linux-stable/net/rxrpc/input.c
David Howells c1e15b4944 rxrpc: Fix the packet reception routine
The rxrpc_input_packet() function and its call tree was built around the
assumption that data_ready() handler called from UDP to inform a kernel
service that there is data to be had was non-reentrant.  This means that
certain locking could be dispensed with.

This, however, turns out not to be the case with a multi-queue network card
that can deliver packets to multiple cpus simultaneously.  Each of those
cpus can be in the rxrpc_input_packet() function at the same time.

Fix by adding or changing some structure members:

 (1) Add peer->rtt_input_lock to serialise access to the RTT buffer.

 (2) Make conn->service_id into a 32-bit variable so that it can be
     cmpxchg'd on all arches.

 (3) Add call->input_lock to serialise access to the Rx/Tx state.  Note
     that although the Rx and Tx states are (almost) entirely separate,
     there's no point completing the separation and having separate locks
     since it's a bi-phasal RPC protocol rather than a bi-direction
     streaming protocol.  Data transmission and data reception do not take
     place simultaneously on any particular call.

and making the following functional changes:

 (1) In rxrpc_input_data(), hold call->input_lock around the core to
     prevent simultaneous producing of packets into the Rx ring and
     updating of tracking state for a particular call.

 (2) In rxrpc_input_ping_response(), only read call->ping_serial once, and
     check it before checking RXRPC_CALL_PINGING as that's a cheaper test.
     The bit test and bit clear can then be combined.  No further locking
     is needed here.

 (3) In rxrpc_input_ack(), take call->input_lock after we've parsed much of
     the ACK packet.  The superseded ACK check is then done both before and
     after the lock is taken.

     The handing of ackinfo data is split, parsing before the lock is taken
     and processing with it held.  This is keyed on rxMTU being non-zero.

     Congestion management is also done within the locked section.

 (4) In rxrpc_input_ackall(), take call->input_lock around the Tx window
     rotation.  The ACKALL packet carries no information and is only really
     useful after all packets have been transmitted since it's imprecise.

 (5) In rxrpc_input_implicit_end_call(), we use rx->incoming_lock to
     prevent calls being simultaneously implicitly ended on two cpus and
     also to prevent any races with incoming call setup.

 (6) In rxrpc_input_packet(), use cmpxchg() to effect the service upgrade
     on a connection.  It is only permitted to happen once for a
     connection.

 (7) In rxrpc_new_incoming_call(), we have to recheck the routing inside
     rx->incoming_lock to see if someone else set up the call, connection
     or peer whilst we were getting there.  We can't trust the values from
     the earlier routing check unless we pin refs on them - which we want
     to avoid.

     Further, we need to allow for an incoming call to have its state
     changed on another CPU between us making it live and us adjusting it
     because the conn is now in the RXRPC_CONN_SERVICE state.

 (8) In rxrpc_peer_add_rtt(), take peer->rtt_input_lock around the access
     to the RTT buffer.  Don't need to lock around setting peer->rtt.

For reference, the inventory of state-accessing or state-altering functions
used by the packet input procedure is:

> rxrpc_input_packet()
  * PACKET CHECKING

  * ROUTING
    > rxrpc_post_packet_to_local()
    > rxrpc_find_connection_rcu() - uses RCU
      > rxrpc_lookup_peer_rcu() - uses RCU
      > rxrpc_find_service_conn_rcu() - uses RCU
      > idr_find() - uses RCU

  * CONNECTION-LEVEL PROCESSING
    - Service upgrade
      - Can only happen once per conn
      ! Changed to use cmpxchg
    > rxrpc_post_packet_to_conn()
    - Setting conn->hi_serial
      - Probably safe not using locks
      - Maybe use cmpxchg

  * CALL-LEVEL PROCESSING
    > Old-call checking
      > rxrpc_input_implicit_end_call()
        > rxrpc_call_completed()
	> rxrpc_queue_call()
	! Need to take rx->incoming_lock
	> __rxrpc_disconnect_call()
	> rxrpc_notify_socket()
    > rxrpc_new_incoming_call()
      - Uses rx->incoming_lock for the entire process
        - Might be able to drop this earlier in favour of the call lock
      > rxrpc_incoming_call()
      	! Conflicts with rxrpc_input_implicit_end_call()
    > rxrpc_send_ping()
      - Don't need locks to check rtt state
      > rxrpc_propose_ACK

