
panel_fixed_mode->htotal =
panel_fixed_mode->hdisplay + dtd->hblank;
panel_fixed_mode->vdisplay = dtd->vactive;
panel_fixed_mode->vsync_start =
panel_fixed_mode->vdisplay + dtd->vfront_porch;
panel_fixed_mode->vsync_end =
panel_fixed_mode->vsync_start + dtd->vsync;
panel_fixed_mode->vtotal =
panel_fixed_mode->vdisplay + dtd->vblank;
panel_fixed_mode->clock = dtd->pixel_clock;
panel_fixed_mode->width_mm = dtd->width_mm;
panel_fixed_mode->height_mm = dtd->height_mm;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
drm_mode_set_name(panel_fixed_mode);
if (dtd->hsync_positive_polarity)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dtd->vsync_positive_polarity)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
drm_dbg_kms(&i915->drm,
"Found panel mode in BIOS VBT generic dtd table:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
}
static void
parse_panel_dtd(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
/*
* Older VBTs provided provided DTD information for internal displays
* through the "LFP panel DTD" block (42). As of VBT revision 229,
* that block is now deprecated and DTD information should be provided
* via a newer "generic DTD" block (58). Just to be safe, we'll
* try the new generic DTD block first on VBT >= 229, but still fall
* back to trying the old LFP block if that fails.
*/
if (bdb->version >= 229)
parse_generic_dtd(i915, bdb);
if (!i915->vbt.lfp_lvds_vbt_mode)
parse_lfp_panel_dtd(i915, bdb);
}
static void
parse_lfp_backlight(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_lfp_backlight_data *backlight_data;
const struct lfp_backlight_data_entry *entry;
int panel_type = i915->vbt.panel_type;
u16 level;
backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
if (!backlight_data)
return;
if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
drm_dbg_kms(&i915->drm,
"Unsupported backlight data entry size %u\n",
backlight_data->entry_size);
return;
}
entry = &backlight_data->data[panel_type];
i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
if (!i915->vbt.backlight.present) {
drm_dbg_kms(&i915->drm,
"PWM backlight not present in VBT (type %u)\n",
entry->type);
return;
}
i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
if (bdb->version >= 191) {
size_t exp_size;
if (bdb->version >= 236)
exp_size = sizeof(struct bdb_lfp_backlight_data);
else if (bdb->version >= 234)
exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
else
exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
if (get_blocksize(backlight_data) >= exp_size) {
const struct lfp_backlight_control_method *method;
method = &backlight_data->backlight_control[panel_type];
i915->vbt.backlight.type = method->type;
i915->vbt.backlight.controller = method->controller;
}
}
i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
if (bdb->version >= 234) {
u16 min_level;
bool scale;
level = backlight_data->brightness_level[panel_type].level;
min_level = backlight_data->brightness_min_level[panel_type].level;
if (bdb->version >= 236)
scale = backlight_data->brightness_precision_bits[panel_type] == 16;
else
scale = level > 255;
if (scale)
min_level = min_level / 255;
if (min_level > 255) {
drm_warn(&i915->drm, "Brightness min level > 255\n");
level = 255;
}
i915->vbt.backlight.min_brightness = min_level;
i915->vbt.backlight.brightness_precision_bits =
backlight_data->brightness_precision_bits[panel_type];
} else {
level = backlight_data->level[panel_type];
i915->vbt.backlight.min_brightness = entry->min_brightness;
}
drm_dbg_kms(&i915->drm,
"VBT backlight PWM modulation frequency %u Hz, "
"active %s, min brightness %u, level %u, controller %u\n",
i915->vbt.backlight.pwm_freq_hz,
i915->vbt.backlight.active_low_pwm ? "low" : "high",
i915->vbt.backlight.min_brightness,
level,
i915->vbt.backlight.controller);
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_sdvo_panel_dtds *dtds;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915->params.vbt_sdvo_panel_type;
if (index == -2) {
drm_dbg_kms(&i915->drm,
"Ignore SDVO panel mode from BIOS VBT tables.\n");
return;
}
if (index == -1) {
const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dtds)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
drm_dbg_kms(&i915->drm,
"Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
bool alternate)
{
switch (DISPLAY_VER(i915)) {
case 2:
return alternate ? 66667 : 48000;
case 3:
case 4:
return alternate ? 100000 : 96000;
default:
return alternate ? 100000 : 120000;
}
}
static void
parse_general_features(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (!general)
return;
i915->vbt.int_tv_support = general->int_tv_support;
/* int_crt_support can't be trusted on earlier platforms */
if (bdb->version >= 155 &&
(HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
i915->vbt.int_crt_support = general->int_crt_support;
i915->vbt.lvds_use_ssc = general->enable_ssc;
i915->vbt.lvds_ssc_freq =
intel_bios_ssc_frequency(i915, general->ssc_freq);
i915->vbt.display_clock_mode = general->display_clock_mode;
i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
if (bdb->version >= 181) {
i915->vbt.orientation = general->rotate_180 ?
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
DRM_MODE_PANEL_ORIENTATION_NORMAL;
} else {
i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
}
drm_dbg_kms(&i915->drm,
"BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
i915->vbt.int_tv_support,
i915->vbt.int_crt_support,
i915->vbt.lvds_use_ssc,
i915->vbt.lvds_ssc_freq,
i915->vbt.display_clock_mode,
i915->vbt.fdi_rx_polarity_inverted);
}
static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions *defs, int i)
{
return (const void *) &defs->devices[i * defs->child_dev_size];
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *i915)
{
struct sdvo_device_mapping *mapping;
const struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
int count = 0;
/*
* Only parse SDVO mappings on gens that could have SDVO. This isn't
* accurate and doesn't have to be, as long as it's not too strict.
*/
if (!IS_DISPLAY_VER(i915, 3, 7)) {
drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
return;
}
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
if (child->slave_addr != SLAVE_ADDR1 &&
child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (child->dvo_port != DEVICE_PORT_DVOB &&
child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
drm_dbg_kms(&i915->drm,
"Incorrect SDVO port. Skip it\n");
continue;
}
drm_dbg_kms(&i915->drm,
"the SDVO device with slave addr %2x is found on"
" %s port\n",
child->slave_addr,
(child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
if (!mapping->initialized) {
mapping->dvo_port = child->dvo_port;
mapping->slave_addr = child->slave_addr;
mapping->dvo_wiring = child->dvo_wiring;
mapping->ddc_pin = child->ddc_pin;
mapping->i2c_pin = child->i2c_pin;
mapping->initialized = 1;
drm_dbg_kms(&i915->drm,
"SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
mapping->dvo_port, mapping->slave_addr,
mapping->dvo_wiring, mapping->ddc_pin,
mapping->i2c_pin);
} else {
drm_dbg_kms(&i915->drm,
"Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
drm_dbg_kms(&i915->drm,
"there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
drm_dbg_kms(&i915->drm,
"No SDVO device info is found in VBT\n");
}
}
static void
parse_driver_features(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (DISPLAY_VER(i915) >= 5) {
/*
* Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
* to mean "eDP". The VBT spec doesn't agree with that
* interpretation, but real world VBTs seem to.
