linux-stable/drivers/gpu/drm/radeon/ci_dpm.c
Alex Deucher a52b5eb647 drm/radeon/dpm/ci: filter clocks based on voltage/clk dep tables
Filter out mclk and sclk levels higher than listed in the clk
voltage dependency tables.  Supporting these clocks will require
additional driver tweaking that isn't supported yet.

See bug:
https://bugs.freedesktop.org/show_bug.cgi?id=68235

Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2013-09-23 10:29:53 -04:00

5263 lines
156 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "radeon.h"
#include "cikd.h"
#include "r600_dpm.h"
#include "ci_dpm.h"
#include "atom.h"
#include <linux/seq_file.h>
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define SMC_RAM_END 0x40000
#define VOLTAGE_SCALE 4
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
static const struct ci_pt_defaults defaults_bonaire_xt =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
};
static const struct ci_pt_defaults defaults_bonaire_pro =
{
1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x65062,
{ 0x8C, 0x23F, 0x244, 0xA6, 0x83, 0x85, 0x86, 0x86, 0x83, 0xDB, 0xDB, 0xDA, 0x67, 0x60, 0x5F },
{ 0x187, 0x193, 0x193, 0x1C7, 0x1D1, 0x1D1, 0x210, 0x219, 0x219, 0x266, 0x26C, 0x26C, 0x2C9, 0x2CB, 0x2CB }
};
static const struct ci_pt_defaults defaults_saturn_xt =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
{ 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
};
static const struct ci_pt_defaults defaults_saturn_pro =
{
1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x30000,
{ 0x96, 0x21D, 0x23B, 0xA1, 0x85, 0x87, 0x83, 0x84, 0x81, 0xE6, 0xE6, 0xE6, 0x71, 0x6A, 0x6A },
{ 0x193, 0x19E, 0x19E, 0x1D2, 0x1DC, 0x1DC, 0x21A, 0x223, 0x223, 0x26E, 0x27E, 0x274, 0x2CF, 0x2D2, 0x2D2 }
};
static const struct ci_pt_config_reg didt_config_ci[] =
{
{ 0x10, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x10, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x11, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x12, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x2, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x1, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x0, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x30, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x31, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x32, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x22, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x21, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x20, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x50, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x51, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x52, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x42, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x41, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x40, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x70, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x71, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x000000ff, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x0000ff00, 8, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0x00ff0000, 16, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x72, 0xff000000, 24, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x00003fff, 0, 0x4, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x03ff0000, 16, 0x80, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x62, 0x78000000, 27, 0x3, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0x0000ffff, 0, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x61, 0xffff0000, 16, 0x3FFF, CISLANDS_CONFIGREG_DIDT_IND },
{ 0x60, 0x00000001, 0, 0x0, CISLANDS_CONFIGREG_DIDT_IND },
{ 0xFFFFFFFF }
};
extern u8 rv770_get_memory_module_index(struct radeon_device *rdev);
extern void btc_get_max_clock_from_voltage_dependency_table(struct radeon_clock_voltage_dependency_table *table,
u32 *max_clock);
extern int ni_copy_and_switch_arb_sets(struct radeon_device *rdev,
u32 arb_freq_src, u32 arb_freq_dest);
extern u8 si_get_ddr3_mclk_frequency_ratio(u32 memory_clock);
extern u8 si_get_mclk_frequency_ratio(u32 memory_clock, bool strobe_mode);
extern void si_trim_voltage_table_to_fit_state_table(struct radeon_device *rdev,
u32 max_voltage_steps,
struct atom_voltage_table *voltage_table);
extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
extern void cik_update_cg(struct radeon_device *rdev,
u32 block, bool enable);
static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd);
static int ci_set_power_limit(struct radeon_device *rdev, u32 n);
static int ci_set_overdrive_target_tdp(struct radeon_device *rdev,
u32 target_tdp);
static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate);
static struct ci_power_info *ci_get_pi(struct radeon_device *rdev)
{
struct ci_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static struct ci_ps *ci_get_ps(struct radeon_ps *rps)
{
struct ci_ps *ps = rps->ps_priv;
return ps;
}
static void ci_initialize_powertune_defaults(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
switch (rdev->pdev->device) {
case 0x6650:
case 0x6658:
case 0x665C:
default:
pi->powertune_defaults = &defaults_bonaire_xt;
break;
case 0x6651:
case 0x665D:
pi->powertune_defaults = &defaults_bonaire_pro;
break;
case 0x6640:
pi->powertune_defaults = &defaults_saturn_xt;
break;
case 0x6641:
pi->powertune_defaults = &defaults_saturn_pro;
break;
}
pi->dte_tj_offset = 0;
pi->caps_power_containment = true;
pi->caps_cac = false;
pi->caps_sq_ramping = false;
pi->caps_db_ramping = false;
pi->caps_td_ramping = false;
pi->caps_tcp_ramping = false;
if (pi->caps_power_containment) {
pi->caps_cac = true;
pi->enable_bapm_feature = true;
pi->enable_tdc_limit_feature = true;
pi->enable_pkg_pwr_tracking_feature = true;
}
}
static u8 ci_convert_to_vid(u16 vddc)
{
return (6200 - (vddc * VOLTAGE_SCALE)) / 25;
}
static int ci_populate_bapm_vddc_vid_sidd(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
u8 *hi2_vid = pi->smc_powertune_table.BapmVddCVidHiSidd2;
u32 i;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries == NULL)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.count > 8)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.count !=
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count)
return -EINVAL;
for (i = 0; i < rdev->pm.dpm.dyn_state.cac_leakage_table.count; i++) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) {
lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1);
hi_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2);
hi2_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3);
} else {
lo_vid[i] = ci_convert_to_vid(rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc);
hi_vid[i] = ci_convert_to_vid((u16)rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage);
}
}
return 0;
}
static int ci_populate_vddc_vid(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *vid = pi->smc_powertune_table.VddCVid;
u32 i;
if (pi->vddc_voltage_table.count > 8)
return -EINVAL;
for (i = 0; i < pi->vddc_voltage_table.count; i++)
vid[i] = ci_convert_to_vid(pi->vddc_voltage_table.entries[i].value);
return 0;
}
static int ci_populate_svi_load_line(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
pi->smc_powertune_table.SviLoadLineEn = pt_defaults->svi_load_line_en;
pi->smc_powertune_table.SviLoadLineVddC = pt_defaults->svi_load_line_vddc;
pi->smc_powertune_table.SviLoadLineTrimVddC = 3;
pi->smc_powertune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int ci_populate_tdc_limit(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
u16 tdc_limit;
tdc_limit = rdev->pm.dpm.dyn_state.cac_tdp_table->tdc * 256;
pi->smc_powertune_table.TDC_VDDC_PkgLimit = cpu_to_be16(tdc_limit);
pi->smc_powertune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
pt_defaults->tdc_vddc_throttle_release_limit_perc;
pi->smc_powertune_table.TDC_MAWt = pt_defaults->tdc_mawt;
return 0;
}
static int ci_populate_dw8(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
int ret;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable) +
offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
(u32 *)&pi->smc_powertune_table.TdcWaterfallCtl,
pi->sram_end);
if (ret)
return -EINVAL;
else
pi->smc_powertune_table.TdcWaterfallCtl = pt_defaults->tdc_waterfall_ctl;
return 0;
}
static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 *hi_vid = pi->smc_powertune_table.BapmVddCVidHiSidd;
u8 *lo_vid = pi->smc_powertune_table.BapmVddCVidLoSidd;
int i, min, max;
min = max = hi_vid[0];
for (i = 0; i < 8; i++) {
if (0 != hi_vid[i]) {
if (min > hi_vid[i])
min = hi_vid[i];
if (max < hi_vid[i])
max = hi_vid[i];
}
if (0 != lo_vid[i]) {
if (min > lo_vid[i])
min = lo_vid[i];
if (max < lo_vid[i])
max = lo_vid[i];
}
}
if ((min == 0) || (max == 0))
return -EINVAL;
pi->smc_powertune_table.GnbLPMLMaxVid = (u8)max;
pi->smc_powertune_table.GnbLPMLMinVid = (u8)min;
return 0;
}
static int ci_populate_bapm_vddc_base_leakage_sidd(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 hi_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd;
u16 lo_sidd = pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd;
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
hi_sidd = cac_tdp_table->high_cac_leakage / 100 * 256;
lo_sidd = cac_tdp_table->low_cac_leakage / 100 * 256;
pi->smc_powertune_table.BapmVddCBaseLeakageHiSidd = cpu_to_be16(hi_sidd);
pi->smc_powertune_table.BapmVddCBaseLeakageLoSidd = cpu_to_be16(lo_sidd);
return 0;
}
static int ci_populate_bapm_parameters_in_dpm_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct ci_pt_defaults *pt_defaults = pi->powertune_defaults;
SMU7_Discrete_DpmTable *dpm_table = &pi->smc_state_table;
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
struct radeon_ppm_table *ppm = rdev->pm.dpm.dyn_state.ppm_table;
int i, j, k;
const u16 *def1;
const u16 *def2;
dpm_table->DefaultTdp = cac_tdp_table->tdp * 256;
dpm_table->TargetTdp = cac_tdp_table->configurable_tdp * 256;
dpm_table->DTETjOffset = (u8)pi->dte_tj_offset;
dpm_table->GpuTjMax =
(u8)(pi->thermal_temp_setting.temperature_high / 1000);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = pt_defaults->dte_ambient_temp_base;
if (ppm) {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16((u16)ppm->dgpu_tdp * 256 / 1000);
dpm_table->PPM_TemperatureLimit = cpu_to_be16((u16)ppm->tj_max * 256);
} else {
dpm_table->PPM_PkgPwrLimit = cpu_to_be16(0);
dpm_table->PPM_TemperatureLimit = cpu_to_be16(0);
}
dpm_table->BAPM_TEMP_GRADIENT = cpu_to_be32(pt_defaults->bapm_temp_gradient);
def1 = pt_defaults->bapmti_r;
def2 = pt_defaults->bapmti_rc;
for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU7_DTE_SOURCES; j++) {
for (k = 0; k < SMU7_DTE_SINKS; k++) {
dpm_table->BAPMTI_R[i][j][k] = cpu_to_be16(*def1);
dpm_table->BAPMTI_RC[i][j][k] = cpu_to_be16(*def2);
def1++;
def2++;
}
}
}
return 0;
}
static int ci_populate_pm_base(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 pm_fuse_table_offset;
int ret;
if (pi->caps_power_containment) {
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, pi->sram_end);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_vid_sidd(rdev);
if (ret)
return ret;
ret = ci_populate_vddc_vid(rdev);
if (ret)
return ret;
ret = ci_populate_svi_load_line(rdev);
if (ret)
return ret;
ret = ci_populate_tdc_limit(rdev);
if (ret)
return ret;
ret = ci_populate_dw8(rdev);
if (ret)
return ret;
ret = ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(rdev);
if (ret)
return ret;
ret = ci_populate_bapm_vddc_base_leakage_sidd(rdev);
if (ret)
return ret;
ret = ci_copy_bytes_to_smc(rdev, pm_fuse_table_offset,
(u8 *)&pi->smc_powertune_table,
sizeof(SMU7_Discrete_PmFuses), pi->sram_end);
if (ret)
return ret;
}
return 0;
}
static void ci_do_enable_didt(struct radeon_device *rdev, const bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 data;
if (pi->caps_sq_ramping) {
data = RREG32_DIDT(DIDT_SQ_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_SQ_CTRL0, data);
}
if (pi->caps_db_ramping) {
data = RREG32_DIDT(DIDT_DB_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_DB_CTRL0, data);
}
if (pi->caps_td_ramping) {
data = RREG32_DIDT(DIDT_TD_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TD_CTRL0, data);
}
if (pi->caps_tcp_ramping) {
data = RREG32_DIDT(DIDT_TCP_CTRL0);
if (enable)
data |= DIDT_CTRL_EN;
else
data &= ~DIDT_CTRL_EN;
WREG32_DIDT(DIDT_TCP_CTRL0, data);
}
}
static int ci_program_pt_config_registers(struct radeon_device *rdev,
const struct ci_pt_config_reg *cac_config_regs)
{
const struct ci_pt_config_reg *config_regs = cac_config_regs;
u32 data;
u32 cache = 0;
if (config_regs == NULL)
return -EINVAL;
while (config_regs->offset != 0xFFFFFFFF) {
if (config_regs->type == CISLANDS_CONFIGREG_CACHE) {
cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
} else {
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
data = RREG32_SMC(config_regs->offset);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
data = RREG32_DIDT(config_regs->offset);
break;
default:
data = RREG32(config_regs->offset << 2);
break;
}
data &= ~config_regs->mask;
data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
data |= cache;
switch (config_regs->type) {
case CISLANDS_CONFIGREG_SMC_IND:
WREG32_SMC(config_regs->offset, data);
break;
case CISLANDS_CONFIGREG_DIDT_IND:
WREG32_DIDT(config_regs->offset, data);
break;
default:
WREG32(config_regs->offset << 2, data);
break;
}
cache = 0;
}
config_regs++;
}
return 0;
}
static int ci_enable_didt(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
if (pi->caps_sq_ramping || pi->caps_db_ramping ||
pi->caps_td_ramping || pi->caps_tcp_ramping) {
cik_enter_rlc_safe_mode(rdev);
if (enable) {
ret = ci_program_pt_config_registers(rdev, didt_config_ci);
if (ret) {
cik_exit_rlc_safe_mode(rdev);
return ret;
}
}
ci_do_enable_didt(rdev, enable);
cik_exit_rlc_safe_mode(rdev);
}
return 0;
}
static int ci_enable_power_containment(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret = 0;
if (enable) {
pi->power_containment_features = 0;
if (pi->caps_power_containment) {
if (pi->enable_bapm_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableDTE);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_BAPM;
}
if (pi->enable_tdc_limit_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitEnable);
if (smc_result != PPSMC_Result_OK)
ret = -EINVAL;
else
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_TDCLimit;
}
if (pi->enable_pkg_pwr_tracking_feature) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitEnable);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
} else {
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
u32 default_pwr_limit =
(u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
pi->power_containment_features |= POWERCONTAINMENT_FEATURE_PkgPwrLimit;
ci_set_power_limit(rdev, default_pwr_limit);
}
}
}
} else {
if (pi->caps_power_containment && pi->power_containment_features) {
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_TDCLimit)
ci_send_msg_to_smc(rdev, PPSMC_MSG_TDCLimitDisable);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)
ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableDTE);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit)
ci_send_msg_to_smc(rdev, PPSMC_MSG_PkgPwrLimitDisable);
pi->power_containment_features = 0;
}
}
return ret;
}
static int ci_enable_smc_cac(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret = 0;
if (pi->caps_cac) {
if (enable) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableCac);
if (smc_result != PPSMC_Result_OK) {
ret = -EINVAL;
pi->cac_enabled = false;
} else {
pi->cac_enabled = true;
}
} else if (pi->cac_enabled) {
ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableCac);
pi->cac_enabled = false;
}
}
return ret;
}
static int ci_power_control_set_level(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
s32 adjust_percent;
s32 target_tdp;
int ret = 0;
bool adjust_polarity = false; /* ??? */
if (pi->caps_power_containment &&
(pi->power_containment_features & POWERCONTAINMENT_FEATURE_BAPM)) {
adjust_percent = adjust_polarity ?