  * PACKET DISTRIBUTION
    > rxrpc_input_call_packet()
      > rxrpc_input_data()
	* QUEUE DATA PACKET ON CALL
	> rxrpc_reduce_call_timer()
	  - Uses timer_reduce()
	! Needs call->input_lock()
	> rxrpc_receiving_reply()
	  ! Needs locking around ack state
	  > rxrpc_rotate_tx_window()
	  > rxrpc_end_tx_phase()
	> rxrpc_proto_abort()
	> rxrpc_input_dup_data()
	- Fills the Rx buffer
	- rxrpc_propose_ACK()
	- rxrpc_notify_socket()

      > rxrpc_input_ack()
	* APPLY ACK PACKET TO CALL AND DISCARD PACKET
	> rxrpc_input_ping_response()
	  - Probably doesn't need any extra locking
	  ! Need READ_ONCE() on call->ping_serial
	  > rxrpc_input_check_for_lost_ack()
	    - Takes call->lock to consult Tx buffer
	  > rxrpc_peer_add_rtt()
	    ! Needs to take a lock (peer->rtt_input_lock)
	    ! Could perhaps manage with cmpxchg() and xadd() instead
	> rxrpc_input_requested_ack
	  - Consults Tx buffer
	    ! Probably needs a lock
	  > rxrpc_peer_add_rtt()
	> rxrpc_propose_ack()
	> rxrpc_input_ackinfo()
	  - Changes call->tx_winsize
	    ! Use cmpxchg to handle change
	    ! Should perhaps track serial number
	  - Uses peer->lock to record MTU specification changes
	> rxrpc_proto_abort()
	! Need to take call->input_lock
	> rxrpc_rotate_tx_window()
	> rxrpc_end_tx_phase()
	> rxrpc_input_soft_acks()
	- Consults the Tx buffer
	> rxrpc_congestion_management()
	  - Modifies the Tx annotations
	  ! Needs call->input_lock()
	  > rxrpc_queue_call()

      > rxrpc_input_abort()
	* APPLY ABORT PACKET TO CALL AND DISCARD PACKET
	> rxrpc_set_call_completion()
	> rxrpc_notify_socket()

      > rxrpc_input_ackall()
	* APPLY ACKALL PACKET TO CALL AND DISCARD PACKET
	! Need to take call->input_lock
	> rxrpc_rotate_tx_window()
	> rxrpc_end_tx_phase()

    > rxrpc_reject_packet()

There are some functions used by the above that queue the packet, after
which the procedure is terminated:

 - rxrpc_post_packet_to_local()
   - local->event_queue is an sk_buff_head
   - local->processor is a work_struct
 - rxrpc_post_packet_to_conn()
   - conn->rx_queue is an sk_buff_head
   - conn->processor is a work_struct
 - rxrpc_reject_packet()
   - local->reject_queue is an sk_buff_head
   - local->processor is a work_struct

And some that offload processing to process context:

 - rxrpc_notify_socket()
   - Uses RCU lock
   - Uses call->notify_lock to call call->notify_rx
   - Uses call->recvmsg_lock to queue recvmsg side
 - rxrpc_queue_call()
   - call->processor is a work_struct
 - rxrpc_propose_ACK()
   - Uses call->lock to wrap __rxrpc_propose_ACK()

And a bunch that complete a call, all of which use call->state_lock to
protect the call state:

 - rxrpc_call_completed()
 - rxrpc_set_call_completion()
 - rxrpc_abort_call()
 - rxrpc_proto_abort()
   - Also uses rxrpc_queue_call()

Fixes: 17926a7932 ("[AF_RXRPC]: Provide secure RxRPC sockets for use by userspace and kernel both")
Signed-off-by: David Howells <dhowells@redhat.com>
2018-10-08 22:42:04 +01:00