*/
if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
i915->vbt.int_lvds_support = 0;
} else {
/*
* FIXME it's not clear which BDB version has the LVDS config
* bits defined. Revision history in the VBT spec says:
* "0.92 | Add two definitions for VBT value of LVDS Active
* Config (00b and 11b values defined) | 06/13/2005"
* but does not the specify the BDB version.
*
* So far version 134 (on i945gm) is the oldest VBT observed
* in the wild with the bits correctly populated. Version
* 108 (on i85x) does not have the bits correctly populated.
*/
if (bdb->version >= 134 &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
i915->vbt.int_lvds_support = 0;
}
if (bdb->version < 228) {
drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
driver->drrs_enabled);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* driver->drrs_enabled=false
*/
if (!driver->drrs_enabled)
i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
i915->vbt.psr.enable = driver->psr_enabled;
}
}
static void
parse_power_conservation_features(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_lfp_power *power;
u8 panel_type = i915->vbt.panel_type;
if (bdb->version < 228)
return;
power = find_section(bdb, BDB_LFP_POWER);
if (!power)
return;
i915->vbt.psr.enable = power->psr & BIT(panel_type);
/*
* If DRRS is not supported, drrs_type has to be set to 0.
* This is because, VBT is configured in such a way that
* static DRRS is 0 and DRRS not supported is represented by
* power->drrs & BIT(panel_type)=false
*/
if (!(power->drrs & BIT(panel_type)))
i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
if (bdb->version >= 232)
i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
}
static void
parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
{
const struct bdb_edp *edp;
const struct edp_power_seq *edp_pps;
const struct edp_fast_link_params *edp_link_params;
int panel_type = i915->vbt.panel_type;
edp = find_section(bdb, BDB_EDP);
if (!edp)
return;
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
i915->vbt.edp.bpp = 18;
break;
case EDP_24BPP:
i915->vbt.edp.bpp = 24;
break;
case EDP_30BPP:
i915->vbt.edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->fast_link_params[panel_type];
i915->vbt.edp.pps = *edp_pps;
switch (edp_link_params->rate) {
case EDP_RATE_1_62:
i915->vbt.edp.rate = DP_LINK_BW_1_62;
break;
case EDP_RATE_2_7:
i915->vbt.edp.rate = DP_LINK_BW_2_7;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP link rate value %u\n",
edp_link_params->rate);
break;
}
switch (edp_link_params->lanes) {
case EDP_LANE_1:
i915->vbt.edp.lanes = 1;
break;
case EDP_LANE_2:
i915->vbt.edp.lanes = 2;
break;
case EDP_LANE_4:
i915->vbt.edp.lanes = 4;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP lane count value %u\n",
edp_link_params->lanes);
break;
}
switch (edp_link_params->preemphasis) {
case EDP_PREEMPHASIS_NONE:
i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
break;
case EDP_PREEMPHASIS_3_5dB:
i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
break;
case EDP_PREEMPHASIS_6dB:
i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
break;
case EDP_PREEMPHASIS_9_5dB:
i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP pre-emphasis value %u\n",
edp_link_params->preemphasis);
break;
}
switch (edp_link_params->vswing) {
case EDP_VSWING_0_4V:
i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
break;
case EDP_VSWING_0_6V:
i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
break;
case EDP_VSWING_0_8V:
i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
break;
case EDP_VSWING_1_2V:
i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT has unknown eDP voltage swing value %u\n",
edp_link_params->vswing);
break;
}
if (bdb->version >= 173) {
u8 vswing;
/* Don't read from VBT if module parameter has valid value*/
if (i915->params.edp_vswing) {
i915->vbt.edp.low_vswing =
i915->params.edp_vswing == 1;
} else {
vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
i915->vbt.edp.low_vswing = vswing == 0;
}
}
}
static void
parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
{
const struct bdb_psr *psr;
const struct psr_table *psr_table;
int panel_type = i915->vbt.panel_type;
psr = find_section(bdb, BDB_PSR);
if (!psr) {
drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
return;
}
psr_table = &psr->psr_table[panel_type];
i915->vbt.psr.full_link = psr_table->full_link;
i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
/* Allowed VBT values goes from 0 to 15 */
i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
/*
* New psr options 0=500us, 1=100us, 2=2500us, 3=0us
* Old decimal value is wake up time in multiples of 100 us.
*/
if (bdb->version >= 205 &&
(DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
switch (psr_table->tp1_wakeup_time) {
case 0:
i915->vbt.psr.tp1_wakeup_time_us = 500;
break;
case 1:
i915->vbt.psr.tp1_wakeup_time_us = 100;
break;
case 3:
i915->vbt.psr.tp1_wakeup_time_us = 0;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp1_wakeup_time);
fallthrough;
case 2:
i915->vbt.psr.tp1_wakeup_time_us = 2500;
break;
}
switch (psr_table->tp2_tp3_wakeup_time) {
case 0:
i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
break;
case 1:
i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
break;
case 3:
i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
break;
default:
drm_dbg_kms(&i915->drm,
"VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
psr_table->tp2_tp3_wakeup_time);
fallthrough;
case 2:
i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
break;
}
} else {
i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
}
if (bdb->version >= 226) {
u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
switch (wakeup_time) {
case 0:
wakeup_time = 500;
break;
case 1:
wakeup_time = 100;
break;
case 3:
wakeup_time = 50;
break;
default:
case 2:
wakeup_time = 2500;
break;
}
i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
} else {
/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
}
}
static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
u16 version, enum port port)
{
if (!i915->vbt.dsi.config->dual_link || version < 197) {
i915->vbt.dsi.bl_ports = BIT(port);
if (i915->vbt.dsi.config->cabc_supported)
i915->vbt.dsi.cabc_ports = BIT(port);
return;
}
switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
case DL_DCS_PORT_A:
i915->vbt.dsi.bl_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
i915->vbt.dsi.bl_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
break;
}
if (!i915->vbt.dsi.config->cabc_supported)
return;
switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
case DL_DCS_PORT_A:
i915->vbt.dsi.cabc_ports = BIT(PORT_A);
break;
case DL_DCS_PORT_C:
i915->vbt.dsi.cabc_ports = BIT(PORT_C);
break;
default:
case DL_DCS_PORT_A_AND_C:
i915->vbt.dsi.cabc_ports =
BIT(PORT_A) | BIT(PORT_C);
break;
}
}
static void
parse_mipi_config(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_mipi_config *start;
const struct mipi_config *config;
const struct mipi_pps_data *pps;
int panel_type = i915->vbt.panel_type;
enum port port;
/* parse MIPI blocks only if LFP type is MIPI */
if (!intel_bios_is_dsi_present(i915, &port))
return;
/* Initialize this to undefined indicating no generic MIPI support */
i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
/* Block #40 is already parsed and panel_fixed_mode is
* stored in i915->lfp_lvds_vbt_mode
* resuse this when needed
*/
/* Parse #52 for panel index used from panel_type already
* parsed
*/
start = find_section(bdb, BDB_MIPI_CONFIG);
if (!start) {
drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
return;
}
drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
panel_type);
/*
* get hold of the correct configuration block and pps data as per
* the panel_type as index
*/
config = &start->config[panel_type];
pps = &start->pps[panel_type];
/* store as of now full data. Trim when we realise all is not needed */
i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
if (!i915->vbt.dsi.config)
return;
i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
if (!i915->vbt.dsi.pps) {
kfree(i915->vbt.dsi.config);
return;
}
parse_dsi_backlight_ports(i915, bdb->version, port);
/* FIXME is the 90 vs. 270 correct? */
switch (config->rotation) {
case ENABLE_ROTATION_0:
/*
* Most (all?) VBTs claim 0 degrees despite having
* an upside down panel, thus we do not trust this.