rdev->pm.dpm.tdp_adjustment : (-1 * rdev->pm.dpm.tdp_adjustment);
target_tdp = ((100 + adjust_percent) *
(s32)cac_tdp_table->configurable_tdp) / 100;
target_tdp *= 256;
ret = ci_set_overdrive_target_tdp(rdev, (u32)target_tdp);
}
return ret;
}
void ci_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->uvd_power_gated == gate)
return;
pi->uvd_power_gated = gate;
ci_update_uvd_dpm(rdev, gate);
}
bool ci_dpm_vblank_too_short(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
u32 switch_limit = pi->mem_gddr5 ? 450 : 300;
if (vblank_time < switch_limit)
return true;
else
return false;
}
static void ci_apply_state_adjust_rules(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_and_voltage_limits *max_limits;
bool disable_mclk_switching;
u32 sclk, mclk;
u32 max_sclk_vddc, max_mclk_vddci, max_mclk_vddc;
int i;
if ((rdev->pm.dpm.new_active_crtc_count > 1) ||
ci_dpm_vblank_too_short(rdev))
disable_mclk_switching = true;
else
disable_mclk_switching = false;
if ((rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
pi->battery_state = true;
else
pi->battery_state = false;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (rdev->pm.dpm.ac_power == false) {
for (i = 0; i < ps->performance_level_count; i++) {
if (ps->performance_levels[i].mclk > max_limits->mclk)
ps->performance_levels[i].mclk = max_limits->mclk;
if (ps->performance_levels[i].sclk > max_limits->sclk)
ps->performance_levels[i].sclk = max_limits->sclk;
}
}
/* limit clocks to max supported clocks based on voltage dependency tables */
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
&max_sclk_vddc);
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
&max_mclk_vddci);
btc_get_max_clock_from_voltage_dependency_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
&max_mclk_vddc);
for (i = 0; i < ps->performance_level_count; i++) {
if (max_sclk_vddc) {
if (ps->performance_levels[i].sclk > max_sclk_vddc)
ps->performance_levels[i].sclk = max_sclk_vddc;
}
if (max_mclk_vddci) {
if (ps->performance_levels[i].mclk > max_mclk_vddci)
ps->performance_levels[i].mclk = max_mclk_vddci;
}
if (max_mclk_vddc) {
if (ps->performance_levels[i].mclk > max_mclk_vddc)
ps->performance_levels[i].mclk = max_mclk_vddc;
}
}
/* XXX validate the min clocks required for display */
if (disable_mclk_switching) {
mclk = ps->performance_levels[ps->performance_level_count - 1].mclk;
sclk = ps->performance_levels[0].sclk;
} else {
mclk = ps->performance_levels[0].mclk;
sclk = ps->performance_levels[0].sclk;
}
ps->performance_levels[0].sclk = sclk;
ps->performance_levels[0].mclk = mclk;
if (ps->performance_levels[1].sclk < ps->performance_levels[0].sclk)
ps->performance_levels[1].sclk = ps->performance_levels[0].sclk;
if (disable_mclk_switching) {
if (ps->performance_levels[0].mclk < ps->performance_levels[1].mclk)
ps->performance_levels[0].mclk = ps->performance_levels[1].mclk;
} else {
if (ps->performance_levels[1].mclk < ps->performance_levels[0].mclk)
ps->performance_levels[1].mclk = ps->performance_levels[0].mclk;
}
}
static int ci_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
u32 tmp;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
tmp = RREG32_SMC(CG_THERMAL_INT);
tmp &= ~(CI_DIG_THERM_INTH_MASK | CI_DIG_THERM_INTL_MASK);
tmp |= CI_DIG_THERM_INTH(high_temp / 1000) |
CI_DIG_THERM_INTL(low_temp / 1000);
WREG32_SMC(CG_THERMAL_INT, tmp);
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(CG_THERMAL_CTRL);
tmp &= DIG_THERM_DPM_MASK;
tmp |= DIG_THERM_DPM(high_temp / 1000);
WREG32_SMC(CG_THERMAL_CTRL, tmp);
#endif
return 0;
}
#if 0
static int ci_read_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 *value)
{
struct ci_power_info *pi = ci_get_pi(rdev);
return ci_read_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
#endif
static int ci_write_smc_soft_register(struct radeon_device *rdev,
u16 reg_offset, u32 value)
{
struct ci_power_info *pi = ci_get_pi(rdev);
return ci_write_smc_sram_dword(rdev,
pi->soft_regs_start + reg_offset,
value, pi->sram_end);
}
static void ci_init_fps_limits(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
if (pi->caps_fps) {
u16 tmp;
tmp = 45;
table->FpsHighT = cpu_to_be16(tmp);
tmp = 30;
table->FpsLowT = cpu_to_be16(tmp);
}
}
static int ci_update_sclk_t(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret = 0;
u32 low_sclk_interrupt_t = 0;
if (pi->caps_sclk_throttle_low_notification) {
low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
ret = ci_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT),
(u8 *)&low_sclk_interrupt_t,
sizeof(u32), pi->sram_end);
}
return ret;
}
static void ci_get_leakage_voltages(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 leakage_id, virtual_voltage_id;
u16 vddc, vddci;
int i;
pi->vddc_leakage.count = 0;
pi->vddci_leakage.count = 0;
if (radeon_atom_get_leakage_id_from_vbios(rdev, &leakage_id) == 0) {
for (i = 0; i < CISLANDS_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (radeon_atom_get_leakage_vddc_based_on_leakage_params(rdev, &vddc, &vddci,
virtual_voltage_id,
leakage_id) == 0) {
if (vddc != 0 && vddc != virtual_voltage_id) {
pi->vddc_leakage.actual_voltage[pi->vddc_leakage.count] = vddc;
pi->vddc_leakage.leakage_id[pi->vddc_leakage.count] = virtual_voltage_id;
pi->vddc_leakage.count++;
}
if (vddci != 0 && vddci != virtual_voltage_id) {
pi->vddci_leakage.actual_voltage[pi->vddci_leakage.count] = vddci;
pi->vddci_leakage.leakage_id[pi->vddci_leakage.count] = virtual_voltage_id;
pi->vddci_leakage.count++;
}
}
}
}
}
static void ci_set_dpm_event_sources(struct radeon_device *rdev, u32 sources)
{
struct ci_power_info *pi = ci_get_pi(rdev);
bool want_thermal_protection;
enum radeon_dpm_event_src dpm_event_src;
u32 tmp;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
#if 0
/* XXX: need to figure out how to handle this properly */
tmp = RREG32_SMC(CG_THERMAL_CTRL);
tmp &= DPM_EVENT_SRC_MASK;
tmp |= DPM_EVENT_SRC(dpm_event_src);
WREG32_SMC(CG_THERMAL_CTRL, tmp);
#endif
tmp = RREG32_SMC(GENERAL_PWRMGT);
if (pi->thermal_protection)
tmp &= ~THERMAL_PROTECTION_DIS;
else
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
} else {
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
}
static void ci_enable_auto_throttle_source(struct radeon_device *rdev,
enum radeon_dpm_auto_throttle_src source,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
ci_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
}
}
static void ci_enable_vr_hot_gpio_interrupt(struct radeon_device *rdev)
{
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT)
ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableVRHotGPIOInterrupt);
}
static int ci_unfreeze_sclk_mclk_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
pi->need_update_smu7_dpm_table = 0;
return 0;
}
static int ci_enable_sclk_mclk_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (enable) {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
WREG32_P(MC_SEQ_CNTL_3, CAC_EN, ~CAC_EN);
WREG32_SMC(LCAC_MC0_CNTL, 0x05);
WREG32_SMC(LCAC_MC1_CNTL, 0x05);
WREG32_SMC(LCAC_CPL_CNTL, 0x100005);
udelay(10);
WREG32_SMC(LCAC_MC0_CNTL, 0x400005);
WREG32_SMC(LCAC_MC1_CNTL, 0x400005);
WREG32_SMC(LCAC_CPL_CNTL, 0x500005);
}
} else {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_DPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static int ci_start_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= GLOBAL_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp |= DYNAMIC_PM_EN;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VoltageChangeTimeout), 0x1000);
WREG32_P(BIF_LNCNT_RESET, 0, ~RESET_LNCNT_EN);
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
ret = ci_enable_sclk_mclk_dpm(rdev, true);
if (ret)
return ret;
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Enable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_freeze_sclk_mclk_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
if (!pi->need_update_smu7_dpm_table)
return 0;
if ((!pi->sclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_SCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if ((!pi->mclk_dpm_key_disabled) &&
(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_FreezeLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_stop_dpm(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
int ret;
u32 tmp;
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp &= ~GLOBAL_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
tmp = RREG32(SCLK_PWRMGT_CNTL);
tmp &= ~DYNAMIC_PM_EN;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
ret = ci_enable_sclk_mclk_dpm(rdev, false);
if (ret)
return ret;
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_Voltage_Cntl_Disable);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
static void ci_enable_sclk_control(struct radeon_device *rdev, bool enable)
{
u32 tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
if (enable)
tmp &= ~SCLK_PWRMGT_OFF;
else
tmp |= SCLK_PWRMGT_OFF;
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
}
#if 0
static int ci_notify_hw_of_power_source(struct radeon_device *rdev,
bool ac_power)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_cac_tdp_table *cac_tdp_table =
rdev->pm.dpm.dyn_state.cac_tdp_table;
u32 power_limit;
if (ac_power)
power_limit = (u32)(cac_tdp_table->maximum_power_delivery_limit * 256);
else
power_limit = (u32)(cac_tdp_table->battery_power_limit * 256);
ci_set_power_limit(rdev, power_limit);
if (pi->caps_automatic_dc_transition) {
if (ac_power)
ci_send_msg_to_smc(rdev, PPSMC_MSG_RunningOnAC);
else
ci_send_msg_to_smc(rdev, PPSMC_MSG_Remove_DC_Clamp);
}
return 0;
}
#endif
static PPSMC_Result ci_send_msg_to_smc_with_parameter(struct radeon_device *rdev,
PPSMC_Msg msg, u32 parameter)
{
WREG32(SMC_MSG_ARG_0, parameter);
return ci_send_msg_to_smc(rdev, msg);
}
static PPSMC_Result ci_send_msg_to_smc_return_parameter(struct radeon_device *rdev,
PPSMC_Msg msg, u32 *parameter)
{
PPSMC_Result smc_result;
smc_result = ci_send_msg_to_smc(rdev, msg);
if ((smc_result == PPSMC_Result_OK) && parameter)
*parameter = RREG32(SMC_MSG_ARG_0);
return smc_result;
}
static int ci_dpm_force_state_sclk(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->sclk_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_mclk(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->mclk_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_MCLKDPM_ForceState, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_dpm_force_state_pcie(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->pcie_dpm_key_disabled) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PCIeDPM_ForceLevel, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_power_limit(struct radeon_device *rdev, u32 n)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->power_containment_features & POWERCONTAINMENT_FEATURE_PkgPwrLimit) {
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_PkgPwrSetLimit, n);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
return 0;
}
static int ci_set_overdrive_target_tdp(struct radeon_device *rdev,
u32 target_tdp)
{
PPSMC_Result smc_result =
ci_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_OverDriveSetTargetTdp, target_tdp);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
return 0;
}
static int ci_set_boot_state(struct radeon_device *rdev)
{
return ci_enable_sclk_mclk_dpm(rdev, false);
}
static u32 ci_get_average_sclk_freq(struct radeon_device *rdev)
{
u32 sclk_freq;
PPSMC_Result smc_result =
ci_send_msg_to_smc_return_parameter(rdev,
PPSMC_MSG_API_GetSclkFrequency,
&sclk_freq);
if (smc_result != PPSMC_Result_OK)
sclk_freq = 0;
return sclk_freq;
}
static u32 ci_get_average_mclk_freq(struct radeon_device *rdev)
{
u32 mclk_freq;
PPSMC_Result smc_result =
ci_send_msg_to_smc_return_parameter(rdev,
PPSMC_MSG_API_GetMclkFrequency,
&mclk_freq);
if (smc_result != PPSMC_Result_OK)
mclk_freq = 0;
return mclk_freq;
}
static void ci_dpm_start_smc(struct radeon_device *rdev)
{
int i;
ci_program_jump_on_start(rdev);
ci_start_smc_clock(rdev);
ci_start_smc(rdev);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32_SMC(FIRMWARE_FLAGS) & INTERRUPTS_ENABLED)
break;
}
}
static void ci_dpm_stop_smc(struct radeon_device *rdev)
{
ci_reset_smc(rdev);
ci_stop_smc_clock(rdev);
}
static int ci_process_firmware_header(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
int ret;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, DpmTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->dpm_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, SoftRegisters),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->soft_regs_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcRegisterTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->mc_reg_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, FanTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->fan_table_start = tmp;
ret = ci_read_smc_sram_dword(rdev,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
&tmp, pi->sram_end);
if (ret)
return ret;
pi->arb_table_start = tmp;
return 0;
}
static void ci_read_clock_registers(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
pi->clock_registers.cg_spll_func_cntl =
RREG32_SMC(CG_SPLL_FUNC_CNTL);
pi->clock_registers.cg_spll_func_cntl_2 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_2);
pi->clock_registers.cg_spll_func_cntl_3 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_3);
