linux-stable/drivers/gpu/drm/stm/dw_mipi_dsi-stm.c
Antonio Borneo 5cc4e71f01 drm/stm: dsi: compute the transition time from LP to HS and back
The driver uses a conservative set of hardcoded values for the
maximum time delay of the transitions between LP and HS, either
for data and clock lanes.

By using the info in STM32MP157 datasheet, valid also for other ST
devices, compute the actual delay from the lane's bps.

Signed-off-by: Antonio Borneo <antonio.borneo@foss.st.com>
Reviewed-by: Philippe Cornu <philippe.cornu@foss.st.com>
Acked-by: Philippe Cornu <philippe.cornu@foss.st.com>
Signed-off-by: Philippe Cornu <philippe.cornu@foss.st.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210713144941.3599-1-antonio.borneo@foss.st.com
2021-07-19 15:35:55 +02:00

508 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics SA 2017
*
* Authors: Philippe Cornu <philippe.cornu@st.com>
* Yannick Fertre <yannick.fertre@st.com>
*/
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <drm/bridge/dw_mipi_dsi.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_print.h>
#define HWVER_130 0x31333000 /* IP version 1.30 */
#define HWVER_131 0x31333100 /* IP version 1.31 */
/* DSI digital registers & bit definitions */
#define DSI_VERSION 0x00
#define VERSION GENMASK(31, 8)
/* DSI wrapper registers & bit definitions */
/* Note: registers are named as in the Reference Manual */
#define DSI_WCFGR 0x0400 /* Wrapper ConFiGuration Reg */
#define WCFGR_DSIM BIT(0) /* DSI Mode */
#define WCFGR_COLMUX GENMASK(3, 1) /* COLor MUltipleXing */
#define DSI_WCR 0x0404 /* Wrapper Control Reg */
#define WCR_DSIEN BIT(3) /* DSI ENable */
#define DSI_WISR 0x040C /* Wrapper Interrupt and Status Reg */
#define WISR_PLLLS BIT(8) /* PLL Lock Status */
#define WISR_RRS BIT(12) /* Regulator Ready Status */
#define DSI_WPCR0 0x0418 /* Wrapper Phy Conf Reg 0 */
#define WPCR0_UIX4 GENMASK(5, 0) /* Unit Interval X 4 */
#define WPCR0_TDDL BIT(16) /* Turn Disable Data Lanes */
#define DSI_WRPCR 0x0430 /* Wrapper Regulator & Pll Ctrl Reg */
#define WRPCR_PLLEN BIT(0) /* PLL ENable */
#define WRPCR_NDIV GENMASK(8, 2) /* pll loop DIVision Factor */
#define WRPCR_IDF GENMASK(14, 11) /* pll Input Division Factor */
#define WRPCR_ODF GENMASK(17, 16) /* pll Output Division Factor */
#define WRPCR_REGEN BIT(24) /* REGulator ENable */
#define WRPCR_BGREN BIT(28) /* BandGap Reference ENable */
#define IDF_MIN 1
#define IDF_MAX 7
#define NDIV_MIN 10
#define NDIV_MAX 125
#define ODF_MIN 1
#define ODF_MAX 8
/* dsi color format coding according to the datasheet */
enum dsi_color {
DSI_RGB565_CONF1,
DSI_RGB565_CONF2,
DSI_RGB565_CONF3,
DSI_RGB666_CONF1,
DSI_RGB666_CONF2,
DSI_RGB888,
};
#define LANE_MIN_KBPS 31250
#define LANE_MAX_KBPS 500000
/* Sleep & timeout for regulator on/off, pll lock/unlock & fifo empty */
#define SLEEP_US 1000
#define TIMEOUT_US 200000
struct dw_mipi_dsi_stm {
void __iomem *base;
struct clk *pllref_clk;
struct dw_mipi_dsi *dsi;
u32 hw_version;
int lane_min_kbps;
int lane_max_kbps;
struct regulator *vdd_supply;
};
static inline void dsi_write(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 dsi_read(struct dw_mipi_dsi_stm *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static inline void dsi_set(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) | mask);
}