1411 lines
36 KiB
C

/* RxRPC packet reception
*
* Copyright (C) 2007, 2016 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/errqueue.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/icmp.h>
#include <linux/gfp.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include <net/ip.h>
#include <net/udp.h>
#include <net/net_namespace.h>
#include "ar-internal.h"
static void rxrpc_proto_abort(const char *why,
struct rxrpc_call *call, rxrpc_seq_t seq)
{
if (rxrpc_abort_call(why, call, seq, RX_PROTOCOL_ERROR, -EBADMSG)) {
set_bit(RXRPC_CALL_EV_ABORT, &call->events);
rxrpc_queue_call(call);
}
}
/*
* Do TCP-style congestion management [RFC 5681].
*/
static void rxrpc_congestion_management(struct rxrpc_call *call,
struct sk_buff *skb,
struct rxrpc_ack_summary *summary,
rxrpc_serial_t acked_serial)
{
enum rxrpc_congest_change change = rxrpc_cong_no_change;
unsigned int cumulative_acks = call->cong_cumul_acks;
unsigned int cwnd = call->cong_cwnd;
bool resend = false;
summary->flight_size =
(call->tx_top - call->tx_hard_ack) - summary->nr_acks;
if (test_and_clear_bit(RXRPC_CALL_RETRANS_TIMEOUT, &call->flags)) {
summary->retrans_timeo = true;
call->cong_ssthresh = max_t(unsigned int,
summary->flight_size / 2, 2);
cwnd = 1;
if (cwnd >= call->cong_ssthresh &&
call->cong_mode == RXRPC_CALL_SLOW_START) {
call->cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE;
call->cong_tstamp = skb->tstamp;
cumulative_acks = 0;
}
}
cumulative_acks += summary->nr_new_acks;
cumulative_acks += summary->nr_rot_new_acks;
if (cumulative_acks > 255)
cumulative_acks = 255;
summary->mode = call->cong_mode;
summary->cwnd = call->cong_cwnd;
summary->ssthresh = call->cong_ssthresh;
summary->cumulative_acks = cumulative_acks;
summary->dup_acks = call->cong_dup_acks;
switch (call->cong_mode) {
case RXRPC_CALL_SLOW_START:
if (summary->nr_nacks > 0)
goto packet_loss_detected;
if (summary->cumulative_acks > 0)
cwnd += 1;
if (cwnd >= call->cong_ssthresh) {
call->cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE;
call->cong_tstamp = skb->tstamp;
}
goto out;
case RXRPC_CALL_CONGEST_AVOIDANCE:
if (summary->nr_nacks > 0)
goto packet_loss_detected;
/* We analyse the number of packets that get ACK'd per RTT
* period and increase the window if we managed to fill it.
*/
if (call->peer->rtt_usage == 0)
goto out;
if (ktime_before(skb->tstamp,
ktime_add_ns(call->cong_tstamp,
call->peer->rtt)))
goto out_no_clear_ca;
change = rxrpc_cong_rtt_window_end;
call->cong_tstamp = skb->tstamp;
if (cumulative_acks >= cwnd)
cwnd++;
goto out;
case RXRPC_CALL_PACKET_LOSS:
if (summary->nr_nacks == 0)
goto resume_normality;
if (summary->new_low_nack) {
change = rxrpc_cong_new_low_nack;
call->cong_dup_acks = 1;
if (call->cong_extra > 1)
call->cong_extra = 1;
goto send_extra_data;
}
call->cong_dup_acks++;
if (call->cong_dup_acks < 3)
goto send_extra_data;
change = rxrpc_cong_begin_retransmission;
call->cong_mode = RXRPC_CALL_FAST_RETRANSMIT;
call->cong_ssthresh = max_t(unsigned int,
summary->flight_size / 2, 2);
cwnd = call->cong_ssthresh + 3;
call->cong_extra = 0;
call->cong_dup_acks = 0;
resend = true;
goto out;
case RXRPC_CALL_FAST_RETRANSMIT:
if (!summary->new_low_nack) {
if (summary->nr_new_acks == 0)
cwnd += 1;