pi->clock_registers.cg_spll_func_cntl_4 =
RREG32_SMC(CG_SPLL_FUNC_CNTL_4);
pi->clock_registers.cg_spll_spread_spectrum =
RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM);
pi->clock_registers.cg_spll_spread_spectrum_2 =
RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM_2);
pi->clock_registers.dll_cntl = RREG32(DLL_CNTL);
pi->clock_registers.mclk_pwrmgt_cntl = RREG32(MCLK_PWRMGT_CNTL);
pi->clock_registers.mpll_ad_func_cntl = RREG32(MPLL_AD_FUNC_CNTL);
pi->clock_registers.mpll_dq_func_cntl = RREG32(MPLL_DQ_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl = RREG32(MPLL_FUNC_CNTL);
pi->clock_registers.mpll_func_cntl_1 = RREG32(MPLL_FUNC_CNTL_1);
pi->clock_registers.mpll_func_cntl_2 = RREG32(MPLL_FUNC_CNTL_2);
pi->clock_registers.mpll_ss1 = RREG32(MPLL_SS1);
pi->clock_registers.mpll_ss2 = RREG32(MPLL_SS2);
}
static void ci_init_sclk_t(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
pi->low_sclk_interrupt_t = 0;
}
static void ci_enable_thermal_protection(struct radeon_device *rdev,
bool enable)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
if (enable)
tmp &= ~THERMAL_PROTECTION_DIS;
else
tmp |= THERMAL_PROTECTION_DIS;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
static void ci_enable_acpi_power_management(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= STATIC_PM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
#if 0
static int ci_enter_ulp_state(struct radeon_device *rdev)
{
WREG32(SMC_MESSAGE_0, PPSMC_MSG_SwitchToMinimumPower);
udelay(25000);
return 0;
}
static int ci_exit_ulp_state(struct radeon_device *rdev)
{
int i;
WREG32(SMC_MESSAGE_0, PPSMC_MSG_ResumeFromMinimumPower);
udelay(7000);
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32(SMC_RESP_0) == 1)
break;
udelay(1000);
}
return 0;
}
#endif
static int ci_notify_smc_display_change(struct radeon_device *rdev,
bool has_display)
{
PPSMC_Msg msg = has_display ? PPSMC_MSG_HasDisplay : PPSMC_MSG_NoDisplay;
return (ci_send_msg_to_smc(rdev, msg) == PPSMC_Result_OK) ? 0 : -EINVAL;
}
static int ci_enable_ds_master_switch(struct radeon_device *rdev,
bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (enable) {
if (pi->caps_sclk_ds) {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_ON) != PPSMC_Result_OK)
return -EINVAL;
} else {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
} else {
if (pi->caps_sclk_ds) {
if (ci_send_msg_to_smc(rdev, PPSMC_MSG_MASTER_DeepSleep_OFF) != PPSMC_Result_OK)
return -EINVAL;
}
}
return 0;
}
static void ci_program_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL);
u32 pre_vbi_time_in_us;
u32 frame_time_in_us;
u32 ref_clock = rdev->clock.spll.reference_freq;
u32 refresh_rate = r600_dpm_get_vrefresh(rdev);
u32 vblank_time = r600_dpm_get_vblank_time(rdev);
tmp &= ~DISP_GAP_MASK;
if (rdev->pm.dpm.new_active_crtc_count > 0)
tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM);
else
tmp |= DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE);
WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp);
if (refresh_rate == 0)
refresh_rate = 60;
if (vblank_time == 0xffffffff)
vblank_time = 500;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us =
frame_time_in_us - 200 - vblank_time;
tmp = pre_vbi_time_in_us * (ref_clock / 100);
WREG32_SMC(CG_DISPLAY_GAP_CNTL2, tmp);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, PreVBlankGap), 0x64);
ci_write_smc_soft_register(rdev, offsetof(SMU7_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
ci_notify_smc_display_change(rdev, (rdev->pm.dpm.new_active_crtc_count == 1));
}
static void ci_enable_spread_spectrum(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (enable) {
if (pi->caps_sclk_ss_support) {
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= DYN_SPREAD_SPECTRUM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
} else {
tmp = RREG32_SMC(CG_SPLL_SPREAD_SPECTRUM);
tmp &= ~SSEN;
WREG32_SMC(CG_SPLL_SPREAD_SPECTRUM, tmp);
tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp &= ~DYN_SPREAD_SPECTRUM_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
}
static void ci_program_sstp(struct radeon_device *rdev)
{
WREG32_SMC(CG_SSP, (SSTU(R600_SSTU_DFLT) | SST(R600_SST_DFLT)));
}
static void ci_enable_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP_GAP_MASK | DISP_GAP_MCHG_MASK);
tmp |= (DISP_GAP(R600_PM_DISPLAY_GAP_IGNORE) |
DISP_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK));
WREG32_SMC(CG_DISPLAY_GAP_CNTL, tmp);
}
static void ci_program_vc(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(CG_FTV_0, CISLANDS_VRC_DFLT0);
WREG32_SMC(CG_FTV_1, CISLANDS_VRC_DFLT1);
WREG32_SMC(CG_FTV_2, CISLANDS_VRC_DFLT2);
WREG32_SMC(CG_FTV_3, CISLANDS_VRC_DFLT3);
WREG32_SMC(CG_FTV_4, CISLANDS_VRC_DFLT4);
WREG32_SMC(CG_FTV_5, CISLANDS_VRC_DFLT5);
WREG32_SMC(CG_FTV_6, CISLANDS_VRC_DFLT6);
WREG32_SMC(CG_FTV_7, CISLANDS_VRC_DFLT7);
}
static void ci_clear_vc(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_SMC(SCLK_PWRMGT_CNTL);
tmp |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
WREG32_SMC(SCLK_PWRMGT_CNTL, tmp);
WREG32_SMC(CG_FTV_0, 0);
WREG32_SMC(CG_FTV_1, 0);
WREG32_SMC(CG_FTV_2, 0);
WREG32_SMC(CG_FTV_3, 0);
WREG32_SMC(CG_FTV_4, 0);
WREG32_SMC(CG_FTV_5, 0);
WREG32_SMC(CG_FTV_6, 0);
WREG32_SMC(CG_FTV_7, 0);
}
static int ci_upload_firmware(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int i, ret;
for (i = 0; i < rdev->usec_timeout; i++) {
if (RREG32_SMC(RCU_UC_EVENTS) & BOOT_SEQ_DONE)
break;
}
WREG32_SMC(SMC_SYSCON_MISC_CNTL, 1);
ci_stop_smc_clock(rdev);
ci_reset_smc(rdev);
ret = ci_load_smc_ucode(rdev, pi->sram_end);
return ret;
}
static int ci_get_svi2_voltage_table(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *voltage_dependency_table,
struct atom_voltage_table *voltage_table)
{
u32 i;
if (voltage_dependency_table == NULL)
return -EINVAL;
voltage_table->mask_low = 0;
voltage_table->phase_delay = 0;
voltage_table->count = voltage_dependency_table->count;
for (i = 0; i < voltage_table->count; i++) {
voltage_table->entries[i].value = voltage_dependency_table->entries[i].v;
voltage_table->entries[i].smio_low = 0;
}
return 0;
}
static int ci_construct_voltage_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddc_voltage_table);
if (ret)
return ret;
} else if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
&pi->vddc_voltage_table);
if (ret)
return ret;
}
if (pi->vddc_voltage_table.count > SMU7_MAX_LEVELS_VDDC)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDC,
&pi->vddc_voltage_table);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_VDDCI,
VOLTAGE_OBJ_GPIO_LUT,
&pi->vddci_voltage_table);
if (ret)
return ret;
} else if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
&pi->vddci_voltage_table);
if (ret)
return ret;
}
if (pi->vddci_voltage_table.count > SMU7_MAX_LEVELS_VDDCI)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_VDDCI,
&pi->vddci_voltage_table);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO) {
ret = radeon_atom_get_voltage_table(rdev, VOLTAGE_TYPE_MVDDC,
VOLTAGE_OBJ_GPIO_LUT,
&pi->mvdd_voltage_table);
if (ret)
return ret;
} else if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
ret = ci_get_svi2_voltage_table(rdev,
&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
&pi->mvdd_voltage_table);
if (ret)
return ret;
}
if (pi->mvdd_voltage_table.count > SMU7_MAX_LEVELS_MVDD)
si_trim_voltage_table_to_fit_state_table(rdev, SMU7_MAX_LEVELS_MVDD,
&pi->mvdd_voltage_table);
return 0;
}
static void ci_populate_smc_voltage_table(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
SMU7_Discrete_VoltageLevel *smc_voltage_table)
{
int ret;
ret = ci_get_std_voltage_value_sidd(rdev, voltage_table,
&smc_voltage_table->StdVoltageHiSidd,
&smc_voltage_table->StdVoltageLoSidd);
if (ret) {
smc_voltage_table->StdVoltageHiSidd = voltage_table->value * VOLTAGE_SCALE;
smc_voltage_table->StdVoltageLoSidd = voltage_table->value * VOLTAGE_SCALE;
}
smc_voltage_table->Voltage = cpu_to_be16(voltage_table->value * VOLTAGE_SCALE);
smc_voltage_table->StdVoltageHiSidd =
cpu_to_be16(smc_voltage_table->StdVoltageHiSidd);
smc_voltage_table->StdVoltageLoSidd =
cpu_to_be16(smc_voltage_table->StdVoltageLoSidd);
}
static int ci_populate_smc_vddc_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
unsigned int count;
table->VddcLevelCount = pi->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->vddc_voltage_table.entries[count],
&table->VddcLevel[count]);
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddcLevel[count].Smio |=
pi->vddc_voltage_table.entries[count].smio_low;
else
table->VddcLevel[count].Smio = 0;
}
table->VddcLevelCount = cpu_to_be32(table->VddcLevelCount);
return 0;
}
static int ci_populate_smc_vddci_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
unsigned int count;
struct ci_power_info *pi = ci_get_pi(rdev);
table->VddciLevelCount = pi->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->vddci_voltage_table.entries[count],
&table->VddciLevel[count]);
if (pi->vddci_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->VddciLevel[count].Smio |=
pi->vddci_voltage_table.entries[count].smio_low;
else
table->VddciLevel[count].Smio = 0;
}
table->VddciLevelCount = cpu_to_be32(table->VddciLevelCount);
return 0;
}
static int ci_populate_smc_mvdd_table(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
unsigned int count;
table->MvddLevelCount = pi->mvdd_voltage_table.count;
for (count = 0; count < table->MvddLevelCount; count++) {
ci_populate_smc_voltage_table(rdev,
&pi->mvdd_voltage_table.entries[count],
&table->MvddLevel[count]);
if (pi->mvdd_control == CISLANDS_VOLTAGE_CONTROL_BY_GPIO)
table->MvddLevel[count].Smio |=
pi->mvdd_voltage_table.entries[count].smio_low;
else
table->MvddLevel[count].Smio = 0;
}
table->MvddLevelCount = cpu_to_be32(table->MvddLevelCount);
return 0;
}
static int ci_populate_smc_voltage_tables(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
int ret;
ret = ci_populate_smc_vddc_table(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_vddci_table(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_mvdd_table(rdev, table);
if (ret)
return ret;
return 0;
}
static int ci_populate_mvdd_value(struct radeon_device *rdev, u32 mclk,
SMU7_Discrete_VoltageLevel *voltage)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i = 0;
if (pi->mvdd_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
for (i = 0; i < rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count; i++) {
if (mclk <= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries[i].clk) {
voltage->Voltage = pi->mvdd_voltage_table.entries[i].value;
break;
}
}
if (i >= rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.count)
return -EINVAL;
}
return -EINVAL;
}
static int ci_get_std_voltage_value_sidd(struct radeon_device *rdev,
struct atom_voltage_table_entry *voltage_table,
u16 *std_voltage_hi_sidd, u16 *std_voltage_lo_sidd)
{
u16 v_index, idx;
bool voltage_found = false;
*std_voltage_hi_sidd = voltage_table->value * VOLTAGE_SCALE;
*std_voltage_lo_sidd = voltage_table->value * VOLTAGE_SCALE;
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries == NULL)
return -EINVAL;
if (rdev->pm.dpm.dyn_state.cac_leakage_table.entries) {
for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value ==
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
if (!voltage_found) {
for (v_index = 0; (u32)v_index < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; v_index++) {
if (voltage_table->value <=
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[v_index].v) {
voltage_found = true;
if ((u32)v_index < rdev->pm.dpm.dyn_state.cac_leakage_table.count)
idx = v_index;
else
idx = rdev->pm.dpm.dyn_state.cac_leakage_table.count - 1;
*std_voltage_lo_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].vddc * VOLTAGE_SCALE;
*std_voltage_hi_sidd =
rdev->pm.dpm.dyn_state.cac_leakage_table.entries[idx].leakage * VOLTAGE_SCALE;
break;
}
}
}
}
return 0;
}
static void ci_populate_phase_value_based_on_sclk(struct radeon_device *rdev,
const struct radeon_phase_shedding_limits_table *limits,
u32 sclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (sclk < limits->entries[i].sclk) {
*phase_shedding = i;
break;
}
}
}
static void ci_populate_phase_value_based_on_mclk(struct radeon_device *rdev,
const struct radeon_phase_shedding_limits_table *limits,
u32 mclk,
u32 *phase_shedding)
{
unsigned int i;
*phase_shedding = 1;
for (i = 0; i < limits->count; i++) {
if (mclk < limits->entries[i].mclk) {
*phase_shedding = i;
break;
}
}
}
static int ci_init_arb_table_index(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
int ret;
ret = ci_read_smc_sram_dword(rdev, pi->arb_table_start,
&tmp, pi->sram_end);
if (ret)
return ret;
tmp &= 0x00FFFFFF;
tmp |= MC_CG_ARB_FREQ_F1 << 24;
return ci_write_smc_sram_dword(rdev, pi->arb_table_start,
tmp, pi->sram_end);
}
static int ci_get_dependency_volt_by_clk(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *allowed_clock_voltage_table,
u32 clock, u32 *voltage)
{
u32 i = 0;
if (allowed_clock_voltage_table->count == 0)
return -EINVAL;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
*voltage = allowed_clock_voltage_table->entries[i].v;
return 0;
}
}
*voltage = allowed_clock_voltage_table->entries[i-1].v;
return 0;
}
static u8 ci_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
u32 sclk, u32 min_sclk_in_sr)
{
u32 i;
u32 tmp;
u32 min = (min_sclk_in_sr > CISLAND_MINIMUM_ENGINE_CLOCK) ?