*/
i915->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
break;
case ENABLE_ROTATION_90:
i915->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
break;
case ENABLE_ROTATION_180:
i915->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
break;
case ENABLE_ROTATION_270:
i915->vbt.dsi.orientation =
DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
break;
}
/* We have mandatory mipi config blocks. Initialize as generic panel */
i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
}
/* Find the sequence block and size for the given panel. */
static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
u16 panel_id, u32 *seq_size)
{
u32 total = get_blocksize(sequence);
const u8 *data = &sequence->data[0];
u8 current_id;
u32 current_size;
int header_size = sequence->version >= 3 ? 5 : 3;
int index = 0;
int i;
/* skip new block size */
if (sequence->version >= 3)
data += 4;
for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
if (index + header_size > total) {
DRM_ERROR("Invalid sequence block (header)\n");
return NULL;
}
current_id = *(data + index);
if (sequence->version >= 3)
current_size = *((const u32 *)(data + index + 1));
else
current_size = *((const u16 *)(data + index + 1));
index += header_size;
if (index + current_size > total) {
DRM_ERROR("Invalid sequence block\n");
return NULL;
}
if (current_id == panel_id) {
*seq_size = current_size;
return data + index;
}
index += current_size;
}
DRM_ERROR("Sequence block detected but no valid configuration\n");
return NULL;
}
static int goto_next_sequence(const u8 *data, int index, int total)
{
u16 len;
/* Skip Sequence Byte. */
for (index = index + 1; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
switch (operation_byte) {
case MIPI_SEQ_ELEM_END:
return index;
case MIPI_SEQ_ELEM_SEND_PKT:
if (index + 4 > total)
return 0;
len = *((const u16 *)(data + index + 2)) + 4;
break;
case MIPI_SEQ_ELEM_DELAY:
len = 4;
break;
case MIPI_SEQ_ELEM_GPIO:
len = 2;
break;
case MIPI_SEQ_ELEM_I2C:
if (index + 7 > total)
return 0;
len = *(data + index + 6) + 7;
break;
default:
DRM_ERROR("Unknown operation byte\n");
return 0;
}
}
return 0;
}
static int goto_next_sequence_v3(const u8 *data, int index, int total)
{
int seq_end;
u16 len;
u32 size_of_sequence;
/*
* Could skip sequence based on Size of Sequence alone, but also do some
* checking on the structure.
*/
if (total < 5) {
DRM_ERROR("Too small sequence size\n");
return 0;
}
/* Skip Sequence Byte. */
index++;
/*
* Size of Sequence. Excludes the Sequence Byte and the size itself,
* includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
* byte.
*/
size_of_sequence = *((const u32 *)(data + index));
index += 4;
seq_end = index + size_of_sequence;
if (seq_end > total) {
DRM_ERROR("Invalid sequence size\n");
return 0;
}
for (; index < total; index += len) {
u8 operation_byte = *(data + index);
index++;
if (operation_byte == MIPI_SEQ_ELEM_END) {
if (index != seq_end) {
DRM_ERROR("Invalid element structure\n");
return 0;
}
return index;
}
len = *(data + index);
index++;
/*
* FIXME: Would be nice to check elements like for v1/v2 in
* goto_next_sequence() above.
*/
switch (operation_byte) {
case MIPI_SEQ_ELEM_SEND_PKT:
case MIPI_SEQ_ELEM_DELAY:
case MIPI_SEQ_ELEM_GPIO:
case MIPI_SEQ_ELEM_I2C:
case MIPI_SEQ_ELEM_SPI:
case MIPI_SEQ_ELEM_PMIC:
break;
default:
DRM_ERROR("Unknown operation byte %u\n",
operation_byte);
break;
}
}
return 0;
}
/*
* Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
* skip all delay + gpio operands and stop at the first DSI packet op.
*/
static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
{
const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
int index, len;
if (drm_WARN_ON(&i915->drm,
!data || i915->vbt.dsi.seq_version != 1))
return 0;
/* index = 1 to skip sequence byte */
for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
switch (data[index]) {
case MIPI_SEQ_ELEM_SEND_PKT:
return index == 1 ? 0 : index;
case MIPI_SEQ_ELEM_DELAY:
len = 5; /* 1 byte for operand + uint32 */
break;
case MIPI_SEQ_ELEM_GPIO:
len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
break;
default:
return 0;
}
}
return 0;
}
/*
* Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
* The deassert must be done before calling intel_dsi_device_ready, so for
* these devices we split the init OTP sequence into a deassert sequence and
* the actual init OTP part.