static inline void dsi_clear(struct dw_mipi_dsi_stm *dsi, u32 reg, u32 mask)
{
dsi_write(dsi, reg, dsi_read(dsi, reg) & ~mask);
}
static inline void dsi_update_bits(struct dw_mipi_dsi_stm *dsi, u32 reg,
u32 mask, u32 val)
{
dsi_write(dsi, reg, (dsi_read(dsi, reg) & ~mask) | val);
}
static enum dsi_color dsi_color_from_mipi(enum mipi_dsi_pixel_format fmt)
{
switch (fmt) {
case MIPI_DSI_FMT_RGB888:
return DSI_RGB888;
case MIPI_DSI_FMT_RGB666:
return DSI_RGB666_CONF2;
case MIPI_DSI_FMT_RGB666_PACKED:
return DSI_RGB666_CONF1;
case MIPI_DSI_FMT_RGB565:
return DSI_RGB565_CONF1;
default:
DRM_DEBUG_DRIVER("MIPI color invalid, so we use rgb888\n");
}
return DSI_RGB888;
}
static int dsi_pll_get_clkout_khz(int clkin_khz, int idf, int ndiv, int odf)
{
int divisor = idf * odf;
/* prevent from division by 0 */
if (!divisor)
return 0;
return DIV_ROUND_CLOSEST(clkin_khz * ndiv, divisor);
}
static int dsi_pll_get_params(struct dw_mipi_dsi_stm *dsi,
int clkin_khz, int clkout_khz,
int *idf, int *ndiv, int *odf)
{
int i, o, n, n_min, n_max;
int fvco_min, fvco_max, delta, best_delta; /* all in khz */
/* Early checks preventing division by 0 & odd results */
if (clkin_khz <= 0 || clkout_khz <= 0)
return -EINVAL;
fvco_min = dsi->lane_min_kbps * 2 * ODF_MAX;
fvco_max = dsi->lane_max_kbps * 2 * ODF_MIN;
best_delta = 1000000; /* big started value (1000000khz) */
for (i = IDF_MIN; i <= IDF_MAX; i++) {
/* Compute ndiv range according to Fvco */
n_min = ((fvco_min * i) / (2 * clkin_khz)) + 1;
n_max = (fvco_max * i) / (2 * clkin_khz);
/* No need to continue idf loop if we reach ndiv max */
if (n_min >= NDIV_MAX)
break;
/* Clamp ndiv to valid values */
if (n_min < NDIV_MIN)
n_min = NDIV_MIN;
if (n_max > NDIV_MAX)
n_max = NDIV_MAX;
for (o = ODF_MIN; o <= ODF_MAX; o *= 2) {
n = DIV_ROUND_CLOSEST(i * o * clkout_khz, clkin_khz);
/* Check ndiv according to vco range */
if (n < n_min || n > n_max)
continue;
/* Check if new delta is better & saves parameters */
delta = dsi_pll_get_clkout_khz(clkin_khz, i, n, o) -
clkout_khz;
if (delta < 0)
delta = -delta;
if (delta < best_delta) {
*idf = i;
*ndiv = n;
*odf = o;
best_delta = delta;
}
/* fast return in case of "perfect result" */
if (!delta)
return 0;
}
}
return 0;
}
static int dw_mipi_dsi_phy_init(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
u32 val;
int ret;
/* Enable the regulator */
dsi_set(dsi, DSI_WRPCR, WRPCR_REGEN | WRPCR_BGREN);
ret = readl_poll_timeout(dsi->base + DSI_WISR, val, val & WISR_RRS,
SLEEP_US, TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("!TIMEOUT! waiting REGU, let's continue\n");
/* Enable the DSI PLL & wait for its lock */
dsi_set(dsi, DSI_WRPCR, WRPCR_PLLEN);
ret = readl_poll_timeout(dsi->base + DSI_WISR, val, val & WISR_PLLLS,
SLEEP_US, TIMEOUT_US);
if (ret)
DRM_DEBUG_DRIVER("!TIMEOUT! waiting PLL, let's continue\n");
return 0;
}
static void dw_mipi_dsi_phy_power_on(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
DRM_DEBUG_DRIVER("\n");
/* Enable the DSI wrapper */
dsi_set(dsi, DSI_WCR, WCR_DSIEN);
}
static void dw_mipi_dsi_phy_power_off(void *priv_data)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
DRM_DEBUG_DRIVER("\n");
/* Disable the DSI wrapper */
dsi_clear(dsi, DSI_WCR, WCR_DSIEN);
}
static int
dw_mipi_dsi_get_lane_mbps(void *priv_data, const struct drm_display_mode *mode,
unsigned long mode_flags, u32 lanes, u32 format,