min_sclk_in_sr : CISLAND_MINIMUM_ENGINE_CLOCK;
if (sclk < min)
return 0;
for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
tmp = sclk / (1 << i);
if (tmp >= min || i == 0)
break;
}
return (u8)i;
}
static int ci_initial_switch_from_arb_f0_to_f1(struct radeon_device *rdev)
{
return ni_copy_and_switch_arb_sets(rdev, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int ci_reset_to_default(struct radeon_device *rdev)
{
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_ResetToDefaults) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_force_switch_to_arb_f0(struct radeon_device *rdev)
{
u32 tmp;
tmp = (RREG32_SMC(SMC_SCRATCH9) & 0x0000ff00) >> 8;
if (tmp == MC_CG_ARB_FREQ_F0)
return 0;
return ni_copy_and_switch_arb_sets(rdev, tmp, MC_CG_ARB_FREQ_F0);
}
static int ci_populate_memory_timing_parameters(struct radeon_device *rdev,
u32 sclk,
u32 mclk,
SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
u32 dram_timing;
u32 dram_timing2;
u32 burst_time;
radeon_atom_set_engine_dram_timings(rdev, sclk, mclk);
dram_timing = RREG32(MC_ARB_DRAM_TIMING);
dram_timing2 = RREG32(MC_ARB_DRAM_TIMING2);
burst_time = RREG32(MC_ARB_BURST_TIME) & STATE0_MASK;
arb_regs->McArbDramTiming = cpu_to_be32(dram_timing);
arb_regs->McArbDramTiming2 = cpu_to_be32(dram_timing2);
arb_regs->McArbBurstTime = (u8)burst_time;
return 0;
}
static int ci_do_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
SMU7_Discrete_MCArbDramTimingTable arb_regs;
u32 i, j;
int ret = 0;
memset(&arb_regs, 0, sizeof(SMU7_Discrete_MCArbDramTimingTable));
for (i = 0; i < pi->dpm_table.sclk_table.count; i++) {
for (j = 0; j < pi->dpm_table.mclk_table.count; j++) {
ret = ci_populate_memory_timing_parameters(rdev,
pi->dpm_table.sclk_table.dpm_levels[i].value,
pi->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (ret)
break;
}
}
if (ret == 0)
ret = ci_copy_bytes_to_smc(rdev,
pi->arb_table_start,
(u8 *)&arb_regs,
sizeof(SMU7_Discrete_MCArbDramTimingTable),
pi->sram_end);
return ret;
}
static int ci_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (pi->need_update_smu7_dpm_table == 0)
return 0;
return ci_do_program_memory_timing_parameters(rdev);
}
static void ci_populate_smc_initial_state(struct radeon_device *rdev,
struct radeon_ps *radeon_boot_state)
{
struct ci_ps *boot_state = ci_get_ps(radeon_boot_state);
struct ci_power_info *pi = ci_get_pi(rdev);
u32 level = 0;
for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.count; level++) {
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[level].clk >=
boot_state->performance_levels[0].sclk) {
pi->smc_state_table.GraphicsBootLevel = level;
break;
}
}
for (level = 0; level < rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.count; level++) {
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries[level].clk >=
boot_state->performance_levels[0].mclk) {
pi->smc_state_table.MemoryBootLevel = level;
break;
}
}
}
static u32 ci_get_dpm_level_enable_mask_value(struct ci_single_dpm_table *dpm_table)
{
u32 i;
u32 mask_value = 0;
for (i = dpm_table->count; i > 0; i--) {
mask_value = mask_value << 1;
if (dpm_table->dpm_levels[i-1].enabled)
mask_value |= 0x1;
else
mask_value &= 0xFFFFFFFE;
}
return mask_value;
}
static void ci_populate_smc_link_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 i;
for (i = 0; i < dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(u8)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
r600_encode_pci_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].DownT = cpu_to_be32(5);
table->LinkLevel[i].UpT = cpu_to_be32(30);
}
pi->smc_state_table.LinkLevelCount = (u8)dpm_table->pcie_speed_table.count;
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
}
static int ci_populate_smc_uvd_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->UvdLevelCount =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].vclk;
table->UvdLevel[count].DclkFrequency =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].dclk;
table->UvdLevel[count].MinVddc =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->UvdLevel[count].MinVddcPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].VclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].VclkDivider = (u8)dividers.post_divider;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->UvdLevel[count].DclkFrequency, false, &dividers);
if (ret)
return ret;
table->UvdLevel[count].DclkDivider = (u8)dividers.post_divider;
table->UvdLevel[count].VclkFrequency = cpu_to_be32(table->UvdLevel[count].VclkFrequency);
table->UvdLevel[count].DclkFrequency = cpu_to_be32(table->UvdLevel[count].DclkFrequency);
table->UvdLevel[count].MinVddc = cpu_to_be16(table->UvdLevel[count].MinVddc);
}
return ret;
}
static int ci_populate_smc_vce_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->VceLevelCount =
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency =
rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].evclk;
table->VceLevel[count].MinVoltage =
(u16)rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->VceLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->VceLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->VceLevel[count].Divider = (u8)dividers.post_divider;
table->VceLevel[count].Frequency = cpu_to_be32(table->VceLevel[count].Frequency);
table->VceLevel[count].MinVoltage = cpu_to_be16(table->VceLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_acp_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->AcpLevelCount = (u8)
(rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count);
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency =
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].clk;
table->AcpLevel[count].MinVoltage =
rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[count].v;
table->AcpLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->AcpLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->AcpLevel[count].Divider = (u8)dividers.post_divider;
table->AcpLevel[count].Frequency = cpu_to_be32(table->AcpLevel[count].Frequency);
table->AcpLevel[count].MinVoltage = cpu_to_be16(table->AcpLevel[count].MinVoltage);
}
return ret;
}
static int ci_populate_smc_samu_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
u32 count;
struct atom_clock_dividers dividers;
int ret = -EINVAL;
table->SamuLevelCount =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count;
for (count = 0; count < table->SamuLevelCount; count++) {
table->SamuLevel[count].Frequency =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].clk;
table->SamuLevel[count].MinVoltage =
rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[count].v * VOLTAGE_SCALE;
table->SamuLevel[count].MinPhases = 1;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
table->SamuLevel[count].Frequency, false, &dividers);
if (ret)
return ret;
table->SamuLevel[count].Divider = (u8)dividers.post_divider;
table->SamuLevel[count].Frequency = cpu_to_be32(table->SamuLevel[count].Frequency);
table->SamuLevel[count].MinVoltage = cpu_to_be16(table->SamuLevel[count].MinVoltage);
}
return ret;
}
static int ci_calculate_mclk_params(struct radeon_device *rdev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dll_state_on)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
u32 mpll_ad_func_cntl = pi->clock_registers.mpll_ad_func_cntl;
u32 mpll_dq_func_cntl = pi->clock_registers.mpll_dq_func_cntl;
u32 mpll_func_cntl = pi->clock_registers.mpll_func_cntl;
u32 mpll_func_cntl_1 = pi->clock_registers.mpll_func_cntl_1;
u32 mpll_func_cntl_2 = pi->clock_registers.mpll_func_cntl_2;
u32 mpll_ss1 = pi->clock_registers.mpll_ss1;
u32 mpll_ss2 = pi->clock_registers.mpll_ss2;
struct atom_mpll_param mpll_param;
int ret;
ret = radeon_atom_get_memory_pll_dividers(rdev, memory_clock, strobe_mode, &mpll_param);
if (ret)
return ret;
mpll_func_cntl &= ~BWCTRL_MASK;
mpll_func_cntl |= BWCTRL(mpll_param.bwcntl);
mpll_func_cntl_1 &= ~(CLKF_MASK | CLKFRAC_MASK | VCO_MODE_MASK);
mpll_func_cntl_1 |= CLKF(mpll_param.clkf) |
CLKFRAC(mpll_param.clkfrac) | VCO_MODE(mpll_param.vco_mode);
mpll_ad_func_cntl &= ~YCLK_POST_DIV_MASK;
mpll_ad_func_cntl |= YCLK_POST_DIV(mpll_param.post_div);
if (pi->mem_gddr5) {
mpll_dq_func_cntl &= ~(YCLK_SEL_MASK | YCLK_POST_DIV_MASK);
mpll_dq_func_cntl |= YCLK_SEL(mpll_param.yclk_sel) |
YCLK_POST_DIV(mpll_param.post_div);
}
if (pi->caps_mclk_ss_support) {
struct radeon_atom_ss ss;
u32 freq_nom;
u32 tmp;
u32 reference_clock = rdev->clock.mpll.reference_freq;
if (pi->mem_gddr5)
freq_nom = memory_clock * 4;
else
freq_nom = memory_clock * 2;
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, freq_nom)) {
u32 clks = reference_clock * 5 / ss.rate;
u32 clkv = (u32)((((131 * ss.percentage * ss.rate) / 100) * tmp) / freq_nom);
mpll_ss1 &= ~CLKV_MASK;
mpll_ss1 |= CLKV(clkv);
mpll_ss2 &= ~CLKS_MASK;
mpll_ss2 |= CLKS(clks);
}
}
mclk_pwrmgt_cntl &= ~DLL_SPEED_MASK;
mclk_pwrmgt_cntl |= DLL_SPEED(mpll_param.dll_speed);
if (dll_state_on)
mclk_pwrmgt_cntl |= MRDCK0_PDNB | MRDCK1_PDNB;
else
mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB);
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static int ci_populate_single_memory_level(struct radeon_device *rdev,
u32 memory_clock,
SMU7_Discrete_MemoryLevel *memory_level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
bool dll_state_on;
if (rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk,
memory_clock, &memory_level->MinVddc);
if (ret)
return ret;
}
if (rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk,
memory_clock, &memory_level->MinVddci);
if (ret)
return ret;
}
if (rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk.entries) {
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk,
memory_clock, &memory_level->MinMvdd);
if (ret)
return ret;
}
memory_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_mclk(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table,
memory_clock,
&memory_level->MinVddcPhases);
memory_level->EnabledForThrottle = 1;
memory_level->EnabledForActivity = 1;
memory_level->UpH = 0;
memory_level->DownH = 100;
memory_level->VoltageDownH = 0;
memory_level->ActivityLevel = (u16)pi->mclk_activity_target;
memory_level->StutterEnable = false;
memory_level->StrobeEnable = false;
memory_level->EdcReadEnable = false;
memory_level->EdcWriteEnable = false;
memory_level->RttEnable = false;
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (pi->mclk_stutter_mode_threshold &&
(memory_clock <= pi->mclk_stutter_mode_threshold) &&
(pi->uvd_enabled == false) &&
(RREG32(DPG_PIPE_STUTTER_CONTROL) & STUTTER_ENABLE) &&
(rdev->pm.dpm.new_active_crtc_count <= 2))
memory_level->StutterEnable = true;
if (pi->mclk_strobe_mode_threshold &&
(memory_clock <= pi->mclk_strobe_mode_threshold))
memory_level->StrobeEnable = 1;
if (pi->mem_gddr5) {
memory_level->StrobeRatio =
si_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable);
if (pi->mclk_edc_enable_threshold &&
(memory_clock > pi->mclk_edc_enable_threshold))
memory_level->EdcReadEnable = true;
if (pi->mclk_edc_wr_enable_threshold &&
(memory_clock > pi->mclk_edc_wr_enable_threshold))
memory_level->EdcWriteEnable = true;
if (memory_level->StrobeEnable) {
if (si_get_mclk_frequency_ratio(memory_clock, true) >=
((RREG32(MC_SEQ_MISC7) >> 16) & 0xf))
dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
else
dll_state_on = ((RREG32(MC_SEQ_MISC6) >> 1) & 0x1) ? true : false;
} else {
dll_state_on = pi->dll_default_on;
}
} else {
memory_level->StrobeRatio = si_get_ddr3_mclk_frequency_ratio(memory_clock);
dll_state_on = ((RREG32(MC_SEQ_MISC5) >> 1) & 0x1) ? true : false;
}
ret = ci_calculate_mclk_params(rdev, memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
if (ret)
return ret;
memory_level->MinVddc = cpu_to_be32(memory_level->MinVddc * VOLTAGE_SCALE);
memory_level->MinVddcPhases = cpu_to_be32(memory_level->MinVddcPhases);
memory_level->MinVddci = cpu_to_be32(memory_level->MinVddci * VOLTAGE_SCALE);
memory_level->MinMvdd = cpu_to_be32(memory_level->MinMvdd * VOLTAGE_SCALE);
memory_level->MclkFrequency = cpu_to_be32(memory_level->MclkFrequency);
memory_level->ActivityLevel = cpu_to_be16(memory_level->ActivityLevel);
memory_level->MpllFuncCntl = cpu_to_be32(memory_level->MpllFuncCntl);
memory_level->MpllFuncCntl_1 = cpu_to_be32(memory_level->MpllFuncCntl_1);
memory_level->MpllFuncCntl_2 = cpu_to_be32(memory_level->MpllFuncCntl_2);
memory_level->MpllAdFuncCntl = cpu_to_be32(memory_level->MpllAdFuncCntl);
memory_level->MpllDqFuncCntl = cpu_to_be32(memory_level->MpllDqFuncCntl);
memory_level->MclkPwrmgtCntl = cpu_to_be32(memory_level->MclkPwrmgtCntl);
memory_level->DllCntl = cpu_to_be32(memory_level->DllCntl);
memory_level->MpllSs1 = cpu_to_be32(memory_level->MpllSs1);
memory_level->MpllSs2 = cpu_to_be32(memory_level->MpllSs2);
return 0;
}
static int ci_populate_smc_acpi_level(struct radeon_device *rdev,
SMU7_Discrete_DpmTable *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_clock_dividers dividers;
SMU7_Discrete_VoltageLevel voltage_level;
u32 spll_func_cntl = pi->clock_registers.cg_spll_func_cntl;
u32 spll_func_cntl_2 = pi->clock_registers.cg_spll_func_cntl_2;
u32 dll_cntl = pi->clock_registers.dll_cntl;
u32 mclk_pwrmgt_cntl = pi->clock_registers.mclk_pwrmgt_cntl;
int ret;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (pi->acpi_vddc)
table->ACPILevel.MinVddc = cpu_to_be32(pi->acpi_vddc * VOLTAGE_SCALE);
else
table->ACPILevel.MinVddc = cpu_to_be32(pi->min_vddc_in_pp_table * VOLTAGE_SCALE);
table->ACPILevel.MinVddcPhases = pi->vddc_phase_shed_control ? 0 : 1;
table->ACPILevel.SclkFrequency = rdev->clock.spll.reference_freq;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
table->ACPILevel.SclkFrequency, false, &dividers);
if (ret)
return ret;
table->ACPILevel.SclkDid = (u8)dividers.post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl &= ~SPLL_PWRON;
spll_func_cntl |= SPLL_RESET;
spll_func_cntl_2 &= ~SCLK_MUX_SEL_MASK;
spll_func_cntl_2 |= SCLK_MUX_SEL(4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = pi->clock_registers.cg_spll_func_cntl_3;
table->ACPILevel.CgSpllFuncCntl4 = pi->clock_registers.cg_spll_func_cntl_4;
table->ACPILevel.SpllSpreadSpectrum = pi->clock_registers.cg_spll_spread_spectrum;
table->ACPILevel.SpllSpreadSpectrum2 = pi->clock_registers.cg_spll_spread_spectrum_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
table->ACPILevel.Flags = cpu_to_be32(table->ACPILevel.Flags);
table->ACPILevel.MinVddcPhases = cpu_to_be32(table->ACPILevel.MinVddcPhases);
table->ACPILevel.SclkFrequency = cpu_to_be32(table->ACPILevel.SclkFrequency);
table->ACPILevel.CgSpllFuncCntl = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl);
table->ACPILevel.CgSpllFuncCntl2 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl2);
table->ACPILevel.CgSpllFuncCntl3 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl3);
table->ACPILevel.CgSpllFuncCntl4 = cpu_to_be32(table->ACPILevel.CgSpllFuncCntl4);
table->ACPILevel.SpllSpreadSpectrum = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum);
table->ACPILevel.SpllSpreadSpectrum2 = cpu_to_be32(table->ACPILevel.SpllSpreadSpectrum2);
table->ACPILevel.CcPwrDynRm = cpu_to_be32(table->ACPILevel.CcPwrDynRm);
table->ACPILevel.CcPwrDynRm1 = cpu_to_be32(table->ACPILevel.CcPwrDynRm1);
table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
if (pi->vddci_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
if (pi->acpi_vddci)
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->acpi_vddci * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinVddci =
cpu_to_be32(pi->min_vddci_in_pp_table * VOLTAGE_SCALE);
}
if (ci_populate_mvdd_value(rdev, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd = 0;
else
table->MemoryACPILevel.MinMvdd =
cpu_to_be32(voltage_level.Voltage * VOLTAGE_SCALE);
mclk_pwrmgt_cntl |= MRDCK0_RESET | MRDCK1_RESET;
mclk_pwrmgt_cntl &= ~(MRDCK0_PDNB | MRDCK1_PDNB);
dll_cntl &= ~(MRDCK0_BYPASS | MRDCK1_BYPASS);
table->MemoryACPILevel.DllCntl = cpu_to_be32(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl = cpu_to_be32(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_ad_func_cntl);