*/
static void fixup_mipi_sequences(struct drm_i915_private *i915)
{
u8 *init_otp;
int len;
/* Limit this to VLV for now. */
if (!IS_VALLEYVIEW(i915))
return;
/* Limit this to v1 vid-mode sequences */
if (i915->vbt.dsi.config->is_cmd_mode ||
i915->vbt.dsi.seq_version != 1)
return;
/* Only do this if there are otp and assert seqs and no deassert seq */
if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
!i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
return;
/* The deassert-sequence ends at the first DSI packet */
len = get_init_otp_deassert_fragment_len(i915);
if (!len)
return;
drm_dbg_kms(&i915->drm,
"Using init OTP fragment to deassert reset\n");
/* Copy the fragment, update seq byte and terminate it */
init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
if (!i915->vbt.dsi.deassert_seq)
return;
i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
/* Use the copy for deassert */
i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
i915->vbt.dsi.deassert_seq;
/* Replace the last byte of the fragment with init OTP seq byte */
init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
}
static void
parse_mipi_sequence(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
int panel_type = i915->vbt.panel_type;
const struct bdb_mipi_sequence *sequence;
const u8 *seq_data;
u32 seq_size;
u8 *data;
int index = 0;
/* Only our generic panel driver uses the sequence block. */
if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
return;
sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
if (!sequence) {
drm_dbg_kms(&i915->drm,
"No MIPI Sequence found, parsing complete\n");
return;
}
/* Fail gracefully for forward incompatible sequence block. */
if (sequence->version >= 4) {
drm_err(&i915->drm,
"Unable to parse MIPI Sequence Block v%u\n",
sequence->version);
return;
}
drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
sequence->version);
seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
if (!seq_data)
return;
data = kmemdup(seq_data, seq_size, GFP_KERNEL);
if (!data)
return;
/* Parse the sequences, store pointers to each sequence. */
for (;;) {
u8 seq_id = *(data + index);
if (seq_id == MIPI_SEQ_END)
break;
if (seq_id >= MIPI_SEQ_MAX) {
drm_err(&i915->drm, "Unknown sequence %u\n",
seq_id);
goto err;
}
/* Log about presence of sequences we won't run. */
if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
drm_dbg_kms(&i915->drm,
"Unsupported sequence %u\n", seq_id);
i915->vbt.dsi.sequence[seq_id] = data + index;
if (sequence->version >= 3)
index = goto_next_sequence_v3(data, index, seq_size);
else
index = goto_next_sequence(data, index, seq_size);
if (!index) {
drm_err(&i915->drm, "Invalid sequence %u\n",
seq_id);
goto err;
}
}
i915->vbt.dsi.data = data;
i915->vbt.dsi.size = seq_size;
i915->vbt.dsi.seq_version = sequence->version;
fixup_mipi_sequences(i915);
drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
return;
err:
kfree(data);
memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
}
static void
parse_compression_parameters(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_compression_parameters *params;
struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
u16 block_size;
int index;
if (bdb->version < 198)
return;
params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
if (params) {
/* Sanity checks */
if (params->entry_size != sizeof(params->data[0])) {
drm_dbg_kms(&i915->drm,
"VBT: unsupported compression param entry size\n");
return;
}
block_size = get_blocksize(params);
if (block_size < sizeof(*params)) {
drm_dbg_kms(&i915->drm,
"VBT: expected 16 compression param entries\n");
return;
}
}
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
if (!child->compression_enable)
continue;
if (!params) {
drm_dbg_kms(&i915->drm,
"VBT: compression params not available\n");
continue;
}
if (child->compression_method_cps) {
drm_dbg_kms(&i915->drm,
"VBT: CPS compression not supported\n");
continue;
}
index = child->compression_structure_index;
devdata->dsc = kmemdup(&params->data[index],
sizeof(*devdata->dsc), GFP_KERNEL);
}
}
static u8 translate_iboost(u8 val)
{
static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
if (val >= ARRAY_SIZE(mapping)) {
DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
return 0;
}
return mapping[val];
}
static const u8 cnp_ddc_pin_map[] = {
[0] = 0, /* N/A */
[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
};
static const u8 icp_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
};
static const u8 rkl_pch_tgp_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
};
static const u8 adls_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
};
static const u8 gen9bc_tgp_ddc_pin_map[] = {
[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
};
static const u8 adlp_ddc_pin_map[] = {
[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
};
static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
{
const u8 *ddc_pin_map;
int n_entries;
if (IS_ALDERLAKE_P(i915)) {
ddc_pin_map = adlp_ddc_pin_map;
n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
} else if (IS_ALDERLAKE_S(i915)) {
ddc_pin_map = adls_ddc_pin_map;
n_entries = ARRAY_SIZE(adls_ddc_pin_map);
} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
return vbt_pin;
} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
ddc_pin_map = gen9bc_tgp_ddc_pin_map;
n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
ddc_pin_map = icp_ddc_pin_map;
n_entries = ARRAY_SIZE(icp_ddc_pin_map);
} else if (HAS_PCH_CNP(i915)) {
ddc_pin_map = cnp_ddc_pin_map;
n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
} else {
/* Assuming direct map */
return vbt_pin;
}
if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
return ddc_pin_map[vbt_pin];
drm_dbg_kms(&i915->drm,
"Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
vbt_pin);
return 0;
}
static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
{
const struct intel_bios_encoder_data *devdata;
enum port port;
if (!ddc_pin)
return PORT_NONE;
for_each_port(port) {
devdata = i915->vbt.ports[port];
if (devdata && ddc_pin == devdata->child.ddc_pin)
return port;
}
return PORT_NONE;
}
static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
struct child_device_config *child;
u8 mapped_ddc_pin;
enum port p;
if (!devdata->child.ddc_pin)
return;
mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
drm_dbg_kms(&i915->drm,
"Port %c has invalid DDC pin %d, "
"sticking to defaults\n",
port_name(port), mapped_ddc_pin);
devdata->child.ddc_pin = 0;
return;
}
p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
if (p == PORT_NONE)
return;
drm_dbg_kms(&i915->drm,
"port %c trying to use the same DDC pin (0x%x) as port %c, "
"disabling port %c DVI/HDMI support\n",
port_name(port), mapped_ddc_pin,
port_name(p), port_name(p));
/*
* If we have multiple ports supposedly sharing the pin, then dvi/hdmi
* couldn't exist on the shared port. Otherwise they share the same ddc
* pin and system couldn't communicate with them separately.
*
* Give inverse child device order the priority, last one wins. Yes,
* there are real machines (eg. Asrock B250M-HDV) where VBT has both
* port A and port E with the same AUX ch and we must pick port E :(
*/
child = &i915->vbt.ports[p]->child;
child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
child->ddc_pin = 0;
}
static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
{
const struct intel_bios_encoder_data *devdata;
enum port port;
if (!aux_ch)
return PORT_NONE;
for_each_port(port) {
devdata = i915->vbt.ports[port];
if (devdata && aux_ch == devdata->child.aux_channel)
return port;
}
return PORT_NONE;
}
static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
struct child_device_config *child;
enum port p;
p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
if (p == PORT_NONE)
return;
drm_dbg_kms(&i915->drm,
"port %c trying to use the same AUX CH (0x%x) as port %c, "
"disabling port %c DP support\n",
port_name(port), devdata->child.aux_channel,
port_name(p), port_name(p));
/*
* If we have multiple ports supposedly sharing the aux channel, then DP
* couldn't exist on the shared port. Otherwise they share the same aux
* channel and system couldn't communicate with them separately.