unsigned int *lane_mbps)
{
struct dw_mipi_dsi_stm *dsi = priv_data;
unsigned int idf, ndiv, odf, pll_in_khz, pll_out_khz;
int ret, bpp;
u32 val;
/* Update lane capabilities according to hw version */
dsi->lane_min_kbps = LANE_MIN_KBPS;
dsi->lane_max_kbps = LANE_MAX_KBPS;
if (dsi->hw_version == HWVER_131) {
dsi->lane_min_kbps *= 2;
dsi->lane_max_kbps *= 2;
}
pll_in_khz = (unsigned int)(clk_get_rate(dsi->pllref_clk) / 1000);
/* Compute requested pll out */
bpp = mipi_dsi_pixel_format_to_bpp(format);
pll_out_khz = mode->clock * bpp / lanes;
/* Add 20% to pll out to be higher than pixel bw (burst mode only) */
if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
pll_out_khz = (pll_out_khz * 12) / 10;
if (pll_out_khz > dsi->lane_max_kbps) {
pll_out_khz = dsi->lane_max_kbps;
DRM_WARN("Warning max phy mbps is used\n");
}
if (pll_out_khz < dsi->lane_min_kbps) {
pll_out_khz = dsi->lane_min_kbps;
DRM_WARN("Warning min phy mbps is used\n");
}
/* Compute best pll parameters */
idf = 0;
ndiv = 0;
odf = 0;
ret = dsi_pll_get_params(dsi, pll_in_khz, pll_out_khz,
&idf, &ndiv, &odf);
if (ret)
DRM_WARN("Warning dsi_pll_get_params(): bad params\n");
/* Get the adjusted pll out value */
pll_out_khz = dsi_pll_get_clkout_khz(pll_in_khz, idf, ndiv, odf);
/* Set the PLL division factors */
dsi_update_bits(dsi, DSI_WRPCR, WRPCR_NDIV | WRPCR_IDF | WRPCR_ODF,
(ndiv << 2) | (idf << 11) | ((ffs(odf) - 1) << 16));
/* Compute uix4 & set the bit period in high-speed mode */
val = 4000000 / pll_out_khz;
dsi_update_bits(dsi, DSI_WPCR0, WPCR0_UIX4, val);
/* Select video mode by resetting DSIM bit */
dsi_clear(dsi, DSI_WCFGR, WCFGR_DSIM);
/* Select the color coding */
dsi_update_bits(dsi, DSI_WCFGR, WCFGR_COLMUX,
dsi_color_from_mipi(format) << 1);
*lane_mbps = pll_out_khz / 1000;
DRM_DEBUG_DRIVER("pll_in %ukHz pll_out %ukHz lane_mbps %uMHz\n",
pll_in_khz, pll_out_khz, *lane_mbps);
return 0;
}
#define DSI_PHY_DELAY(fp, vp, mbps) DIV_ROUND_UP((fp) * (mbps) + 1000 * (vp), 8000)
static int
dw_mipi_dsi_phy_get_timing(void *priv_data, unsigned int lane_mbps,
struct dw_mipi_dsi_dphy_timing *timing)
{
/*
* From STM32MP157 datasheet, valid for STM32F469, STM32F7x9, STM32H747
* phy_clkhs2lp_time = (272+136*UI)/(8*UI)
* phy_clklp2hs_time = (512+40*UI)/(8*UI)
* phy_hs2lp_time = (192+64*UI)/(8*UI)
* phy_lp2hs_time = (256+32*UI)/(8*UI)
*/
timing->clk_hs2lp = DSI_PHY_DELAY(272, 136, lane_mbps);
timing->clk_lp2hs = DSI_PHY_DELAY(512, 40, lane_mbps);
timing->data_hs2lp = DSI_PHY_DELAY(192, 64, lane_mbps);
timing->data_lp2hs = DSI_PHY_DELAY(256, 32, lane_mbps);
return 0;
}
static const struct dw_mipi_dsi_phy_ops dw_mipi_dsi_stm_phy_ops = {
.init = dw_mipi_dsi_phy_init,
.power_on = dw_mipi_dsi_phy_power_on,
.power_off = dw_mipi_dsi_phy_power_off,
.get_lane_mbps = dw_mipi_dsi_get_lane_mbps,
.get_timing = dw_mipi_dsi_phy_get_timing,
};
static struct dw_mipi_dsi_plat_data dw_mipi_dsi_stm_plat_data = {
.max_data_lanes = 2,
.phy_ops = &dw_mipi_dsi_stm_phy_ops,
};
static const struct of_device_id dw_mipi_dsi_stm_dt_ids[] = {
{ .compatible = "st,stm32-dsi", .data = &dw_mipi_dsi_stm_plat_data, },
{ },
};
MODULE_DEVICE_TABLE(of, dw_mipi_dsi_stm_dt_ids);
static int dw_mipi_dsi_stm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dw_mipi_dsi_stm *dsi;
struct clk *pclk;
struct resource *res;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->base)) {
