linux-stable/drivers/gpu/drm/i915/display/intel_atomic_plane.c
Ville Syrjälä bb6ae9e653 drm/i915: Allow planes to declare their minimum acceptable cdclk
Various pixel formats and plane scaling impose additional constraints
on the cdclk frequency. Provide a new plane->min_cdclk() hook that
will be used to compute the minimum acceptable cdclk frequency for
each plane.

Annoyingly on some platforms the numer of active planes affects
this calculation so we must also toss in more planes into the
state when the number of active planes changes.

The sequence of state computation must also be changed:
1. check_plane() (updates plane's visibility etc.)
2. figure out if more planes now require update min_cdclk
   computaion
3. calculate the new min cdclk for each plane in the state
4. if the minimum of any plane now exceeds the current
   logical cdclk we recompute the cdclk
4. during cdclk computation take the planes' min_cdclk into
   accoutn
5. follow the normal cdclk programming to change the
   cdclk frequency. This may now require a modeset (except
   on bxt/glk in some cases), which either succeeds or
   fails depending on whether userspace has given
   us permission to perform a modeset or not.

v2: Fix plane id check in intel_crtc_add_planes_to_state()
    Only print the debug message when cdclk needs bumping
    Use dev_priv->cdclk... as the old state explicitly

Reviewed-by: Juha-Pekka Heikkila <juhapekka.heikkila@gmail.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191015193035.25982-5-ville.syrjala@linux.intel.com
2019-10-24 21:22:25 +03:00