table->MemoryACPILevel.MpllDqFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_dq_func_cntl);
table->MemoryACPILevel.MpllFuncCntl =
cpu_to_be32(pi->clock_registers.mpll_func_cntl);
table->MemoryACPILevel.MpllFuncCntl_1 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
cpu_to_be32(pi->clock_registers.mpll_func_cntl_2);
table->MemoryACPILevel.MpllSs1 = cpu_to_be32(pi->clock_registers.mpll_ss1);
table->MemoryACPILevel.MpllSs2 = cpu_to_be32(pi->clock_registers.mpll_ss2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpH = 0;
table->MemoryACPILevel.DownH = 100;
table->MemoryACPILevel.VoltageDownH = 0;
table->MemoryACPILevel.ActivityLevel =
cpu_to_be16((u16)pi->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = false;
table->MemoryACPILevel.StrobeEnable = false;
table->MemoryACPILevel.EdcReadEnable = false;
table->MemoryACPILevel.EdcWriteEnable = false;
table->MemoryACPILevel.RttEnable = false;
return 0;
}
static int ci_enable_ulv(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ulv_parm *ulv = &pi->ulv;
if (ulv->supported) {
if (enable)
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
else
return (ci_send_msg_to_smc(rdev, PPSMC_MSG_DisableULV) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
return 0;
}
static int ci_populate_ulv_level(struct radeon_device *rdev,
SMU7_Discrete_Ulv *state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u16 ulv_voltage = rdev->pm.dpm.backbias_response_time;
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
if (ulv_voltage == 0) {
pi->ulv.supported = false;
return 0;
}
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_BY_SVID2) {
if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffset = 0;
else
state->VddcOffset =
rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage;
} else {
if (ulv_voltage > rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v)
state->VddcOffsetVid = 0;
else
state->VddcOffsetVid = (u8)
((rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries[0].v - ulv_voltage) *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
}
state->VddcPhase = pi->vddc_phase_shed_control ? 0 : 1;
state->CcPwrDynRm = cpu_to_be32(state->CcPwrDynRm);
state->CcPwrDynRm1 = cpu_to_be32(state->CcPwrDynRm1);
state->VddcOffset = cpu_to_be16(state->VddcOffset);
return 0;
}
static int ci_calculate_sclk_params(struct radeon_device *rdev,
u32 engine_clock,
SMU7_Discrete_GraphicsLevel *sclk)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_clock_dividers dividers;
u32 spll_func_cntl_3 = pi->clock_registers.cg_spll_func_cntl_3;
u32 spll_func_cntl_4 = pi->clock_registers.cg_spll_func_cntl_4;
u32 cg_spll_spread_spectrum = pi->clock_registers.cg_spll_spread_spectrum;
u32 cg_spll_spread_spectrum_2 = pi->clock_registers.cg_spll_spread_spectrum_2;
u32 reference_clock = rdev->clock.spll.reference_freq;
u32 reference_divider;
u32 fbdiv;
int ret;
ret = radeon_atom_get_clock_dividers(rdev,
COMPUTE_GPUCLK_INPUT_FLAG_SCLK,
engine_clock, false, &dividers);
if (ret)
return ret;
reference_divider = 1 + dividers.ref_div;
fbdiv = dividers.fb_div & 0x3FFFFFF;
spll_func_cntl_3 &= ~SPLL_FB_DIV_MASK;
spll_func_cntl_3 |= SPLL_FB_DIV(fbdiv);
spll_func_cntl_3 |= SPLL_DITHEN;
if (pi->caps_sclk_ss_support) {
struct radeon_atom_ss ss;
u32 vco_freq = engine_clock * dividers.post_div;
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
u32 clk_s = reference_clock * 5 / (reference_divider * ss.rate);
u32 clk_v = 4 * ss.percentage * fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum &= ~CLK_S_MASK;
cg_spll_spread_spectrum |= CLK_S(clk_s);
cg_spll_spread_spectrum |= SSEN;
cg_spll_spread_spectrum_2 &= ~CLK_V_MASK;
cg_spll_spread_spectrum_2 |= CLK_V(clk_v);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (u8)dividers.post_divider;
return 0;
}
static int ci_populate_single_graphic_level(struct radeon_device *rdev,
u32 engine_clock,
u16 sclk_activity_level_t,
SMU7_Discrete_GraphicsLevel *graphic_level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
ret = ci_calculate_sclk_params(rdev, engine_clock, graphic_level);
if (ret)
return ret;
ret = ci_get_dependency_volt_by_clk(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk,
engine_clock, &graphic_level->MinVddc);
if (ret)
return ret;
graphic_level->SclkFrequency = engine_clock;
graphic_level->Flags = 0;
graphic_level->MinVddcPhases = 1;
if (pi->vddc_phase_shed_control)
ci_populate_phase_value_based_on_sclk(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table,
engine_clock,
&graphic_level->MinVddcPhases);
graphic_level->ActivityLevel = sclk_activity_level_t;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
graphic_level->EnabledForActivity = 1;
graphic_level->EnabledForThrottle = 1;
graphic_level->UpH = 0;
graphic_level->DownH = 0;
graphic_level->VoltageDownH = 0;
graphic_level->PowerThrottle = 0;
if (pi->caps_sclk_ds)
graphic_level->DeepSleepDivId = ci_get_sleep_divider_id_from_clock(rdev,
engine_clock,
CISLAND_MINIMUM_ENGINE_CLOCK);
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
graphic_level->Flags = cpu_to_be32(graphic_level->Flags);
graphic_level->MinVddc = cpu_to_be32(graphic_level->MinVddc * VOLTAGE_SCALE);
graphic_level->MinVddcPhases = cpu_to_be32(graphic_level->MinVddcPhases);
graphic_level->SclkFrequency = cpu_to_be32(graphic_level->SclkFrequency);
graphic_level->ActivityLevel = cpu_to_be16(graphic_level->ActivityLevel);
graphic_level->CgSpllFuncCntl3 = cpu_to_be32(graphic_level->CgSpllFuncCntl3);
graphic_level->CgSpllFuncCntl4 = cpu_to_be32(graphic_level->CgSpllFuncCntl4);
graphic_level->SpllSpreadSpectrum = cpu_to_be32(graphic_level->SpllSpreadSpectrum);
graphic_level->SpllSpreadSpectrum2 = cpu_to_be32(graphic_level->SpllSpreadSpectrum2);
graphic_level->CcPwrDynRm = cpu_to_be32(graphic_level->CcPwrDynRm);
graphic_level->CcPwrDynRm1 = cpu_to_be32(graphic_level->CcPwrDynRm1);
return 0;
}
static int ci_populate_all_graphic_levels(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
u32 level_array_size = sizeof(SMU7_Discrete_GraphicsLevel) *
SMU7_MAX_LEVELS_GRAPHICS;
SMU7_Discrete_GraphicsLevel *levels = pi->smc_state_table.GraphicsLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
ret = ci_populate_single_graphic_level(rdev,
dpm_table->sclk_table.dpm_levels[i].value,
(u16)pi->activity_target[i],
&pi->smc_state_table.GraphicsLevel[i]);
if (ret)
return ret;
if (i == (dpm_table->sclk_table.count - 1))
pi->smc_state_table.GraphicsLevel[i].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
}
pi->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
ret = ci_copy_bytes_to_smc(rdev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static int ci_populate_ulv_state(struct radeon_device *rdev,
SMU7_Discrete_Ulv *ulv_level)
{
return ci_populate_ulv_level(rdev, ulv_level);
}
static int ci_populate_all_memory_levels(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_dpm_table *dpm_table = &pi->dpm_table;
u32 level_array_address = pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
u32 level_array_size = sizeof(SMU7_Discrete_MemoryLevel) *
SMU7_MAX_LEVELS_MEMORY;
SMU7_Discrete_MemoryLevel *levels = pi->smc_state_table.MemoryLevel;
u32 i, ret;
memset(levels, 0, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
if (dpm_table->mclk_table.dpm_levels[i].value == 0)
return -EINVAL;
ret = ci_populate_single_memory_level(rdev,
dpm_table->mclk_table.dpm_levels[i].value,
&pi->smc_state_table.MemoryLevel[i]);
if (ret)
return ret;
}
pi->smc_state_table.MemoryLevel[0].ActivityLevel = cpu_to_be16(0x1F);
pi->smc_state_table.MemoryDpmLevelCount = (u8)dpm_table->mclk_table.count;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
pi->smc_state_table.MemoryLevel[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
ret = ci_copy_bytes_to_smc(rdev, level_array_address,
(u8 *)levels, level_array_size,
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_reset_single_dpm_table(struct radeon_device *rdev,
struct ci_single_dpm_table* dpm_table,
u32 count)
{
u32 i;
dpm_table->count = count;
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
dpm_table->dpm_levels[i].enabled = false;
}
static void ci_setup_pcie_table_entry(struct ci_single_dpm_table* dpm_table,
u32 index, u32 pcie_gen, u32 pcie_lanes)
{
dpm_table->dpm_levels[index].value = pcie_gen;
dpm_table->dpm_levels[index].param1 = pcie_lanes;
dpm_table->dpm_levels[index].enabled = true;
}
static int ci_setup_default_pcie_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels)
return -EINVAL;
if (pi->use_pcie_performance_levels && !pi->use_pcie_powersaving_levels) {
pi->pcie_gen_powersaving = pi->pcie_gen_performance;
pi->pcie_lane_powersaving = pi->pcie_lane_performance;
} else if (!pi->use_pcie_performance_levels && pi->use_pcie_powersaving_levels) {
pi->pcie_gen_performance = pi->pcie_gen_powersaving;
pi->pcie_lane_performance = pi->pcie_lane_powersaving;
}
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.pcie_speed_table,
SMU7_MAX_LEVELS_LINK);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 0,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 1,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.min);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 2,
pi->pcie_gen_powersaving.min,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 3,
pi->pcie_gen_performance.min,
pi->pcie_lane_performance.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 4,
pi->pcie_gen_powersaving.max,
pi->pcie_lane_powersaving.max);
ci_setup_pcie_table_entry(&pi->dpm_table.pcie_speed_table, 5,
pi->pcie_gen_performance.max,
pi->pcie_lane_performance.max);
pi->dpm_table.pcie_speed_table.count = 6;
return 0;
}
static int ci_setup_default_dpm_tables(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct radeon_cac_leakage_table *std_voltage_table =
&rdev->pm.dpm.dyn_state.cac_leakage_table;
u32 i;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_table == NULL)
return -EINVAL;
if (allowed_mclk_table->count < 1)
return -EINVAL;
memset(&pi->dpm_table, 0, sizeof(struct ci_dpm_table));
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.sclk_table,
SMU7_MAX_LEVELS_GRAPHICS);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.mclk_table,
SMU7_MAX_LEVELS_MEMORY);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.vddc_table,
SMU7_MAX_LEVELS_VDDC);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.vddci_table,
SMU7_MAX_LEVELS_VDDCI);
ci_reset_single_dpm_table(rdev,
&pi->dpm_table.mvdd_table,
SMU7_MAX_LEVELS_MVDD);
pi->dpm_table.sclk_table.count = 0;
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
if ((i == 0) ||
(pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count-1].value !=
allowed_sclk_vddc_table->entries[i].clk)) {
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].value =
allowed_sclk_vddc_table->entries[i].clk;
pi->dpm_table.sclk_table.dpm_levels[pi->dpm_table.sclk_table.count].enabled = true;
pi->dpm_table.sclk_table.count++;
}
}
pi->dpm_table.mclk_table.count = 0;
for (i = 0; i < allowed_mclk_table->count; i++) {
if ((i==0) ||
(pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count-1].value !=
allowed_mclk_table->entries[i].clk)) {
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].value =
allowed_mclk_table->entries[i].clk;
pi->dpm_table.mclk_table.dpm_levels[pi->dpm_table.mclk_table.count].enabled = true;
pi->dpm_table.mclk_table.count++;
}
}
for (i = 0; i < allowed_sclk_vddc_table->count; i++) {
pi->dpm_table.vddc_table.dpm_levels[i].value =
allowed_sclk_vddc_table->entries[i].v;
pi->dpm_table.vddc_table.dpm_levels[i].param1 =
std_voltage_table->entries[i].leakage;
pi->dpm_table.vddc_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddc_table.count = allowed_sclk_vddc_table->count;
allowed_mclk_table = &rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.vddci_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.vddci_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.vddci_table.count = allowed_mclk_table->count;
}
allowed_mclk_table = &rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk;
if (allowed_mclk_table) {
for (i = 0; i < allowed_mclk_table->count; i++) {
pi->dpm_table.mvdd_table.dpm_levels[i].value =
allowed_mclk_table->entries[i].v;
pi->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
}
pi->dpm_table.mvdd_table.count = allowed_mclk_table->count;
}
ci_setup_default_pcie_tables(rdev);
return 0;
}
static int ci_find_boot_level(struct ci_single_dpm_table *table,
u32 value, u32 *boot_level)
{
u32 i;
int ret = -EINVAL;
for(i = 0; i < table->count; i++) {
if (value == table->dpm_levels[i].value) {
*boot_level = i;
ret = 0;
}
}
return ret;
}
static int ci_init_smc_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ulv_parm *ulv = &pi->ulv;
struct radeon_ps *radeon_boot_state = rdev->pm.dpm.boot_ps;
SMU7_Discrete_DpmTable *table = &pi->smc_state_table;
int ret;
ret = ci_setup_default_dpm_tables(rdev);
if (ret)
return ret;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE)
ci_populate_smc_voltage_tables(rdev, table);
ci_init_fps_limits(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (pi->mem_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (ulv->supported) {
ret = ci_populate_ulv_state(rdev, &pi->smc_state_table.Ulv);
if (ret)
return ret;
WREG32_SMC(CG_ULV_PARAMETER, ulv->cg_ulv_parameter);
}
ret = ci_populate_all_graphic_levels(rdev);
if (ret)
return ret;
ret = ci_populate_all_memory_levels(rdev);
if (ret)
return ret;
ci_populate_smc_link_level(rdev, table);
ret = ci_populate_smc_acpi_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_vce_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_acp_level(rdev, table);
if (ret)
return ret;
ret = ci_populate_smc_samu_level(rdev, table);
if (ret)
return ret;
ret = ci_do_program_memory_timing_parameters(rdev);
if (ret)
return ret;
ret = ci_populate_smc_uvd_level(rdev, table);
if (ret)
return ret;
table->UvdBootLevel = 0;
table->VceBootLevel = 0;
table->AcpBootLevel = 0;
table->SamuBootLevel = 0;
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
ret = ci_find_boot_level(&pi->dpm_table.sclk_table,
pi->vbios_boot_state.sclk_bootup_value,
(u32 *)&pi->smc_state_table.GraphicsBootLevel);
ret = ci_find_boot_level(&pi->dpm_table.mclk_table,
pi->vbios_boot_state.mclk_bootup_value,
(u32 *)&pi->smc_state_table.MemoryBootLevel);
table->BootVddc = pi->vbios_boot_state.vddc_bootup_value;
table->BootVddci = pi->vbios_boot_state.vddci_bootup_value;
table->BootMVdd = pi->vbios_boot_state.mvdd_bootup_value;
ci_populate_smc_initial_state(rdev, radeon_boot_state);
ret = ci_populate_bapm_parameters_in_dpm_table(rdev);
if (ret)
return ret;
table->UVDInterval = 1;
table->VCEInterval = 1;
table->ACPInterval = 1;
table->SAMUInterval = 1;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh = (u16)((pi->thermal_temp_setting.temperature_high *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->TemperatureLimitLow = (u16)((pi->thermal_temp_setting.temperature_low *
CISLANDS_Q88_FORMAT_CONVERSION_UNIT) / 1000);
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->VddcVddciDelta = 4000;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0;
table->PCIeGenInterval = 1;
if (pi->voltage_control == CISLANDS_VOLTAGE_CONTROL_BY_SVID2)
table->SVI2Enable = 1;
else
table->SVI2Enable = 0;
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
table->SystemFlags = cpu_to_be32(table->SystemFlags);
table->SmioMaskVddcVid = cpu_to_be32(table->SmioMaskVddcVid);
table->SmioMaskVddcPhase = cpu_to_be32(table->SmioMaskVddcPhase);
table->SmioMaskVddciVid = cpu_to_be32(table->SmioMaskVddciVid);
table->SmioMaskMvddVid = cpu_to_be32(table->SmioMaskMvddVid);
table->SclkStepSize = cpu_to_be32(table->SclkStepSize);
table->TemperatureLimitHigh = cpu_to_be16(table->TemperatureLimitHigh);
table->TemperatureLimitLow = cpu_to_be16(table->TemperatureLimitLow);
table->VddcVddciDelta = cpu_to_be16(table->VddcVddciDelta);
table->VoltageResponseTime = cpu_to_be16(table->VoltageResponseTime);
table->PhaseResponseTime = cpu_to_be16(table->PhaseResponseTime);
table->BootVddc = cpu_to_be16(table->BootVddc * VOLTAGE_SCALE);