*
* Give inverse child device order the priority, last one wins. Yes,
* there are real machines (eg. Asrock B250M-HDV) where VBT has both
* port A and port E with the same AUX ch and we must pick port E :(
*/
child = &i915->vbt.ports[p]->child;
child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
child->aux_channel = 0;
}
static u8 dvo_port_type(u8 dvo_port)
{
switch (dvo_port) {
case DVO_PORT_HDMIA:
case DVO_PORT_HDMIB:
case DVO_PORT_HDMIC:
case DVO_PORT_HDMID:
case DVO_PORT_HDMIE:
case DVO_PORT_HDMIF:
case DVO_PORT_HDMIG:
case DVO_PORT_HDMIH:
case DVO_PORT_HDMII:
return DVO_PORT_HDMIA;
case DVO_PORT_DPA:
case DVO_PORT_DPB:
case DVO_PORT_DPC:
case DVO_PORT_DPD:
case DVO_PORT_DPE:
case DVO_PORT_DPF:
case DVO_PORT_DPG:
case DVO_PORT_DPH:
case DVO_PORT_DPI:
return DVO_PORT_DPA;
case DVO_PORT_MIPIA:
case DVO_PORT_MIPIB:
case DVO_PORT_MIPIC:
case DVO_PORT_MIPID:
return DVO_PORT_MIPIA;
default:
return dvo_port;
}
}
static enum port __dvo_port_to_port(int n_ports, int n_dvo,
const int port_mapping[][3], u8 dvo_port)
{
enum port port;
int i;
for (port = PORT_A; port < n_ports; port++) {
for (i = 0; i < n_dvo; i++) {
if (port_mapping[port][i] == -1)
break;
if (dvo_port == port_mapping[port][i])
return port;
}
}
return PORT_NONE;
}
static enum port dvo_port_to_port(struct drm_i915_private *i915,
u8 dvo_port)
{
/*
* Each DDI port can have more than one value on the "DVO Port" field,
* so look for all the possible values for each port.
*/
static const int port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
};
/*
* RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
* map to DDI A,B,TC1,TC2 respectively.
*/
static const int rkl_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { -1 },
[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
};
/*
* Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
* PORT_F and PORT_G, we need to map that to correct VBT sections.
*/
static const int adls_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { -1 },
[PORT_C] = { -1 },
[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
};
static const int xelpd_port_mapping[][3] = {
[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
};
if (DISPLAY_VER(i915) == 13)
return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
ARRAY_SIZE(xelpd_port_mapping[0]),
xelpd_port_mapping,
dvo_port);
else if (IS_ALDERLAKE_S(i915))
return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
ARRAY_SIZE(adls_port_mapping[0]),
adls_port_mapping,
dvo_port);
else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
ARRAY_SIZE(rkl_port_mapping[0]),
rkl_port_mapping,
dvo_port);
else
return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
ARRAY_SIZE(port_mapping[0]),
port_mapping,
dvo_port);
}
static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
{
switch (vbt_max_link_rate) {
default:
case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
return 0;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
return 2000000;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
return 1350000;
case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
return 1000000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
return 810000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
return 540000;
case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
return 270000;
case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
return 162000;
}
}
static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
{
switch (vbt_max_link_rate) {
default:
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
return 810000;
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
return 540000;
case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
return 270000;
case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
return 162000;
}
}
static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->vbt.version < 216)
return 0;
if (devdata->i915->vbt.version >= 230)
return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
else
return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
}
static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
enum port port)
{
struct drm_i915_private *i915 = devdata->i915;
bool is_hdmi;
if (port != PORT_A || DISPLAY_VER(i915) >= 12)
return;
if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
return;
is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
is_hdmi ? "/HDMI" : "");
devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
}
static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
}
bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
}
bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
{
return intel_bios_encoder_supports_dvi(devdata) &&
(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
}
bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
{
return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
}
static bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
{
return intel_bios_encoder_supports_dp(devdata) &&
devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
}
static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->vbt.version < 158)
return -1;
return devdata->child.hdmi_level_shifter_value;
}
static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->vbt.version < 204)
return 0;
switch (devdata->child.hdmi_max_data_rate) {
default:
MISSING_CASE(devdata->child.hdmi_max_data_rate);
fallthrough;
case HDMI_MAX_DATA_RATE_PLATFORM:
return 0;
case HDMI_MAX_DATA_RATE_297:
return 297000;
case HDMI_MAX_DATA_RATE_165:
return 165000;
}
}
static bool is_port_valid(struct drm_i915_private *i915, enum port port)
{
/*
* On some ICL SKUs port F is not present, but broken VBTs mark
* the port as present. Only try to initialize port F for the
* SKUs that may actually have it.
*/
if (port == PORT_F && IS_ICELAKE(i915))
return IS_ICL_WITH_PORT_F(i915);
return true;
}
static void parse_ddi_port(struct drm_i915_private *i915,
struct intel_bios_encoder_data *devdata)
{
const struct child_device_config *child = &devdata->child;
bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
enum port port;
port = dvo_port_to_port(i915, child->dvo_port);
if (port == PORT_NONE)
return;
if (!is_port_valid(i915, port)) {
drm_dbg_kms(&i915->drm,
"VBT reports port %c as supported, but that can't be true: skipping\n",
port_name(port));
return;
}
if (i915->vbt.ports[port]) {
drm_dbg_kms(&i915->drm,
"More than one child device for port %c in VBT, using the first.\n",
port_name(port));
return;
}
sanitize_device_type(devdata, port);
is_dvi = intel_bios_encoder_supports_dvi(devdata);
is_dp = intel_bios_encoder_supports_dp(devdata);
is_crt = intel_bios_encoder_supports_crt(devdata);
is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
is_edp = intel_bios_encoder_supports_edp(devdata);
supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
supports_tbt = intel_bios_encoder_supports_tbt(devdata);
drm_dbg_kms(&i915->drm,
"Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
HAS_LSPCON(i915) && child->lspcon,
supports_typec_usb, supports_tbt,
devdata->dsc != NULL);
if (is_dvi)
sanitize_ddc_pin(devdata, port);
if (is_dp)
sanitize_aux_ch(devdata, port);
hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
if (hdmi_level_shift >= 0) {
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI level shift: %d\n",
port_name(port), hdmi_level_shift);
}
max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
if (max_tmds_clock)
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI max TMDS clock: %d kHz\n",
port_name(port), max_tmds_clock);
/* I_boost config for SKL and above */
dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
if (dp_boost_level)
drm_dbg_kms(&i915->drm,
"Port %c VBT (e)DP boost level: %d\n",
port_name(port), dp_boost_level);
hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
if (hdmi_boost_level)
drm_dbg_kms(&i915->drm,
"Port %c VBT HDMI boost level: %d\n",
port_name(port), hdmi_boost_level);
dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
if (dp_max_link_rate)
drm_dbg_kms(&i915->drm,
"Port %c VBT DP max link rate: %d\n",
port_name(port), dp_max_link_rate);
i915->vbt.ports[port] = devdata;
}
static bool has_ddi_port_info(struct drm_i915_private *i915)
{
return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
}
static void parse_ddi_ports(struct drm_i915_private *i915)
{
struct intel_bios_encoder_data *devdata;
if (!has_ddi_port_info(i915))
return;
list_for_each_entry(devdata, &i915->vbt.display_devices, node)
parse_ddi_port(i915, devdata);
}
static void