call->cong_dup_acks++;
if (call->cong_dup_acks == 2) {
change = rxrpc_cong_retransmit_again;
call->cong_dup_acks = 0;
resend = true;
}
} else {
change = rxrpc_cong_progress;
cwnd = call->cong_ssthresh;
if (summary->nr_nacks == 0)
goto resume_normality;
}
goto out;
default:
BUG();
goto out;
}
resume_normality:
change = rxrpc_cong_cleared_nacks;
call->cong_dup_acks = 0;
call->cong_extra = 0;
call->cong_tstamp = skb->tstamp;
if (cwnd < call->cong_ssthresh)
call->cong_mode = RXRPC_CALL_SLOW_START;
else
call->cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE;
out:
cumulative_acks = 0;
out_no_clear_ca:
if (cwnd >= RXRPC_RXTX_BUFF_SIZE - 1)
cwnd = RXRPC_RXTX_BUFF_SIZE - 1;
call->cong_cwnd = cwnd;
call->cong_cumul_acks = cumulative_acks;
trace_rxrpc_congest(call, summary, acked_serial, change);
if (resend && !test_and_set_bit(RXRPC_CALL_EV_RESEND, &call->events))
rxrpc_queue_call(call);
return;
packet_loss_detected:
change = rxrpc_cong_saw_nack;
call->cong_mode = RXRPC_CALL_PACKET_LOSS;
call->cong_dup_acks = 0;
goto send_extra_data;
send_extra_data:
/* Send some previously unsent DATA if we have some to advance the ACK
* state.
*/
if (call->rxtx_annotations[call->tx_top & RXRPC_RXTX_BUFF_MASK] &
RXRPC_TX_ANNO_LAST ||
summary->nr_acks != call->tx_top - call->tx_hard_ack) {
call->cong_extra++;
wake_up(&call->waitq);
}
goto out_no_clear_ca;
}
/*
* Ping the other end to fill our RTT cache and to retrieve the rwind
* and MTU parameters.
*/
static void rxrpc_send_ping(struct rxrpc_call *call, struct sk_buff *skb,
int skew)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
ktime_t now = skb->tstamp;
if (call->peer->rtt_usage < 3 ||
ktime_before(ktime_add_ms(call->peer->rtt_last_req, 1000), now))
rxrpc_propose_ACK(call, RXRPC_ACK_PING, skew, sp->hdr.serial,
true, true,
rxrpc_propose_ack_ping_for_params);
}
/*
* Apply a hard ACK by advancing the Tx window.
*/
static bool rxrpc_rotate_tx_window(struct rxrpc_call *call, rxrpc_seq_t to,
struct rxrpc_ack_summary *summary)
{
struct sk_buff *skb, *list = NULL;
bool rot_last = false;
int ix;
u8 annotation;
if (call->acks_lowest_nak == call->tx_hard_ack) {
call->acks_lowest_nak = to;
} else if (before_eq(call->acks_lowest_nak, to)) {
summary->new_low_nack = true;
call->acks_lowest_nak = to;
}
spin_lock(&call->lock);
while (before(call->tx_hard_ack, to)) {
call->tx_hard_ack++;
ix = call->tx_hard_ack & RXRPC_RXTX_BUFF_MASK;
skb = call->rxtx_buffer[ix];
annotation = call->rxtx_annotations[ix];
rxrpc_see_skb(skb, rxrpc_skb_tx_rotated);
call->rxtx_buffer[ix] = NULL;
call->rxtx_annotations[ix] = 0;
skb->next = list;
list = skb;
if (annotation & RXRPC_TX_ANNO_LAST) {
set_bit(RXRPC_CALL_TX_LAST, &call->flags);
rot_last = true;
}
if ((annotation & RXRPC_TX_ANNO_MASK) != RXRPC_TX_ANNO_ACK)
summary->nr_rot_new_acks++;
}
spin_unlock(&call->lock);
trace_rxrpc_transmit(call, (rot_last ?
rxrpc_transmit_rotate_last :
rxrpc_transmit_rotate));
wake_up(&call->waitq);
while (list) {
skb = list;
list = skb->next;
skb->next = NULL;
rxrpc_free_skb(skb, rxrpc_skb_tx_freed);
}
return rot_last;
}
/*
* End the transmission phase of a call.
*
* This occurs when we get an ACKALL packet, the first DATA packet of a reply,
* or a final ACK packet.
*/