ret = PTR_ERR(dsi->base);
DRM_ERROR("Unable to get dsi registers %d\n", ret);
return ret;
}
dsi->vdd_supply = devm_regulator_get(dev, "phy-dsi");
if (IS_ERR(dsi->vdd_supply)) {
ret = PTR_ERR(dsi->vdd_supply);
dev_err_probe(dev, ret, "Failed to request regulator\n");
return ret;
}
ret = regulator_enable(dsi->vdd_supply);
if (ret) {
DRM_ERROR("Failed to enable regulator: %d\n", ret);
return ret;
}
dsi->pllref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(dsi->pllref_clk)) {
ret = PTR_ERR(dsi->pllref_clk);
dev_err_probe(dev, ret, "Unable to get pll reference clock\n");
goto err_clk_get;
}
ret = clk_prepare_enable(dsi->pllref_clk);
if (ret) {
DRM_ERROR("Failed to enable pllref_clk: %d\n", ret);
goto err_clk_get;
}
pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(pclk)) {
ret = PTR_ERR(pclk);
DRM_ERROR("Unable to get peripheral clock: %d\n", ret);
goto err_dsi_probe;
}
ret = clk_prepare_enable(pclk);
if (ret) {
DRM_ERROR("%s: Failed to enable peripheral clk\n", __func__);
goto err_dsi_probe;
}
dsi->hw_version = dsi_read(dsi, DSI_VERSION) & VERSION;
clk_disable_unprepare(pclk);
if (dsi->hw_version != HWVER_130 && dsi->hw_version != HWVER_131) {
ret = -ENODEV;
DRM_ERROR("bad dsi hardware version\n");
goto err_dsi_probe;
}
dw_mipi_dsi_stm_plat_data.base = dsi->base;
dw_mipi_dsi_stm_plat_data.priv_data = dsi;
platform_set_drvdata(pdev, dsi);
dsi->dsi = dw_mipi_dsi_probe(pdev, &dw_mipi_dsi_stm_plat_data);
if (IS_ERR(dsi->dsi)) {
ret = PTR_ERR(dsi->dsi);
dev_err_probe(dev, ret, "Failed to initialize mipi dsi host\n");
goto err_dsi_probe;
}
return 0;
err_dsi_probe:
clk_disable_unprepare(dsi->pllref_clk);
err_clk_get:
regulator_disable(dsi->vdd_supply);
return ret;
}
static int dw_mipi_dsi_stm_remove(struct platform_device *pdev)
{
struct dw_mipi_dsi_stm *dsi = platform_get_drvdata(pdev);
dw_mipi_dsi_remove(dsi->dsi);
clk_disable_unprepare(dsi->pllref_clk);
regulator_disable(dsi->vdd_supply);
return 0;
}
static int __maybe_unused dw_mipi_dsi_stm_suspend(struct device *dev)
{
struct dw_mipi_dsi_stm *dsi = dw_mipi_dsi_stm_plat_data.priv_data;
DRM_DEBUG_DRIVER("\n");
clk_disable_unprepare(dsi->pllref_clk);
regulator_disable(dsi->vdd_supply);
return 0;
}
static int __maybe_unused dw_mipi_dsi_stm_resume(struct device *dev)
{
struct dw_mipi_dsi_stm *dsi = dw_mipi_dsi_stm_plat_data.priv_data;
int ret;
DRM_DEBUG_DRIVER("\n");
ret = regulator_enable(dsi->vdd_supply);
if (ret) {
DRM_ERROR("Failed to enable regulator: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(dsi->pllref_clk);
if (ret) {
regulator_disable(dsi->vdd_supply);
DRM_ERROR("Failed to enable pllref_clk: %d\n", ret);
return ret;
}
return 0;
}
static const struct dev_pm_ops dw_mipi_dsi_stm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(dw_mipi_dsi_stm_suspend,
dw_mipi_dsi_stm_resume)
};
static struct platform_driver dw_mipi_dsi_stm_driver = {
.probe = dw_mipi_dsi_stm_probe,
.remove = dw_mipi_dsi_stm_remove,
.driver = {
.of_match_table = dw_mipi_dsi_stm_dt_ids,
.name = "stm32-display-dsi",
.pm = &dw_mipi_dsi_stm_pm_ops,
},
};
module_platform_driver(dw_mipi_dsi_stm_driver);
MODULE_AUTHOR("Philippe Cornu <philippe.cornu@st.com>");
MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>");
MODULE_DESCRIPTION("STMicroelectronics DW MIPI DSI host controller driver");
MODULE_LICENSE("GPL v2");