table->BootVddci = cpu_to_be16(table->BootVddci * VOLTAGE_SCALE);
table->BootMVdd = cpu_to_be16(table->BootMVdd * VOLTAGE_SCALE);
ret = ci_copy_bytes_to_smc(rdev,
pi->dpm_table_start +
offsetof(SMU7_Discrete_DpmTable, SystemFlags),
(u8 *)&table->SystemFlags,
sizeof(SMU7_Discrete_DpmTable) - 3 * sizeof(SMU7_PIDController),
pi->sram_end);
if (ret)
return ret;
return 0;
}
static void ci_trim_single_dpm_states(struct radeon_device *rdev,
struct ci_single_dpm_table *dpm_table,
u32 low_limit, u32 high_limit)
{
u32 i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
}
static void ci_trim_pcie_dpm_states(struct radeon_device *rdev,
u32 speed_low, u32 lanes_low,
u32 speed_high, u32 lanes_high)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_single_dpm_table *pcie_table = &pi->dpm_table.pcie_speed_table;
u32 i, j;
for (i = 0; i < pcie_table->count; i++) {
if ((pcie_table->dpm_levels[i].value < speed_low) ||
(pcie_table->dpm_levels[i].param1 < lanes_low) ||
(pcie_table->dpm_levels[i].value > speed_high) ||
(pcie_table->dpm_levels[i].param1 > lanes_high))
pcie_table->dpm_levels[i].enabled = false;
else
pcie_table->dpm_levels[i].enabled = true;
}
for (i = 0; i < pcie_table->count; i++) {
if (pcie_table->dpm_levels[i].enabled) {
for (j = i + 1; j < pcie_table->count; j++) {
if (pcie_table->dpm_levels[j].enabled) {
if ((pcie_table->dpm_levels[i].value == pcie_table->dpm_levels[j].value) &&
(pcie_table->dpm_levels[i].param1 == pcie_table->dpm_levels[j].param1))
pcie_table->dpm_levels[j].enabled = false;
}
}
}
}
}
static int ci_trim_dpm_states(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_ps *state = ci_get_ps(radeon_state);
struct ci_power_info *pi = ci_get_pi(rdev);
u32 high_limit_count;
if (state->performance_level_count < 1)
return -EINVAL;
if (state->performance_level_count == 1)
high_limit_count = 0;
else
high_limit_count = 1;
ci_trim_single_dpm_states(rdev,
&pi->dpm_table.sclk_table,
state->performance_levels[0].sclk,
state->performance_levels[high_limit_count].sclk);
ci_trim_single_dpm_states(rdev,
&pi->dpm_table.mclk_table,
state->performance_levels[0].mclk,
state->performance_levels[high_limit_count].mclk);
ci_trim_pcie_dpm_states(rdev,
state->performance_levels[0].pcie_gen,
state->performance_levels[0].pcie_lane,
state->performance_levels[high_limit_count].pcie_gen,
state->performance_levels[high_limit_count].pcie_lane);
return 0;
}
static int ci_apply_disp_minimum_voltage_request(struct radeon_device *rdev)
{
struct radeon_clock_voltage_dependency_table *disp_voltage_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk;
struct radeon_clock_voltage_dependency_table *vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
u32 requested_voltage = 0;
u32 i;
if (disp_voltage_table == NULL)
return -EINVAL;
if (!disp_voltage_table->count)
return -EINVAL;
for (i = 0; i < disp_voltage_table->count; i++) {
if (rdev->clock.current_dispclk == disp_voltage_table->entries[i].clk)
requested_voltage = disp_voltage_table->entries[i].v;
}
for (i = 0; i < vddc_table->count; i++) {
if (requested_voltage <= vddc_table->entries[i].v) {
requested_voltage = vddc_table->entries[i].v;
return (ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_VddC_Request,
requested_voltage * VOLTAGE_SCALE) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
}
return -EINVAL;
}
static int ci_upload_dpm_level_enable_mask(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result result;
if (!pi->sclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
if (!pi->mclk_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
if (!pi->pcie_dpm_key_disabled) {
if (pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
result = ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_PCIeDPM_SetEnabledMask,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
if (result != PPSMC_Result_OK)
return -EINVAL;
}
}
ci_apply_disp_minimum_voltage_request(rdev);
return 0;
}
static void ci_find_dpm_states_clocks_in_dpm_table(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *state = ci_get_ps(radeon_state);
struct ci_single_dpm_table *sclk_table = &pi->dpm_table.sclk_table;
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
struct ci_single_dpm_table *mclk_table = &pi->dpm_table.mclk_table;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
u32 i;
pi->need_update_smu7_dpm_table = 0;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count) {
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
} else {
/* XXX check display min clock requirements */
if (0 != CISLAND_MINIMUM_ENGINE_CLOCK)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count)
pi->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
if (rdev->pm.dpm.current_active_crtc_count !=
rdev->pm.dpm.new_active_crtc_count)
pi->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
}
static int ci_populate_and_upload_sclk_mclk_dpm_levels(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *state = ci_get_ps(radeon_state);
u32 sclk = state->performance_levels[state->performance_level_count-1].sclk;
u32 mclk = state->performance_levels[state->performance_level_count-1].mclk;
struct ci_dpm_table *dpm_table = &pi->dpm_table;
int ret;
if (!pi->need_update_smu7_dpm_table)
return 0;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value = sclk;
if (pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)
dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value = mclk;
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
ret = ci_populate_all_graphic_levels(rdev);
if (ret)
return ret;
}
if (pi->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
ret = ci_populate_all_memory_levels(rdev);
if (ret)
return ret;
}
return 0;
}
static int ci_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
if (!pi->caps_uvd_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_UVDDPM_SetEnabledMask,
pi->dpm_level_enable_mask.uvd_dpm_enable_mask);
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = true;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
} else {
if (pi->last_mclk_dpm_enable_mask & 0x1) {
pi->uvd_enabled = false;
pi->dpm_level_enable_mask.mclk_dpm_enable_mask |= 1;
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
}
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#if 0
static int ci_enable_vce_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
if (!pi->caps_vce_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_VCEDPM_SetEnabledMask,
pi->dpm_level_enable_mask.vce_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_samu_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.samu_dpm_enable_mask |= 1 << i;
if (!pi->caps_samu_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
pi->dpm_level_enable_mask.samu_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
static int ci_enable_acp_dpm(struct radeon_device *rdev, bool enable)
{
struct ci_power_info *pi = ci_get_pi(rdev);
const struct radeon_clock_and_voltage_limits *max_limits;
int i;
if (rdev->pm.dpm.ac_power)
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
else
max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc;
if (enable) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask = 0;
for (i = rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count - 1; i >= 0; i--) {
if (rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v <= max_limits->vddc) {
pi->dpm_level_enable_mask.acp_dpm_enable_mask |= 1 << i;
if (!pi->caps_acp_dpm)
break;
}
}
ci_send_msg_to_smc_with_parameter(rdev,
PPSMC_MSG_ACPDPM_SetEnabledMask,
pi->dpm_level_enable_mask.acp_dpm_enable_mask);
}
return (ci_send_msg_to_smc(rdev, enable ?
PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable) == PPSMC_Result_OK) ?
0 : -EINVAL;
}
#endif
static int ci_update_uvd_dpm(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (!gate) {
if (pi->caps_uvd_dpm ||
(rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count <= 0))
pi->smc_state_table.UvdBootLevel = 0;
else
pi->smc_state_table.UvdBootLevel =
rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count - 1;
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~UvdBootLevel_MASK;
tmp |= UvdBootLevel(pi->smc_state_table.UvdBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
}
return ci_enable_uvd_dpm(rdev, !gate);
}
#if 0
static u8 ci_get_vce_boot_level(struct radeon_device *rdev)
{
u8 i;
u32 min_evclk = 30000; /* ??? */
struct radeon_vce_clock_voltage_dependency_table *table =
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
for (i = 0; i < table->count; i++) {
if (table->entries[i].evclk >= min_evclk)
return i;
}
return table->count - 1;
}
static int ci_update_vce_dpm(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
bool new_vce_clock_non_zero = (radeon_new_state->evclk != 0);
bool old_vce_clock_non_zero = (radeon_current_state->evclk != 0);
int ret = 0;
u32 tmp;
if (new_vce_clock_non_zero != old_vce_clock_non_zero) {
if (new_vce_clock_non_zero) {
pi->smc_state_table.VceBootLevel = ci_get_vce_boot_level(rdev);
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~VceBootLevel_MASK;
tmp |= VceBootLevel(pi->smc_state_table.VceBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
ret = ci_enable_vce_dpm(rdev, true);
} else {
ret = ci_enable_vce_dpm(rdev, false);
}
}
return ret;
}
static int ci_update_samu_dpm(struct radeon_device *rdev, bool gate)
{
return ci_enable_samu_dpm(rdev, gate);
}
static int ci_update_acp_dpm(struct radeon_device *rdev, bool gate)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
if (!gate) {
pi->smc_state_table.AcpBootLevel = 0;
tmp = RREG32_SMC(DPM_TABLE_475);
tmp &= ~AcpBootLevel_MASK;
tmp |= AcpBootLevel(pi->smc_state_table.AcpBootLevel);
WREG32_SMC(DPM_TABLE_475, tmp);
}
return ci_enable_acp_dpm(rdev, !gate);
}
#endif
static int ci_generate_dpm_level_enable_mask(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
ret = ci_trim_dpm_states(rdev, radeon_state);
if (ret)
return ret;
pi->dpm_level_enable_mask.sclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.sclk_table);
pi->dpm_level_enable_mask.mclk_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.mclk_table);
pi->last_mclk_dpm_enable_mask =
pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
if (pi->uvd_enabled) {
if (pi->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
pi->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
}
pi->dpm_level_enable_mask.pcie_dpm_enable_mask =
ci_get_dpm_level_enable_mask_value(&pi->dpm_table.pcie_speed_table);
return 0;
}
static u32 ci_get_lowest_enabled_level(struct radeon_device *rdev,
u32 level_mask)
{
u32 level = 0;
while ((level_mask & (1 << level)) == 0)
level++;
return level;
}
int ci_dpm_force_performance_level(struct radeon_device *rdev,
enum radeon_dpm_forced_level level)
{
struct ci_power_info *pi = ci_get_pi(rdev);
PPSMC_Result smc_result;
u32 tmp, levels, i;
int ret;
if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_sclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_mclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = 0;
tmp = pi->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
levels++;
if (levels) {
ret = ci_dpm_force_state_pcie(rdev, level);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) &
CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
}
} else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
if ((!pi->sclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.sclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.sclk_dpm_enable_mask);
ret = ci_dpm_force_state_sclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->mclk_dpm_key_disabled) &&
pi->dpm_level_enable_mask.mclk_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.mclk_dpm_enable_mask);
ret = ci_dpm_force_state_mclk(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) &
CURR_MCLK_INDEX_MASK) >> CURR_MCLK_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
if ((!pi->pcie_dpm_key_disabled) &&
pi->dpm_level_enable_mask.pcie_dpm_enable_mask) {
levels = ci_get_lowest_enabled_level(rdev,
pi->dpm_level_enable_mask.pcie_dpm_enable_mask);
ret = ci_dpm_force_state_pcie(rdev, levels);
if (ret)
return ret;
for (i = 0; i < rdev->usec_timeout; i++) {
tmp = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX_1) &
CURR_PCIE_INDEX_MASK) >> CURR_PCIE_INDEX_SHIFT;
if (tmp == levels)
break;
udelay(1);
}
}
} else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
if (!pi->sclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_NoForcedLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->mclk_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_MCLKDPM_NoForcedLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
if (!pi->pcie_dpm_key_disabled) {
smc_result = ci_send_msg_to_smc(rdev, PPSMC_MSG_PCIeDPM_UnForceLevel);
if (smc_result != PPSMC_Result_OK)
return -EINVAL;
}
}
rdev->pm.dpm.forced_level = level;
return 0;
}
static int ci_set_mc_special_registers(struct radeon_device *rdev,
struct ci_mc_reg_table *table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u8 i, j, k;
u32 temp_reg;
for (i = 0, j = table->last; i < table->last; i++) {
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
switch(table->mc_reg_address[i].s1 << 2) {
case MC_SEQ_MISC1:
temp_reg = RREG32(MC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_EMRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
if (j >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
temp_reg = RREG32(MC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!pi->mem_gddr5)
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (!pi->mem_gddr5) {
table->mc_reg_address[j].s1 = MC_PMG_AUTO_CMD >> 2;
table->mc_reg_address[j].s0 = MC_PMG_AUTO_CMD >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
}
break;
case MC_SEQ_RESERVE_M:
temp_reg = RREG32(MC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = MC_PMG_CMD_MRS1 >> 2;
table->mc_reg_address[j].s0 = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
if (j > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
break;
default:
break;
}
}
table->last = j;
return 0;
}
static bool ci_check_s0_mc_reg_index(u16 in_reg, u16 *out_reg)
{
bool result = true;
switch(in_reg) {
case MC_SEQ_RAS_TIMING >> 2:
*out_reg = MC_SEQ_RAS_TIMING_LP >> 2;
break;
case MC_SEQ_DLL_STBY >> 2:
*out_reg = MC_SEQ_DLL_STBY_LP >> 2;
break;
case MC_SEQ_G5PDX_CMD0 >> 2:
*out_reg = MC_SEQ_G5PDX_CMD0_LP >> 2;
break;
case MC_SEQ_G5PDX_CMD1 >> 2:
*out_reg = MC_SEQ_G5PDX_CMD1_LP >> 2;
break;
case MC_SEQ_G5PDX_CTRL >> 2:
*out_reg = MC_SEQ_G5PDX_CTRL_LP >> 2;
break;
case MC_SEQ_CAS_TIMING >> 2:
*out_reg = MC_SEQ_CAS_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING >> 2:
*out_reg = MC_SEQ_MISC_TIMING_LP >> 2;
break;
case MC_SEQ_MISC_TIMING2 >> 2:
*out_reg = MC_SEQ_MISC_TIMING2_LP >> 2;
break;
case MC_SEQ_PMG_DVS_CMD >> 2:
*out_reg = MC_SEQ_PMG_DVS_CMD_LP >> 2;
break;
case MC_SEQ_PMG_DVS_CTL >> 2:
*out_reg = MC_SEQ_PMG_DVS_CTL_LP >> 2;
break;
case MC_SEQ_RD_CTL_D0 >> 2:
*out_reg = MC_SEQ_RD_CTL_D0_LP >> 2;
break;
case MC_SEQ_RD_CTL_D1 >> 2:
*out_reg = MC_SEQ_RD_CTL_D1_LP >> 2;
break;
case MC_SEQ_WR_CTL_D0 >> 2:
*out_reg = MC_SEQ_WR_CTL_D0_LP >> 2;
break;
case MC_SEQ_WR_CTL_D1 >> 2:
*out_reg = MC_SEQ_WR_CTL_D1_LP >> 2;
break;
case MC_PMG_CMD_EMRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_EMRS_LP >> 2;
break;
case MC_PMG_CMD_MRS >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS_LP >> 2;
break;
case MC_PMG_CMD_MRS1 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS1_LP >> 2;
break;
case MC_SEQ_PMG_TIMING >> 2:
*out_reg = MC_SEQ_PMG_TIMING_LP >> 2;
break;
case MC_PMG_CMD_MRS2 >> 2:
*out_reg = MC_SEQ_PMG_CMD_MRS2_LP >> 2;
break;
case MC_SEQ_WR_CTL_2 >> 2:
*out_reg = MC_SEQ_WR_CTL_2_LP >> 2;
break;
default:
result = false;
break;
}
return result;
}
static void ci_set_valid_flag(struct ci_mc_reg_table *table)
{
u8 i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->valid_flag |= 1 << i;
break;
}
}
}
}
static void ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
{
u32 i;
u16 address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ?