parse_general_definitions(struct drm_i915_private *i915,
const struct bdb_header *bdb)
{
const struct bdb_general_definitions *defs;
struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
int i, child_device_num;
u8 expected_size;
u16 block_size;
int bus_pin;
defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!defs) {
drm_dbg_kms(&i915->drm,
"No general definition block is found, no devices defined.\n");
return;
}
block_size = get_blocksize(defs);
if (block_size < sizeof(*defs)) {
drm_dbg_kms(&i915->drm,
"General definitions block too small (%u)\n",
block_size);
return;
}
bus_pin = defs->crt_ddc_gmbus_pin;
drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
if (intel_gmbus_is_valid_pin(i915, bus_pin))
i915->vbt.crt_ddc_pin = bus_pin;
if (bdb->version < 106) {
expected_size = 22;
} else if (bdb->version < 111) {
expected_size = 27;
} else if (bdb->version < 195) {
expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
} else if (bdb->version == 195) {
expected_size = 37;
} else if (bdb->version <= 215) {
expected_size = 38;
} else if (bdb->version <= 237) {
expected_size = 39;
} else {
expected_size = sizeof(*child);
BUILD_BUG_ON(sizeof(*child) < 39);
drm_dbg(&i915->drm,
"Expected child device config size for VBT version %u not known; assuming %u\n",
bdb->version, expected_size);
}
/* Flag an error for unexpected size, but continue anyway. */
if (defs->child_dev_size != expected_size)
drm_err(&i915->drm,
"Unexpected child device config size %u (expected %u for VBT version %u)\n",
defs->child_dev_size, expected_size, bdb->version);
/* The legacy sized child device config is the minimum we need. */
if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
drm_dbg_kms(&i915->drm,
"Child device config size %u is too small.\n",
defs->child_dev_size);
return;
}
/* get the number of child device */
child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
for (i = 0; i < child_device_num; i++) {
child = child_device_ptr(defs, i);
if (!child->device_type)
continue;
drm_dbg_kms(&i915->drm,
"Found VBT child device with type 0x%x\n",
child->device_type);
devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
if (!devdata)
break;
devdata->i915 = i915;
/*
* Copy as much as we know (sizeof) and is available
* (child_dev_size) of the child device config. Accessing the
* data must depend on VBT version.
*/
memcpy(&devdata->child, child,
min_t(size_t, defs->child_dev_size, sizeof(*child)));
list_add_tail(&devdata->node, &i915->vbt.display_devices);
}
if (list_empty(&i915->vbt.display_devices))
drm_dbg_kms(&i915->drm,
"no child dev is parsed from VBT\n");
}
/* Common defaults which may be overridden by VBT. */
static void
init_vbt_defaults(struct drm_i915_private *i915)
{
i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
/* Default to having backlight */
i915->vbt.backlight.present = true;
/* LFP panel data */
i915->vbt.lvds_dither = 1;
/* SDVO panel data */
i915->vbt.sdvo_lvds_vbt_mode = NULL;
/* general features */
i915->vbt.int_tv_support = 1;
i915->vbt.int_crt_support = 1;
/* driver features */
i915->vbt.int_lvds_support = 1;
/* Default to using SSC */
i915->vbt.lvds_use_ssc = 1;
/*
* Core/SandyBridge/IvyBridge use alternative (120MHz) reference
* clock for LVDS.
*/
i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
!HAS_PCH_SPLIT(i915));
drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
i915->vbt.lvds_ssc_freq);
}
/* Defaults to initialize only if there is no VBT. */
static void
init_vbt_missing_defaults(struct drm_i915_private *i915)
{
enum port port;
int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
return;
for_each_port_masked(port, ports) {
struct intel_bios_encoder_data *devdata;
struct child_device_config *child;
enum phy phy = intel_port_to_phy(i915, port);
/*
* VBT has the TypeC mode (native,TBT/USB) and we don't want
* to detect it.
*/
if (intel_phy_is_tc(i915, phy))
continue;
/* Create fake child device config */
devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
if (!devdata)
break;
devdata->i915 = i915;
child = &devdata->child;
if (port == PORT_F)
child->dvo_port = DVO_PORT_HDMIF;
else if (port == PORT_E)
child->dvo_port = DVO_PORT_HDMIE;
else
child->dvo_port = DVO_PORT_HDMIA + port;
if (port != PORT_A && port != PORT_E)
child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
if (port != PORT_E)
child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
if (port == PORT_A)
child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
list_add_tail(&devdata->node, &i915->vbt.display_devices);
drm_dbg_kms(&i915->drm,
"Generating default VBT child device with type 0x04%x on port %c\n",
child->device_type, port_name(port));
}
/* Bypass some minimum baseline VBT version checks */
i915->vbt.version = 155;
}
static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
{
const void *_vbt = vbt;
return _vbt + vbt->bdb_offset;
}
/**
* intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
* @buf: pointer to a buffer to validate
* @size: size of the buffer
*
* Returns true on valid VBT.
*/
bool intel_bios_is_valid_vbt(const void *buf, size_t size)
{
const struct vbt_header *vbt = buf;
const struct bdb_header *bdb;
if (!vbt)
return false;
if (sizeof(struct vbt_header) > size) {
DRM_DEBUG_DRIVER("VBT header incomplete\n");
return false;
}
if (memcmp(vbt->signature, "$VBT", 4)) {
DRM_DEBUG_DRIVER("VBT invalid signature\n");
return false;
}
if (vbt->vbt_size > size) {
DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
return false;
}
size = vbt->vbt_size;
if (range_overflows_t(size_t,
vbt->bdb_offset,
sizeof(struct bdb_header),
size)) {
DRM_DEBUG_DRIVER("BDB header incomplete\n");
return false;
}
bdb = get_bdb_header(vbt);
if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
DRM_DEBUG_DRIVER("BDB incomplete\n");
return false;
}
return vbt;
}
static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
{
u32 count, data, found, store = 0;
u32 static_region, oprom_offset;
u32 oprom_size = 0x200000;
u16 vbt_size;
u32 *vbt;
static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
static_region &= OPTIONROM_SPI_REGIONID_MASK;
intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
oprom_offset &= OROM_OFFSET_MASK;
for (count = 0; count < oprom_size; count += 4) {
intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
if (data == *((const u32 *)"$VBT")) {
found = oprom_offset + count;
break;
}
}
if (count >= oprom_size)
goto err_not_found;
/* Get VBT size and allocate space for the VBT */
intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
offsetof(struct vbt_header, vbt_size));
vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
vbt_size &= 0xffff;
vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
if (!vbt)
goto err_not_found;
for (count = 0; count < vbt_size; count += 4) {
intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
*(vbt + store++) = data;
}
if (!intel_bios_is_valid_vbt(vbt, vbt_size))
goto err_free_vbt;
drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
return (struct vbt_header *)vbt;
err_free_vbt:
kfree(vbt);
err_not_found:
return NULL;
}
static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
{
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
void __iomem *p = NULL, *oprom;
struct vbt_header *vbt;
u16 vbt_size;
size_t i, size;
oprom = pci_map_rom(pdev, &size);
if (!oprom)
return NULL;
/* Scour memory looking for the VBT signature. */
for (i = 0; i + 4 < size; i += 4) {
if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
continue;
p = oprom + i;
size -= i;
break;
}
if (!p)
goto err_unmap_oprom;
if (sizeof(struct vbt_header) > size) {
drm_dbg(&i915->drm, "VBT header incomplete\n");
goto err_unmap_oprom;
}
vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
if (vbt_size > size) {
drm_dbg(&i915->drm,
"VBT incomplete (vbt_size overflows)\n");
goto err_unmap_oprom;
}
/* The rest will be validated by intel_bios_is_valid_vbt() */
vbt = kmalloc(vbt_size, GFP_KERNEL);
if (!vbt)
goto err_unmap_oprom;
memcpy_fromio(vbt, p, vbt_size);
if (!intel_bios_is_valid_vbt(vbt, vbt_size))
goto err_free_vbt;
pci_unmap_rom(pdev, oprom);
drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
return vbt;
err_free_vbt:
kfree(vbt);
err_unmap_oprom:
pci_unmap_rom(pdev, oprom);
return NULL;
}
/**
* intel_bios_init - find VBT and initialize settings from the BIOS
* @i915: i915 device instance
*
* Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
* was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
* initialize some defaults if the VBT is not present at all.