static bool rxrpc_end_tx_phase(struct rxrpc_call *call, bool reply_begun,
const char *abort_why)
{
unsigned int state;
ASSERT(test_bit(RXRPC_CALL_TX_LAST, &call->flags));
write_lock(&call->state_lock);
state = call->state;
switch (state) {
case RXRPC_CALL_CLIENT_SEND_REQUEST:
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
if (reply_begun)
call->state = state = RXRPC_CALL_CLIENT_RECV_REPLY;
else
call->state = state = RXRPC_CALL_CLIENT_AWAIT_REPLY;
break;
case RXRPC_CALL_SERVER_AWAIT_ACK:
__rxrpc_call_completed(call);
rxrpc_notify_socket(call);
state = call->state;
break;
default:
goto bad_state;
}
write_unlock(&call->state_lock);
if (state == RXRPC_CALL_CLIENT_AWAIT_REPLY)
trace_rxrpc_transmit(call, rxrpc_transmit_await_reply);
else
trace_rxrpc_transmit(call, rxrpc_transmit_end);
_leave(" = ok");
return true;
bad_state:
write_unlock(&call->state_lock);
kdebug("end_tx %s", rxrpc_call_states[call->state]);
rxrpc_proto_abort(abort_why, call, call->tx_top);
return false;
}
/*
* Begin the reply reception phase of a call.
*/
static bool rxrpc_receiving_reply(struct rxrpc_call *call)
{
struct rxrpc_ack_summary summary = { 0 };
unsigned long now, timo;
rxrpc_seq_t top = READ_ONCE(call->tx_top);
if (call->ackr_reason) {
spin_lock_bh(&call->lock);
call->ackr_reason = 0;
spin_unlock_bh(&call->lock);
now = jiffies;
timo = now + MAX_JIFFY_OFFSET;
WRITE_ONCE(call->resend_at, timo);
WRITE_ONCE(call->ack_at, timo);
trace_rxrpc_timer(call, rxrpc_timer_init_for_reply, now);
}
if (!test_bit(RXRPC_CALL_TX_LAST, &call->flags)) {
if (!rxrpc_rotate_tx_window(call, top, &summary)) {
rxrpc_proto_abort("TXL", call, top);
return false;
}
}
if (!rxrpc_end_tx_phase(call, true, "ETD"))
return false;
call->tx_phase = false;
return true;
}
/*
* Scan a jumbo packet to validate its structure and to work out how many
* subpackets it contains.
*
* A jumbo packet is a collection of consecutive packets glued together with
* little headers between that indicate how to change the initial header for
* each subpacket.
*
* RXRPC_JUMBO_PACKET must be set on all but the last subpacket - and all but
* the last are RXRPC_JUMBO_DATALEN in size. The last subpacket may be of any
* size.
*/
static bool rxrpc_validate_jumbo(struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
unsigned int offset = sizeof(struct rxrpc_wire_header);
unsigned int len = skb->len;
int nr_jumbo = 1;
u8 flags = sp->hdr.flags;
do {
nr_jumbo++;
if (len - offset < RXRPC_JUMBO_SUBPKTLEN)
goto protocol_error;
if (flags & RXRPC_LAST_PACKET)
goto protocol_error;
offset += RXRPC_JUMBO_DATALEN;
if (skb_copy_bits(skb, offset, &flags, 1) < 0)
goto protocol_error;
offset += sizeof(struct rxrpc_jumbo_header);
} while (flags & RXRPC_JUMBO_PACKET);
sp->nr_jumbo = nr_jumbo;
return true;
protocol_error:
return false;
}
/*
* Handle reception of a duplicate packet.
*
* We have to take care to avoid an attack here whereby we're given a series of
* jumbograms, each with a sequence number one before the preceding one and
* filled up to maximum UDP size. If they never send us the first packet in
* the sequence, they can cause us to have to hold on to around 2MiB of kernel
* space until the call times out.
*
* We limit the space usage by only accepting three duplicate jumbo packets per