address : table->mc_reg_address[i].s1;
}
}
static int ci_copy_vbios_mc_reg_table(const struct atom_mc_reg_table *table,
struct ci_mc_reg_table *ci_table)
{
u8 i, j;
if (table->last > SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
if (table->num_entries > MAX_AC_TIMING_ENTRIES)
return -EINVAL;
for (i = 0; i < table->last; i++)
ci_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
ci_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ci_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++)
ci_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
ci_table->num_entries = table->num_entries;
return 0;
}
static int ci_initialize_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct atom_mc_reg_table *table;
struct ci_mc_reg_table *ci_table = &pi->mc_reg_table;
u8 module_index = rv770_get_memory_module_index(rdev);
int ret;
table = kzalloc(sizeof(struct atom_mc_reg_table), GFP_KERNEL);
if (!table)
return -ENOMEM;
WREG32(MC_SEQ_RAS_TIMING_LP, RREG32(MC_SEQ_RAS_TIMING));
WREG32(MC_SEQ_CAS_TIMING_LP, RREG32(MC_SEQ_CAS_TIMING));
WREG32(MC_SEQ_DLL_STBY_LP, RREG32(MC_SEQ_DLL_STBY));
WREG32(MC_SEQ_G5PDX_CMD0_LP, RREG32(MC_SEQ_G5PDX_CMD0));
WREG32(MC_SEQ_G5PDX_CMD1_LP, RREG32(MC_SEQ_G5PDX_CMD1));
WREG32(MC_SEQ_G5PDX_CTRL_LP, RREG32(MC_SEQ_G5PDX_CTRL));
WREG32(MC_SEQ_PMG_DVS_CMD_LP, RREG32(MC_SEQ_PMG_DVS_CMD));
WREG32(MC_SEQ_PMG_DVS_CTL_LP, RREG32(MC_SEQ_PMG_DVS_CTL));
WREG32(MC_SEQ_MISC_TIMING_LP, RREG32(MC_SEQ_MISC_TIMING));
WREG32(MC_SEQ_MISC_TIMING2_LP, RREG32(MC_SEQ_MISC_TIMING2));
WREG32(MC_SEQ_PMG_CMD_EMRS_LP, RREG32(MC_PMG_CMD_EMRS));
WREG32(MC_SEQ_PMG_CMD_MRS_LP, RREG32(MC_PMG_CMD_MRS));
WREG32(MC_SEQ_PMG_CMD_MRS1_LP, RREG32(MC_PMG_CMD_MRS1));
WREG32(MC_SEQ_WR_CTL_D0_LP, RREG32(MC_SEQ_WR_CTL_D0));
WREG32(MC_SEQ_WR_CTL_D1_LP, RREG32(MC_SEQ_WR_CTL_D1));
WREG32(MC_SEQ_RD_CTL_D0_LP, RREG32(MC_SEQ_RD_CTL_D0));
WREG32(MC_SEQ_RD_CTL_D1_LP, RREG32(MC_SEQ_RD_CTL_D1));
WREG32(MC_SEQ_PMG_TIMING_LP, RREG32(MC_SEQ_PMG_TIMING));
WREG32(MC_SEQ_PMG_CMD_MRS2_LP, RREG32(MC_PMG_CMD_MRS2));
WREG32(MC_SEQ_WR_CTL_2_LP, RREG32(MC_SEQ_WR_CTL_2));
ret = radeon_atom_init_mc_reg_table(rdev, module_index, table);
if (ret)
goto init_mc_done;
ret = ci_copy_vbios_mc_reg_table(table, ci_table);
if (ret)
goto init_mc_done;
ci_set_s0_mc_reg_index(ci_table);
ret = ci_set_mc_special_registers(rdev, ci_table);
if (ret)
goto init_mc_done;
ci_set_valid_flag(ci_table);
init_mc_done:
kfree(table);
return ret;
}
static int ci_populate_mc_reg_addresses(struct radeon_device *rdev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i, j;
for (i = 0, j = 0; j < pi->mc_reg_table.last; j++) {
if (pi->mc_reg_table.valid_flag & (1 << j)) {
if (i >= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE)
return -EINVAL;
mc_reg_table->address[i].s0 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 = cpu_to_be16(pi->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (u8)i;
return 0;
}
static void ci_convert_mc_registers(const struct ci_mc_reg_entry *entry,
SMU7_Discrete_MCRegisterSet *data,
u32 num_entries, u32 valid_flag)
{
u32 i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & (1 << j)) {
data->value[i] = cpu_to_be32(entry->mc_data[j]);
i++;
}
}
}
static void ci_convert_mc_reg_table_entry_to_smc(struct radeon_device *rdev,
const u32 memory_clock,
SMU7_Discrete_MCRegisterSet *mc_reg_table_data)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i = 0;
for(i = 0; i < pi->mc_reg_table.num_entries; i++) {
if (memory_clock <= pi->mc_reg_table.mc_reg_table_entry[i].mclk_max)
break;
}
if ((i == pi->mc_reg_table.num_entries) && (i > 0))
--i;
ci_convert_mc_registers(&pi->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, pi->mc_reg_table.last,
pi->mc_reg_table.valid_flag);
}
static void ci_convert_mc_reg_table_to_smc(struct radeon_device *rdev,
SMU7_Discrete_MCRegisters *mc_reg_table)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 i;
for (i = 0; i < pi->dpm_table.mclk_table.count; i++)
ci_convert_mc_reg_table_entry_to_smc(rdev,
pi->dpm_table.mclk_table.dpm_levels[i].value,
&mc_reg_table->data[i]);
}
static int ci_populate_initial_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
int ret;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ret = ci_populate_mc_reg_addresses(rdev, &pi->smc_mc_reg_table);
if (ret)
return ret;
ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table);
return ci_copy_bytes_to_smc(rdev,
pi->mc_reg_table_start,
(u8 *)&pi->smc_mc_reg_table,
sizeof(SMU7_Discrete_MCRegisters),
pi->sram_end);
}
static int ci_update_and_upload_mc_reg_table(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
if (!(pi->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&pi->smc_mc_reg_table, 0, sizeof(SMU7_Discrete_MCRegisters));
ci_convert_mc_reg_table_to_smc(rdev, &pi->smc_mc_reg_table);
return ci_copy_bytes_to_smc(rdev,
pi->mc_reg_table_start +
offsetof(SMU7_Discrete_MCRegisters, data[0]),
(u8 *)&pi->smc_mc_reg_table.data[0],
sizeof(SMU7_Discrete_MCRegisterSet) *
pi->dpm_table.mclk_table.count,
pi->sram_end);
}
static void ci_enable_voltage_control(struct radeon_device *rdev)
{
u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
tmp |= VOLT_PWRMGT_EN;
WREG32_SMC(GENERAL_PWRMGT, tmp);
}
static enum radeon_pcie_gen ci_get_maximum_link_speed(struct radeon_device *rdev,
struct radeon_ps *radeon_state)
{
struct ci_ps *state = ci_get_ps(radeon_state);
int i;
u16 pcie_speed, max_speed = 0;
for (i = 0; i < state->performance_level_count; i++) {
pcie_speed = state->performance_levels[i].pcie_gen;
if (max_speed < pcie_speed)
max_speed = pcie_speed;
}
return max_speed;
}
static u16 ci_get_current_pcie_speed(struct radeon_device *rdev)
{
u32 speed_cntl = 0;
speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE_MASK;
speed_cntl >>= LC_CURRENT_DATA_RATE_SHIFT;
return (u16)speed_cntl;
}
static int ci_get_current_pcie_lane_number(struct radeon_device *rdev)
{
u32 link_width = 0;
link_width = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL) & LC_LINK_WIDTH_RD_MASK;
link_width >>= LC_LINK_WIDTH_RD_SHIFT;
switch (link_width) {
case RADEON_PCIE_LC_LINK_WIDTH_X1:
return 1;
case RADEON_PCIE_LC_LINK_WIDTH_X2:
return 2;
case RADEON_PCIE_LC_LINK_WIDTH_X4:
return 4;
case RADEON_PCIE_LC_LINK_WIDTH_X8:
return 8;
case RADEON_PCIE_LC_LINK_WIDTH_X12:
/* not actually supported */
return 12;
case RADEON_PCIE_LC_LINK_WIDTH_X0:
case RADEON_PCIE_LC_LINK_WIDTH_X16:
default:
return 16;
}
}
static void ci_request_link_speed_change_before_state_change(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
enum radeon_pcie_gen target_link_speed =
ci_get_maximum_link_speed(rdev, radeon_new_state);
enum radeon_pcie_gen current_link_speed;
if (pi->force_pcie_gen == RADEON_PCIE_GEN_INVALID)
current_link_speed = ci_get_maximum_link_speed(rdev, radeon_current_state);
else
current_link_speed = pi->force_pcie_gen;
pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID;
pi->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch (target_link_speed) {
#ifdef CONFIG_ACPI
case RADEON_PCIE_GEN3:
if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN3, false) == 0)
break;
pi->force_pcie_gen = RADEON_PCIE_GEN2;
if (current_link_speed == RADEON_PCIE_GEN2)
break;
case RADEON_PCIE_GEN2:
if (radeon_acpi_pcie_performance_request(rdev, PCIE_PERF_REQ_PECI_GEN2, false) == 0)
break;
#endif
default:
pi->force_pcie_gen = ci_get_current_pcie_speed(rdev);
break;
}
} else {
if (target_link_speed < current_link_speed)
pi->pspp_notify_required = true;
}
}
static void ci_notify_link_speed_change_after_state_change(struct radeon_device *rdev,
struct radeon_ps *radeon_new_state,
struct radeon_ps *radeon_current_state)
{
struct ci_power_info *pi = ci_get_pi(rdev);
enum radeon_pcie_gen target_link_speed =
ci_get_maximum_link_speed(rdev, radeon_new_state);
u8 request;
if (pi->pspp_notify_required) {
if (target_link_speed == RADEON_PCIE_GEN3)
request = PCIE_PERF_REQ_PECI_GEN3;
else if (target_link_speed == RADEON_PCIE_GEN2)
request = PCIE_PERF_REQ_PECI_GEN2;
else
request = PCIE_PERF_REQ_PECI_GEN1;
if ((request == PCIE_PERF_REQ_PECI_GEN1) &&
(ci_get_current_pcie_speed(rdev) > 0))
return;
#ifdef CONFIG_ACPI
radeon_acpi_pcie_performance_request(rdev, request, false);
#endif
}
}
static int ci_set_private_data_variables_based_on_pptable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_clock_voltage_dependency_table *allowed_sclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_vddc_table =
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk;
struct radeon_clock_voltage_dependency_table *allowed_mclk_vddci_table =
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk;
if (allowed_sclk_vddc_table == NULL)
return -EINVAL;
if (allowed_sclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddc_table == NULL)
return -EINVAL;
if (allowed_mclk_vddc_table->count < 1)
return -EINVAL;
if (allowed_mclk_vddci_table == NULL)
return -EINVAL;
if (allowed_mclk_vddci_table->count < 1)
return -EINVAL;
pi->min_vddc_in_pp_table = allowed_sclk_vddc_table->entries[0].v;
pi->max_vddc_in_pp_table =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
pi->min_vddci_in_pp_table = allowed_mclk_vddci_table->entries[0].v;
pi->max_vddci_in_pp_table =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.mclk =
allowed_mclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddc =
allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.vddci =
allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
return 0;
}
static void ci_patch_with_vddc_leakage(struct radeon_device *rdev, u16 *vddc)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_leakage_voltage *leakage_table = &pi->vddc_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddc) {
*vddc = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_with_vddci_leakage(struct radeon_device *rdev, u16 *vddci)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_leakage_voltage *leakage_table = &pi->vddci_leakage;
u32 leakage_index;
for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) {
if (leakage_table->leakage_id[leakage_index] == *vddci) {
*vddci = leakage_table->actual_voltage[leakage_index];
break;
}
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_clock_voltage_dependency_table_with_vddci_leakage(struct radeon_device *rdev,
struct radeon_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddci_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_vce_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_uvd_clock_voltage_dependency_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].v);
}
}
static void ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_phase_shedding_limits_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].voltage);
}
}
static void ci_patch_clock_voltage_limits_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_clock_and_voltage_limits *table)
{
if (table) {
ci_patch_with_vddc_leakage(rdev, (u16 *)&table->vddc);
ci_patch_with_vddci_leakage(rdev, (u16 *)&table->vddci);
}
}
static void ci_patch_cac_leakage_table_with_vddc_leakage(struct radeon_device *rdev,
struct radeon_cac_leakage_table *table)
{
u32 i;
if (table) {
for (i = 0; i < table->count; i++)
ci_patch_with_vddc_leakage(rdev, &table->entries[i].vddc);
}
}
static void ci_patch_dependency_tables_with_leakage(struct radeon_device *rdev)
{
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk);
ci_patch_clock_voltage_dependency_table_with_vddci_leakage(rdev,
&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk);
ci_patch_vce_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table);
ci_patch_uvd_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table);
ci_patch_clock_voltage_dependency_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table);
ci_patch_vddc_phase_shed_limit_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.phase_shedding_limits_table);
ci_patch_clock_voltage_limits_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
ci_patch_clock_voltage_limits_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc);
ci_patch_cac_leakage_table_with_vddc_leakage(rdev,
&rdev->pm.dpm.dyn_state.cac_leakage_table);
}
static void ci_get_memory_type(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
u32 tmp;
tmp = RREG32(MC_SEQ_MISC0);
if (((tmp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT) ==
MC_SEQ_MISC0_GDDR5_VALUE)
pi->mem_gddr5 = true;
else
pi->mem_gddr5 = false;
}
void ci_update_current_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
pi->current_rps = *rps;
pi->current_ps = *new_ps;
pi->current_rps.ps_priv = &pi->current_ps;
}
void ci_update_requested_ps(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *new_ps = ci_get_ps(rps);
struct ci_power_info *pi = ci_get_pi(rdev);
pi->requested_rps = *rps;
pi->requested_ps = *new_ps;
pi->requested_rps.ps_priv = &pi->requested_ps;
}
int ci_dpm_pre_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
struct radeon_ps *new_ps = &requested_ps;
ci_update_requested_ps(rdev, new_ps);
ci_apply_state_adjust_rules(rdev, &pi->requested_rps);
return 0;
}
void ci_dpm_post_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
ci_update_current_ps(rdev, new_ps);
}
void ci_dpm_setup_asic(struct radeon_device *rdev)
{
ci_read_clock_registers(rdev);
ci_get_memory_type(rdev);
ci_enable_acpi_power_management(rdev);
ci_init_sclk_t(rdev);
}
int ci_dpm_enable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
int ret;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
if (ci_is_smc_running(rdev))
return -EINVAL;
if (pi->voltage_control != CISLANDS_VOLTAGE_CONTROL_NONE) {
ci_enable_voltage_control(rdev);
ret = ci_construct_voltage_tables(rdev);
if (ret) {
DRM_ERROR("ci_construct_voltage_tables failed\n");
return ret;
}
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_initialize_mc_reg_table(rdev);
if (ret)
pi->caps_dynamic_ac_timing = false;
}
if (pi->dynamic_ss)
ci_enable_spread_spectrum(rdev, true);
if (pi->thermal_protection)
ci_enable_thermal_protection(rdev, true);
ci_program_sstp(rdev);
ci_enable_display_gap(rdev);
ci_program_vc(rdev);
ret = ci_upload_firmware(rdev);
if (ret) {
DRM_ERROR("ci_upload_firmware failed\n");
return ret;
}
ret = ci_process_firmware_header(rdev);
if (ret) {
DRM_ERROR("ci_process_firmware_header failed\n");
return ret;
}
ret = ci_initial_switch_from_arb_f0_to_f1(rdev);
if (ret) {
DRM_ERROR("ci_initial_switch_from_arb_f0_to_f1 failed\n");
return ret;
}
ret = ci_init_smc_table(rdev);
if (ret) {
DRM_ERROR("ci_init_smc_table failed\n");
return ret;
}
ret = ci_init_arb_table_index(rdev);
if (ret) {
DRM_ERROR("ci_init_arb_table_index failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_populate_initial_mc_reg_table(rdev);
if (ret) {
DRM_ERROR("ci_populate_initial_mc_reg_table failed\n");
return ret;
}
}
ret = ci_populate_pm_base(rdev);
if (ret) {
DRM_ERROR("ci_populate_pm_base failed\n");
return ret;
}
ci_dpm_start_smc(rdev);
ci_enable_vr_hot_gpio_interrupt(rdev);
ret = ci_notify_smc_display_change(rdev, false);
if (ret) {
DRM_ERROR("ci_notify_smc_display_change failed\n");
return ret;
}
ci_enable_sclk_control(rdev, true);
ret = ci_enable_ulv(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_ulv failed\n");
return ret;
}
ret = ci_enable_ds_master_switch(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_ds_master_switch failed\n");
return ret;
}
ret = ci_start_dpm(rdev);
if (ret) {
DRM_ERROR("ci_start_dpm failed\n");
return ret;
}
ret = ci_enable_didt(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_didt failed\n");
return ret;
}
ret = ci_enable_smc_cac(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_smc_cac failed\n");
return ret;
}
ret = ci_enable_power_containment(rdev, true);