*/
void intel_bios_init(struct drm_i915_private *i915)
{
const struct vbt_header *vbt = i915->opregion.vbt;
struct vbt_header *oprom_vbt = NULL;
const struct bdb_header *bdb;
INIT_LIST_HEAD(&i915->vbt.display_devices);
if (!HAS_DISPLAY(i915)) {
drm_dbg_kms(&i915->drm,
"Skipping VBT init due to disabled display.\n");
return;
}
init_vbt_defaults(i915);
/*
* If the OpRegion does not have VBT, look in SPI flash through MMIO or
* PCI mapping
*/
if (!vbt && IS_DGFX(i915)) {
oprom_vbt = spi_oprom_get_vbt(i915);
vbt = oprom_vbt;
}
if (!vbt) {
oprom_vbt = oprom_get_vbt(i915);
vbt = oprom_vbt;
}
if (!vbt)
goto out;
bdb = get_bdb_header(vbt);
i915->vbt.version = bdb->version;
drm_dbg_kms(&i915->drm,
"VBT signature \"%.*s\", BDB version %d\n",
(int)sizeof(vbt->signature), vbt->signature, bdb->version);
/* Grab useful general definitions */
parse_general_features(i915, bdb);
parse_general_definitions(i915, bdb);
parse_panel_options(i915, bdb);
parse_panel_dtd(i915, bdb);
parse_lfp_backlight(i915, bdb);
parse_sdvo_panel_data(i915, bdb);
parse_driver_features(i915, bdb);
parse_power_conservation_features(i915, bdb);
parse_edp(i915, bdb);
parse_psr(i915, bdb);
parse_mipi_config(i915, bdb);
parse_mipi_sequence(i915, bdb);
/* Depends on child device list */
parse_compression_parameters(i915, bdb);
out:
if (!vbt) {
drm_info(&i915->drm,
"Failed to find VBIOS tables (VBT)\n");
init_vbt_missing_defaults(i915);
}
/* Further processing on pre-parsed or generated child device data */
parse_sdvo_device_mapping(i915);
parse_ddi_ports(i915);
kfree(oprom_vbt);
}
/**
* intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
* @i915: i915 device instance
*/
void intel_bios_driver_remove(struct drm_i915_private *i915)
{
struct intel_bios_encoder_data *devdata, *n;
list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
list_del(&devdata->node);
kfree(devdata->dsc);
kfree(devdata);
}
kfree(i915->vbt.sdvo_lvds_vbt_mode);
i915->vbt.sdvo_lvds_vbt_mode = NULL;
kfree(i915->vbt.lfp_lvds_vbt_mode);
i915->vbt.lfp_lvds_vbt_mode = NULL;
kfree(i915->vbt.dsi.data);
i915->vbt.dsi.data = NULL;
kfree(i915->vbt.dsi.pps);
i915->vbt.dsi.pps = NULL;
kfree(i915->vbt.dsi.config);
i915->vbt.dsi.config = NULL;
kfree(i915->vbt.dsi.deassert_seq);
i915->vbt.dsi.deassert_seq = NULL;
}
/**
* intel_bios_is_tv_present - is integrated TV present in VBT
* @i915: i915 device instance
*
* Return true if TV is present. If no child devices were parsed from VBT,
* assume TV is present.
*/
bool intel_bios_is_tv_present(struct drm_i915_private *i915)
{
const struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
if (!i915->vbt.int_tv_support)
return false;
if (list_empty(&i915->vbt.display_devices))
return true;
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
/*
* If the device type is not TV, continue.
*/
switch (child->device_type) {
case DEVICE_TYPE_INT_TV:
case DEVICE_TYPE_TV:
case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
break;
default:
continue;
}
/* Only when the addin_offset is non-zero, it is regarded
* as present.
*/
if (child->addin_offset)
return true;
}
return false;
}
/**
* intel_bios_is_lvds_present - is LVDS present in VBT
* @i915: i915 device instance
* @i2c_pin: i2c pin for LVDS if present
*
* Return true if LVDS is present. If no child devices were parsed from VBT,
* assume LVDS is present.
*/
bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
{
const struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
if (list_empty(&i915->vbt.display_devices))
return true;
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
/* If the device type is not LFP, continue.
* We have to check both the new identifiers as well as the
* old for compatibility with some BIOSes.
*/
if (child->device_type != DEVICE_TYPE_INT_LFP &&
child->device_type != DEVICE_TYPE_LFP)
continue;
if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
*i2c_pin = child->i2c_pin;
/* However, we cannot trust the BIOS writers to populate
* the VBT correctly. Since LVDS requires additional
* information from AIM blocks, a non-zero addin offset is
* a good indicator that the LVDS is actually present.
*/
if (child->addin_offset)
return true;
/* But even then some BIOS writers perform some black magic
* and instantiate the device without reference to any
* additional data. Trust that if the VBT was written into
* the OpRegion then they have validated the LVDS's existence.
*/
if (i915->opregion.vbt)
return true;
}
return false;
}
/**
* intel_bios_is_port_present - is the specified digital port present
* @i915: i915 device instance
* @port: port to check
*
* Return true if the device in %port is present.
*/
bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
{
if (WARN_ON(!has_ddi_port_info(i915)))
return true;
return i915->vbt.ports[port];
}
/**
* intel_bios_is_port_edp - is the device in given port eDP
* @i915: i915 device instance
* @port: port to check
*
* Return true if the device in %port is eDP.