408 lines
12 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: atomic plane helpers
*
* The functions here are used by the atomic plane helper functions to
* implement legacy plane updates (i.e., drm_plane->update_plane() and
* drm_plane->disable_plane()). This allows plane updates to use the
* atomic state infrastructure and perform plane updates as separate
* prepare/check/commit/cleanup steps.
*/
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane_helper.h>
#include "i915_trace.h"
#include "intel_atomic_plane.h"
#include "intel_display_types.h"
#include "intel_pm.h"
#include "intel_sprite.h"
struct intel_plane *intel_plane_alloc(void)
{
struct intel_plane_state *plane_state;
struct intel_plane *plane;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return ERR_PTR(-ENOMEM);
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
if (!plane_state) {
kfree(plane);
return ERR_PTR(-ENOMEM);
}
__drm_atomic_helper_plane_reset(&plane->base, &plane_state->base);
plane_state->scaler_id = -1;
return plane;
}
void intel_plane_free(struct intel_plane *plane)
{
intel_plane_destroy_state(&plane->base, plane->base.state);
kfree(plane);
}
/**
* intel_plane_duplicate_state - duplicate plane state
* @plane: drm plane
*
* Allocates and returns a copy of the plane state (both common and
* Intel-specific) for the specified plane.
*
* Returns: The newly allocated plane state, or NULL on failure.
*/
struct drm_plane_state *
intel_plane_duplicate_state(struct drm_plane *plane)
{
struct drm_plane_state *state;
struct intel_plane_state *intel_state;
intel_state = kmemdup(plane->state, sizeof(*intel_state), GFP_KERNEL);
if (!intel_state)
return NULL;
state = &intel_state->base;
__drm_atomic_helper_plane_duplicate_state(plane, state);
intel_state->vma = NULL;
intel_state->flags = 0;
return state;
}
/**
* intel_plane_destroy_state - destroy plane state
* @plane: drm plane
* @state: state object to destroy
*
* Destroys the plane state (both common and Intel-specific) for the
* specified plane.
*/
void
intel_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
WARN_ON(to_intel_plane_state(state)->vma);
drm_atomic_helper_plane_destroy_state(plane, state);
}
unsigned int intel_plane_data_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
const struct drm_framebuffer *fb = plane_state->base.fb;
unsigned int cpp;
if (!plane_state->base.visible)
return 0;
cpp = fb->format->cpp[0];
/*
* Based on HSD#:1408715493
* NV12 cpp == 4, P010 cpp == 8
*
* FIXME what is the logic behind this?
*/
if (fb->format->is_yuv && fb->format->num_planes > 1)
cpp *= 4;
return cpp * crtc_state->pixel_rate;
}
bool intel_plane_calc_min_cdclk(struct intel_atomic_state *state,
struct intel_plane *plane)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct intel_plane_state *plane_state =
intel_atomic_get_new_plane_state(state, plane);
struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
struct intel_crtc_state *crtc_state;
if (!plane_state->base.visible || !plane->min_cdclk)
return false;
crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
crtc_state->min_cdclk[plane->id] =
plane->min_cdclk(crtc_state, plane_state);
/*
* Does the cdclk need to be bumbed up?
*
* Note: we obviously need to be called before the new
* cdclk frequency is calculated so state->cdclk.logical
* hasn't been populated yet. Hence we look at the old
* cdclk state under dev_priv->cdclk.logical. This is
* safe as long we hold at least one crtc mutex (which
* must be true since we have crtc_state).
*/
if (crtc_state->min_cdclk[plane->id] > dev_priv->cdclk.logical.cdclk) {
DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk (%d kHz) > logical cdclk (%d kHz)\n",
plane->base.base.id, plane->base.name,
crtc_state->min_cdclk[plane->id],
dev_priv->cdclk.logical.cdclk);
return true;
}
return false;
}
int intel_plane_atomic_check_with_state(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state,
const struct intel_plane_state *old_plane_state,
struct intel_plane_state *new_plane_state)
{
struct intel_plane *plane = to_intel_plane(new_plane_state->base.plane);
const struct drm_framebuffer *fb = new_plane_state->base.fb;
int ret;
new_crtc_state->active_planes &= ~BIT(plane->id);
new_crtc_state->nv12_planes &= ~BIT(plane->id);
new_crtc_state->c8_planes &= ~BIT(plane->id);
new_crtc_state->data_rate[plane->id] = 0;
new_crtc_state->min_cdclk[plane->id] = 0;
new_plane_state->base.visible = false;
if (!new_plane_state->base.crtc && !old_plane_state->base.crtc)
return 0;
ret = plane->check_plane(new_crtc_state, new_plane_state);
if (ret)
return ret;
/* FIXME pre-g4x don't work like this */
if (new_plane_state->base.visible)
new_crtc_state->active_planes |= BIT(plane->id);
if (new_plane_state->base.visible &&
drm_format_info_is_yuv_semiplanar(fb->format))
new_crtc_state->nv12_planes |= BIT(plane->id);
if (new_plane_state->base.visible &&
fb->format->format == DRM_FORMAT_C8)
new_crtc_state->c8_planes |= BIT(plane->id);
if (new_plane_state->base.visible || old_plane_state->base.visible)
new_crtc_state->update_planes |= BIT(plane->id);
new_crtc_state->data_rate[plane->id] =
intel_plane_data_rate(new_crtc_state, new_plane_state);
return intel_plane_atomic_calc_changes(old_crtc_state, new_crtc_state,
old_plane_state, new_plane_state);
}
static struct intel_crtc *
get_crtc_from_states(const struct intel_plane_state *old_plane_state,
const struct intel_plane_state *new_plane_state)
{
if (new_plane_state->base.crtc)
return to_intel_crtc(new_plane_state->base.crtc);
if (old_plane_state->base.crtc)
return to_intel_crtc(old_plane_state->base.crtc);
return NULL;
}
int intel_plane_atomic_check(struct intel_atomic_state *state,
struct intel_plane *plane)
{
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(state, plane);
const struct intel_plane_state *old_plane_state =
intel_atomic_get_old_plane_state(state, plane);
struct intel_crtc *crtc =
get_crtc_from_states(old_plane_state, new_plane_state);
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc_state *new_crtc_state;
new_plane_state->base.visible = false;
if (!crtc)
return 0;
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
return intel_plane_atomic_check_with_state(old_crtc_state,
new_crtc_state,
old_plane_state,
new_plane_state);
}
static struct intel_plane *
skl_next_plane_to_commit(struct intel_atomic_state *state,
struct intel_crtc *crtc,
struct skl_ddb_entry entries_y[I915_MAX_PLANES],
struct skl_ddb_entry entries_uv[I915_MAX_PLANES],
unsigned int *update_mask)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane_state *plane_state;
struct intel_plane *plane;
int i;
if (*update_mask == 0)
return NULL;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
enum plane_id plane_id = plane->id;
if (crtc->pipe != plane->pipe ||
!(*update_mask & BIT(plane_id)))
continue;
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_y[plane_id],
entries_y,
I915_MAX_PLANES, plane_id) ||
skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_uv[plane_id],
entries_uv,
I915_MAX_PLANES, plane_id))
continue;
*update_mask &= ~BIT(plane_id);
entries_y[plane_id] = crtc_state->wm.skl.plane_ddb_y[plane_id];
entries_uv[plane_id] = crtc_state->wm.skl.plane_ddb_uv[plane_id];
return plane;
}
/* should never happen */
WARN_ON(1);
return NULL;
}
void intel_update_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_update_plane(&plane->base, crtc);
plane->update_plane(plane, crtc_state, plane_state);
}
void intel_update_slave(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_update_plane(&plane->base, crtc);
plane->update_slave(plane, crtc_state, plane_state);
}
void intel_disable_plane(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
trace_intel_disable_plane(&plane->base, crtc);
plane->disable_plane(plane, crtc_state);
}
void skl_update_planes_on_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct skl_ddb_entry entries_y[I915_MAX_PLANES];
struct skl_ddb_entry entries_uv[I915_MAX_PLANES];
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane *plane;
memcpy(entries_y, old_crtc_state->wm.skl.plane_ddb_y,
sizeof(old_crtc_state->wm.skl.plane_ddb_y));
memcpy(entries_uv, old_crtc_state->wm.skl.plane_ddb_uv,
sizeof(old_crtc_state->wm.skl.plane_ddb_uv));
while ((plane = skl_next_plane_to_commit(state, crtc,
entries_y, entries_uv,
&update_mask))) {
struct intel_plane_state *new_plane_state =
intel_atomic_get_new_plane_state(state, plane);
if (new_plane_state->base.visible) {
intel_update_plane(plane, new_crtc_state, new_plane_state);
} else if (new_plane_state->planar_slave) {
struct intel_plane *master =
new_plane_state->planar_linked_plane;
/*
* We update the slave plane from this function because
* programming it from the master plane's update_plane
* callback runs into issues when the Y plane is
* reassigned, disabled or used by a different plane.
*
* The slave plane is updated with the master plane's
* plane_state.
*/
new_plane_state =
intel_atomic_get_new_plane_state(state, master);
intel_update_slave(plane, new_crtc_state, new_plane_state);
} else {
intel_disable_plane(plane, new_crtc_state);
}
}
}
void i9xx_update_planes_on_crtc(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
u32 update_mask = new_crtc_state->update_planes;
struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
int i;
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
if (crtc->pipe != plane->pipe ||
!(update_mask & BIT(plane->id)))
continue;
if (new_plane_state->base.visible)
intel_update_plane(plane, new_crtc_state, new_plane_state);
else
intel_disable_plane(plane, new_crtc_state);
}
}
const struct drm_plane_helper_funcs intel_plane_helper_funcs = {
.prepare_fb = intel_prepare_plane_fb,
.cleanup_fb = intel_cleanup_plane_fb,
};