if (ret) {
DRM_ERROR("ci_enable_power_containment failed\n");
return ret;
}
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
#if 0
PPSMC_Result result;
#endif
ret = ci_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
if (ret) {
DRM_ERROR("ci_set_thermal_temperature_range failed\n");
return ret;
}
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
#if 0
result = ci_send_msg_to_smc(rdev, PPSMC_MSG_EnableThermalInterrupt);
if (result != PPSMC_Result_OK)
DRM_DEBUG_KMS("Could not enable thermal interrupts.\n");
#endif
}
ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
ci_dpm_powergate_uvd(rdev, true);
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), true);
ci_update_current_ps(rdev, boot_ps);
return 0;
}
void ci_dpm_disable(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *boot_ps = rdev->pm.dpm.boot_ps;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
ci_dpm_powergate_uvd(rdev, false);
if (!ci_is_smc_running(rdev))
return;
if (pi->thermal_protection)
ci_enable_thermal_protection(rdev, false);
ci_enable_power_containment(rdev, false);
ci_enable_smc_cac(rdev, false);
ci_enable_didt(rdev, false);
ci_enable_spread_spectrum(rdev, false);
ci_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, false);
ci_stop_dpm(rdev);
ci_enable_ds_master_switch(rdev, true);
ci_enable_ulv(rdev, false);
ci_clear_vc(rdev);
ci_reset_to_default(rdev);
ci_dpm_stop_smc(rdev);
ci_force_switch_to_arb_f0(rdev);
ci_update_current_ps(rdev, boot_ps);
}
int ci_dpm_set_power_state(struct radeon_device *rdev)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct radeon_ps *new_ps = &pi->requested_rps;
struct radeon_ps *old_ps = &pi->current_rps;
int ret;
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), false);
ci_find_dpm_states_clocks_in_dpm_table(rdev, new_ps);
if (pi->pcie_performance_request)
ci_request_link_speed_change_before_state_change(rdev, new_ps, old_ps);
ret = ci_freeze_sclk_mclk_dpm(rdev);
if (ret) {
DRM_ERROR("ci_freeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_populate_and_upload_sclk_mclk_dpm_levels(rdev, new_ps);
if (ret) {
DRM_ERROR("ci_populate_and_upload_sclk_mclk_dpm_levels failed\n");
return ret;
}
ret = ci_generate_dpm_level_enable_mask(rdev, new_ps);
if (ret) {
DRM_ERROR("ci_generate_dpm_level_enable_mask failed\n");
return ret;
}
#if 0
ret = ci_update_vce_dpm(rdev, new_ps, old_ps);
if (ret) {
DRM_ERROR("ci_update_vce_dpm failed\n");
return ret;
}
#endif
ret = ci_update_sclk_t(rdev);
if (ret) {
DRM_ERROR("ci_update_sclk_t failed\n");
return ret;
}
if (pi->caps_dynamic_ac_timing) {
ret = ci_update_and_upload_mc_reg_table(rdev);
if (ret) {
DRM_ERROR("ci_update_and_upload_mc_reg_table failed\n");
return ret;
}
}
ret = ci_program_memory_timing_parameters(rdev);
if (ret) {
DRM_ERROR("ci_program_memory_timing_parameters failed\n");
return ret;
}
ret = ci_unfreeze_sclk_mclk_dpm(rdev);
if (ret) {
DRM_ERROR("ci_unfreeze_sclk_mclk_dpm failed\n");
return ret;
}
ret = ci_upload_dpm_level_enable_mask(rdev);
if (ret) {
DRM_ERROR("ci_upload_dpm_level_enable_mask failed\n");
return ret;
}
if (pi->pcie_performance_request)
ci_notify_link_speed_change_after_state_change(rdev, new_ps, old_ps);
cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
RADEON_CG_BLOCK_MC |
RADEON_CG_BLOCK_SDMA |
RADEON_CG_BLOCK_BIF |
RADEON_CG_BLOCK_UVD |
RADEON_CG_BLOCK_HDP), true);
return 0;
}
int ci_dpm_power_control_set_level(struct radeon_device *rdev)
{
return ci_power_control_set_level(rdev);
}
void ci_dpm_reset_asic(struct radeon_device *rdev)
{
ci_set_boot_state(rdev);
}
void ci_dpm_display_configuration_changed(struct radeon_device *rdev)
{
ci_program_display_gap(rdev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
struct _ATOM_PPLIB_SI_CLOCK_INFO si;
struct _ATOM_PPLIB_CI_CLOCK_INFO ci;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void ci_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
u8 table_rev)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void ci_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl = &ps->performance_levels[index];
ps->performance_level_count = index + 1;
pl->sclk = le16_to_cpu(clock_info->ci.usEngineClockLow);
pl->sclk |= clock_info->ci.ucEngineClockHigh << 16;
pl->mclk = le16_to_cpu(clock_info->ci.usMemoryClockLow);
pl->mclk |= clock_info->ci.ucMemoryClockHigh << 16;
pl->pcie_gen = r600_get_pcie_gen_support(rdev,
pi->sys_pcie_mask,
pi->vbios_boot_state.pcie_gen_bootup_value,
clock_info->ci.ucPCIEGen);
pl->pcie_lane = r600_get_pcie_lane_support(rdev,
pi->vbios_boot_state.pcie_lane_bootup_value,
le16_to_cpu(clock_info->ci.usPCIELane));
if (rps->class & ATOM_PPLIB_CLASSIFICATION_ACPI) {
pi->acpi_pcie_gen = pl->pcie_gen;
}
if (rps->class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) {
pi->ulv.supported = true;
pi->ulv.pl = *pl;
pi->ulv.cg_ulv_parameter = CISLANDS_CGULVPARAMETER_DFLT;
}
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
pl->mclk = pi->vbios_boot_state.mclk_bootup_value;
pl->sclk = pi->vbios_boot_state.sclk_bootup_value;
pl->pcie_gen = pi->vbios_boot_state.pcie_gen_bootup_value;
pl->pcie_lane = pi->vbios_boot_state.pcie_lane_bootup_value;
}
switch (rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) {
case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY:
pi->use_pcie_powersaving_levels = true;
if (pi->pcie_gen_powersaving.max < pl->pcie_gen)
pi->pcie_gen_powersaving.max = pl->pcie_gen;
if (pi->pcie_gen_powersaving.min > pl->pcie_gen)
pi->pcie_gen_powersaving.min = pl->pcie_gen;
if (pi->pcie_lane_powersaving.max < pl->pcie_lane)
pi->pcie_lane_powersaving.max = pl->pcie_lane;
if (pi->pcie_lane_powersaving.min > pl->pcie_lane)
pi->pcie_lane_powersaving.min = pl->pcie_lane;
break;
case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE:
pi->use_pcie_performance_levels = true;
if (pi->pcie_gen_performance.max < pl->pcie_gen)
pi->pcie_gen_performance.max = pl->pcie_gen;
if (pi->pcie_gen_performance.min > pl->pcie_gen)
pi->pcie_gen_performance.min = pl->pcie_gen;
if (pi->pcie_lane_performance.max < pl->pcie_lane)
pi->pcie_lane_performance.max = pl->pcie_lane;
if (pi->pcie_lane_performance.min > pl->pcie_lane)
pi->pcie_lane_performance.min = pl->pcie_lane;
break;
default:
break;
}
}
static int ci_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j, k, non_clock_array_index, clock_array_index;
union pplib_clock_info *clock_info;
struct _StateArray *state_array;
struct _ClockInfoArray *clock_info_array;
struct _NonClockInfoArray *non_clock_info_array;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
u8 *power_state_offset;
struct ci_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
state_array = (struct _StateArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset));
clock_info_array = (struct _ClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
non_clock_info_array = (struct _NonClockInfoArray *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
state_array->ucNumEntries, GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
power_state_offset = (u8 *)state_array->states;
rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < state_array->ucNumEntries; i++) {
u8 *idx;
power_state = (union pplib_power_state *)power_state_offset;
non_clock_array_index = power_state->v2.nonClockInfoIndex;
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
&non_clock_info_array->nonClockInfo[non_clock_array_index];
if (!rdev->pm.power_state[i].clock_info)
return -EINVAL;
ps = kzalloc(sizeof(struct ci_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
ci_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info,
non_clock_info_array->ucEntrySize);
k = 0;
idx = (u8 *)&power_state->v2.clockInfoIndex[0];
for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
clock_array_index = idx[j];
if (clock_array_index >= clock_info_array->ucNumEntries)
continue;
if (k >= CISLANDS_MAX_HARDWARE_POWERLEVELS)
break;
clock_info = (union pplib_clock_info *)
((u8 *)&clock_info_array->clockInfo[0] +
(clock_array_index * clock_info_array->ucEntrySize));
ci_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], k,
clock_info);
k++;
}
power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
}
rdev->pm.dpm.num_ps = state_array->ucNumEntries;
return 0;
}
int ci_get_vbios_boot_values(struct radeon_device *rdev,
struct ci_vbios_boot_state *boot_state)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
ATOM_FIRMWARE_INFO_V2_2 *firmware_info;
u8 frev, crev;
u16 data_offset;
if (atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
firmware_info =
(ATOM_FIRMWARE_INFO_V2_2 *)(mode_info->atom_context->bios +
data_offset);
boot_state->mvdd_bootup_value = le16_to_cpu(firmware_info->usBootUpMVDDCVoltage);
boot_state->vddc_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCVoltage);
boot_state->vddci_bootup_value = le16_to_cpu(firmware_info->usBootUpVDDCIVoltage);
boot_state->pcie_gen_bootup_value = ci_get_current_pcie_speed(rdev);
boot_state->pcie_lane_bootup_value = ci_get_current_pcie_lane_number(rdev);
boot_state->sclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultEngineClock);
boot_state->mclk_bootup_value = le32_to_cpu(firmware_info->ulDefaultMemoryClock);
return 0;
}
return -EINVAL;
}
void ci_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries);
r600_free_extended_power_table(rdev);
}
int ci_dpm_init(struct radeon_device *rdev)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
u16 data_offset, size;
u8 frev, crev;
struct ci_power_info *pi;
int ret;
u32 mask;
pi = kzalloc(sizeof(struct ci_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
ret = drm_pcie_get_speed_cap_mask(rdev->ddev, &mask);
if (ret)
pi->sys_pcie_mask = 0;
else
pi->sys_pcie_mask = mask;
pi->force_pcie_gen = RADEON_PCIE_GEN_INVALID;
pi->pcie_gen_performance.max = RADEON_PCIE_GEN1;
pi->pcie_gen_performance.min = RADEON_PCIE_GEN3;
pi->pcie_gen_powersaving.max = RADEON_PCIE_GEN1;
pi->pcie_gen_powersaving.min = RADEON_PCIE_GEN3;
pi->pcie_lane_performance.max = 0;
pi->pcie_lane_performance.min = 16;
pi->pcie_lane_powersaving.max = 0;
pi->pcie_lane_powersaving.min = 16;
ret = ci_get_vbios_boot_values(rdev, &pi->vbios_boot_state);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
ret = ci_parse_power_table(rdev);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
ret = r600_parse_extended_power_table(rdev);
if (ret) {
ci_dpm_fini(rdev);
return ret;
}
pi->dll_default_on = false;
pi->sram_end = SMC_RAM_END;
pi->activity_target[0] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[1] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[2] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[3] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[4] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[5] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[6] = CISLAND_TARGETACTIVITY_DFLT;
pi->activity_target[7] = CISLAND_TARGETACTIVITY_DFLT;
pi->mclk_activity_target = CISLAND_MCLK_TARGETACTIVITY_DFLT;
pi->sclk_dpm_key_disabled = 0;
pi->mclk_dpm_key_disabled = 0;
pi->pcie_dpm_key_disabled = 0;
pi->caps_sclk_ds = true;
pi->mclk_strobe_mode_threshold = 40000;
pi->mclk_stutter_mode_threshold = 40000;
pi->mclk_edc_enable_threshold = 40000;
pi->mclk_edc_wr_enable_threshold = 40000;
ci_initialize_powertune_defaults(rdev);
pi->caps_fps = false;
pi->caps_sclk_throttle_low_notification = false;
pi->caps_uvd_dpm = true;
ci_get_leakage_voltages(rdev);
ci_patch_dependency_tables_with_leakage(rdev);
ci_set_private_data_variables_based_on_pptable(rdev);
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries =
kzalloc(4 * sizeof(struct radeon_clock_voltage_dependency_entry), GFP_KERNEL);
if (!rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries) {
ci_dpm_fini(rdev);
return -ENOMEM;
}
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.count = 4;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].clk = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[0].v = 0;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].clk = 36000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[1].v = 720;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].clk = 54000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[2].v = 810;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].clk = 72000;
rdev->pm.dpm.dyn_state.vddc_dependency_on_dispclk.entries[3].v = 900;
rdev->pm.dpm.dyn_state.mclk_sclk_ratio = 4;
rdev->pm.dpm.dyn_state.sclk_mclk_delta = 15000;
rdev->pm.dpm.dyn_state.vddc_vddci_delta = 200;
rdev->pm.dpm.dyn_state.valid_sclk_values.count = 0;
rdev->pm.dpm.dyn_state.valid_sclk_values.values = NULL;
rdev->pm.dpm.dyn_state.valid_mclk_values.count = 0;
rdev->pm.dpm.dyn_state.valid_mclk_values.values = NULL;
pi->thermal_temp_setting.temperature_low = 99500;
pi->thermal_temp_setting.temperature_high = 100000;
pi->thermal_temp_setting.temperature_shutdown = 104000;
pi->uvd_enabled = false;
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_NONE;
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_NONE;
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
pi->voltage_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL) {
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
pi->vddci_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL;
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL) {
if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_GPIO;
else if (radeon_atom_is_voltage_gpio(rdev, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
pi->mvdd_control = CISLANDS_VOLTAGE_CONTROL_BY_SVID2;
else
rdev->pm.dpm.platform_caps &= ~ATOM_PP_PLATFORM_CAP_MVDDCONTROL;
}
pi->vddc_phase_shed_control = true;
#if defined(CONFIG_ACPI)
pi->pcie_performance_request =
radeon_acpi_is_pcie_performance_request_supported(rdev);
#else
pi->pcie_performance_request = false;
#endif
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
pi->caps_sclk_ss_support = true;
pi->caps_mclk_ss_support = true;
pi->dynamic_ss = true;
} else {
pi->caps_sclk_ss_support = false;
pi->caps_mclk_ss_support = false;
pi->dynamic_ss = true;
}
if (rdev->pm.int_thermal_type != THERMAL_TYPE_NONE)
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->caps_dynamic_ac_timing = true;
pi->uvd_power_gated = false;
/* make sure dc limits are valid */
if ((rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk == 0) ||
(rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk == 0))
rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc =
rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
return 0;
}
void ci_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
struct seq_file *m)
{
u32 sclk = ci_get_average_sclk_freq(rdev);
u32 mclk = ci_get_average_mclk_freq(rdev);
seq_printf(m, "power level avg sclk: %u mclk: %u\n",
sclk, mclk);
}
void ci_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct ci_ps *ps = ci_get_ps(rps);
struct ci_pl *pl;
int i;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
for (i = 0; i < ps->performance_level_count; i++) {
pl = &ps->performance_levels[i];
printk("\t\tpower level %d sclk: %u mclk: %u pcie gen: %u pcie lanes: %u\n",
i, pl->sclk, pl->mclk, pl->pcie_gen + 1, pl->pcie_lane);
}
r600_dpm_print_ps_status(rdev, rps);
}
u32 ci_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].sclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].sclk;
}
u32 ci_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct ci_power_info *pi = ci_get_pi(rdev);
struct ci_ps *requested_state = ci_get_ps(&pi->requested_rps);
if (low)
return requested_state->performance_levels[0].mclk;
else
return requested_state->performance_levels[requested_state->performance_level_count - 1].mclk;
}