*/
bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
{
const struct intel_bios_encoder_data *devdata =
intel_bios_encoder_data_lookup(i915, port);
return devdata && intel_bios_encoder_supports_edp(devdata);
}
static bool child_dev_is_dp_dual_mode(const struct child_device_config *child)
{
if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
(DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
return false;
if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
return true;
/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
child->aux_channel != 0)
return true;
return false;
}
bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
enum port port)
{
const struct intel_bios_encoder_data *devdata =
intel_bios_encoder_data_lookup(i915, port);
return devdata && child_dev_is_dp_dual_mode(&devdata->child);
}
/**
* intel_bios_is_dsi_present - is DSI present in VBT
* @i915: i915 device instance
* @port: port for DSI if present
*
* Return true if DSI is present, and return the port in %port.
*/
bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
enum port *port)
{
const struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
u8 dvo_port;
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
dvo_port = child->dvo_port;
if (dvo_port == DVO_PORT_MIPIA ||
(dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
(dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
if (port)
*port = dvo_port - DVO_PORT_MIPIA;
return true;
} else if (dvo_port == DVO_PORT_MIPIB ||
dvo_port == DVO_PORT_MIPIC ||
dvo_port == DVO_PORT_MIPID) {
drm_dbg_kms(&i915->drm,
"VBT has unsupported DSI port %c\n",
port_name(dvo_port - DVO_PORT_MIPIA));
}
}
return false;
}
static void fill_dsc(struct intel_crtc_state *crtc_state,
struct dsc_compression_parameters_entry *dsc,
int dsc_max_bpc)
{
struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
int bpc = 8;
vdsc_cfg->dsc_version_major = dsc->version_major;
vdsc_cfg->dsc_version_minor = dsc->version_minor;
if (dsc->support_12bpc && dsc_max_bpc >= 12)
bpc = 12;
else if (dsc->support_10bpc && dsc_max_bpc >= 10)
bpc = 10;
else if (dsc->support_8bpc && dsc_max_bpc >= 8)
bpc = 8;
else
DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
dsc_max_bpc);
crtc_state->pipe_bpp = bpc * 3;
crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
VBT_DSC_MAX_BPP(dsc->max_bpp));
/*
* FIXME: This is ugly, and slice count should take DSC engine
* throughput etc. into account.
*
* Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
*/
if (dsc->slices_per_line & BIT(2)) {
crtc_state->dsc.slice_count = 4;
} else if (dsc->slices_per_line & BIT(1)) {
crtc_state->dsc.slice_count = 2;
} else {
/* FIXME */
if (!(dsc->slices_per_line & BIT(0)))
DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
crtc_state->dsc.slice_count = 1;
}
if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
crtc_state->dsc.slice_count != 0)
DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
crtc_state->hw.adjusted_mode.crtc_hdisplay,
crtc_state->dsc.slice_count);
/*
* The VBT rc_buffer_block_size and rc_buffer_size definitions
* correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
*/
vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
dsc->rc_buffer_size);
/* FIXME: DSI spec says bpc + 1 for this one */
vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
vdsc_cfg->slice_height = dsc->slice_height;
}
/* FIXME: initially DSI specific */
bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
struct intel_crtc_state *crtc_state,
int dsc_max_bpc)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata;
const struct child_device_config *child;
list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
child = &devdata->child;
if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
continue;
if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
if (!devdata->dsc)
return false;
if (crtc_state)
fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
return true;
}
}
return false;
}
/**
* intel_bios_is_port_hpd_inverted - is HPD inverted for %port
* @i915: i915 device instance
* @port: port to check
*
* Return true if HPD should be inverted for %port.
*/
bool
intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
enum port port)
{
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
if (drm_WARN_ON_ONCE(&i915->drm,
!IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
return false;
return devdata && devdata->child.hpd_invert;
}
/**
* intel_bios_is_lspcon_present - if LSPCON is attached on %port
* @i915: i915 device instance
* @port: port to check
*
* Return true if LSPCON is present on this port
*/
bool
intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
enum port port)
{
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
}
/**
* intel_bios_is_lane_reversal_needed - if lane reversal needed on port
* @i915: i915 device instance
* @port: port to check
*
* Return true if port requires lane reversal
*/
bool
intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
enum port port)
{
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
return devdata && devdata->child.lane_reversal;
}
enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
enum port port)
{
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[port];
enum aux_ch aux_ch;
if (!devdata || !devdata->child.aux_channel) {
aux_ch = (enum aux_ch)port;
drm_dbg_kms(&i915->drm,
"using AUX %c for port %c (platform default)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}
/*
* RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
* map to DDI A,B,TC1,TC2 respectively.
*
* ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
* map to DDI A,TC1,TC2,TC3,TC4 respectively.
*/
switch (devdata->child.aux_channel) {
case DP_AUX_A:
aux_ch = AUX_CH_A;
break;
case DP_AUX_B:
if (IS_ALDERLAKE_S(i915))
aux_ch = AUX_CH_USBC1;
else
aux_ch = AUX_CH_B;
break;
case DP_AUX_C:
if (IS_ALDERLAKE_S(i915))
aux_ch = AUX_CH_USBC2;
else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
aux_ch = AUX_CH_USBC1;
else
aux_ch = AUX_CH_C;
break;
case DP_AUX_D:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_D_XELPD;
else if (IS_ALDERLAKE_S(i915))
aux_ch = AUX_CH_USBC3;
else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
aux_ch = AUX_CH_USBC2;
else
aux_ch = AUX_CH_D;
break;
case DP_AUX_E:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_E_XELPD;
else if (IS_ALDERLAKE_S(i915))
aux_ch = AUX_CH_USBC4;
else
aux_ch = AUX_CH_E;
break;
case DP_AUX_F:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_USBC1;
else
aux_ch = AUX_CH_F;
break;
case DP_AUX_G:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_USBC2;
else
aux_ch = AUX_CH_G;
break;
case DP_AUX_H:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_USBC3;
else
aux_ch = AUX_CH_H;
break;
case DP_AUX_I:
if (DISPLAY_VER(i915) == 13)
aux_ch = AUX_CH_USBC4;
else
aux_ch = AUX_CH_I;
break;
default:
MISSING_CASE(devdata->child.aux_channel);
aux_ch = AUX_CH_A;
break;
}
drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
aux_ch_name(aux_ch), port_name(port));
return aux_ch;
}
int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
return _intel_bios_max_tmds_clock(devdata);
}
/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
return _intel_bios_hdmi_level_shift(devdata);
}
int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
return 0;
return translate_iboost(devdata->child.dp_iboost_level);
}
int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
{
if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
return 0;
return translate_iboost(devdata->child.hdmi_iboost_level);
}
int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
return _intel_bios_dp_max_link_rate(devdata);
}
int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_bios_encoder_data *devdata = i915->vbt.ports[encoder->port];
if (!devdata || !devdata->child.ddc_pin)
return 0;
return map_ddc_pin(i915, devdata->child.ddc_pin);
}
bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
{
return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
}
bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
{
return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
}
const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
{
return i915->vbt.ports[port];
}