* call. After that, we tell the other side we're no longer accepting jumbos
* (that information is encoded in the ACK packet).
*/
static void rxrpc_input_dup_data(struct rxrpc_call *call, rxrpc_seq_t seq,
u8 annotation, bool *_jumbo_bad)
{
/* Discard normal packets that are duplicates. */
if (annotation == 0)
return;
/* Skip jumbo subpackets that are duplicates. When we've had three or
* more partially duplicate jumbo packets, we refuse to take any more
* jumbos for this call.
*/
if (!*_jumbo_bad) {
call->nr_jumbo_bad++;
*_jumbo_bad = true;
}
}
/*
* Process a DATA packet, adding the packet to the Rx ring.
*/
static void rxrpc_input_data(struct rxrpc_call *call, struct sk_buff *skb,
u16 skew)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
enum rxrpc_call_state state;
unsigned int offset = sizeof(struct rxrpc_wire_header);
unsigned int ix;
rxrpc_serial_t serial = sp->hdr.serial, ack_serial = 0;
rxrpc_seq_t seq = sp->hdr.seq, hard_ack;
bool immediate_ack = false, jumbo_bad = false, queued;
u16 len;
u8 ack = 0, flags, annotation = 0;
_enter("{%u,%u},{%u,%u}",
call->rx_hard_ack, call->rx_top, skb->len, seq);
_proto("Rx DATA %%%u { #%u f=%02x }",
sp->hdr.serial, seq, sp->hdr.flags);
state = READ_ONCE(call->state);
if (state >= RXRPC_CALL_COMPLETE)
return;
if (call->state == RXRPC_CALL_SERVER_RECV_REQUEST) {
unsigned long timo = READ_ONCE(call->next_req_timo);
unsigned long now, expect_req_by;
if (timo) {
now = jiffies;
expect_req_by = now + timo;
WRITE_ONCE(call->expect_req_by, expect_req_by);
rxrpc_reduce_call_timer(call, expect_req_by, now,
rxrpc_timer_set_for_idle);
}
}
spin_lock(&call->input_lock);
/* Received data implicitly ACKs all of the request packets we sent
* when we're acting as a client.
*/
if ((state == RXRPC_CALL_CLIENT_SEND_REQUEST ||
state == RXRPC_CALL_CLIENT_AWAIT_REPLY) &&
!rxrpc_receiving_reply(call))
goto unlock;
call->ackr_prev_seq = seq;
hard_ack = READ_ONCE(call->rx_hard_ack);
if (after(seq, hard_ack + call->rx_winsize)) {
ack = RXRPC_ACK_EXCEEDS_WINDOW;
ack_serial = serial;
goto ack;
}
flags = sp->hdr.flags;
if (flags & RXRPC_JUMBO_PACKET) {
if (call->nr_jumbo_bad > 3) {
ack = RXRPC_ACK_NOSPACE;
ack_serial = serial;
goto ack;
}
annotation = 1;
}
next_subpacket:
queued = false;
ix = seq & RXRPC_RXTX_BUFF_MASK;
len = skb->len;
if (flags & RXRPC_JUMBO_PACKET)
len = RXRPC_JUMBO_DATALEN;
if (flags & RXRPC_LAST_PACKET) {
if (test_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
seq != call->rx_top) {
rxrpc_proto_abort("LSN", call, seq);
goto unlock;
}
} else {
if (test_bit(RXRPC_CALL_RX_LAST, &call->flags) &&
after_eq(seq, call->rx_top)) {
rxrpc_proto_abort("LSA", call, seq);
goto unlock;
}
}
trace_rxrpc_rx_data(call->debug_id, seq, serial, flags, annotation);
if (before_eq(seq, hard_ack)) {
ack = RXRPC_ACK_DUPLICATE;
ack_serial = serial;
goto skip;
}
if (flags & RXRPC_REQUEST_ACK && !ack) {
ack = RXRPC_ACK_REQUESTED;
ack_serial = serial;
}
if (call->rxtx_buffer[ix]) {
rxrpc_input_dup_data(call, seq, annotation, &jumbo_bad);
if (ack != RXRPC_ACK_DUPLICATE) {
ack = RXRPC_ACK_DUPLICATE;
ack_serial = serial;
}
immediate_ack = true;
goto skip;
}
/* Queue the packet. We use a couple of memory barriers here as need
* to make sure that rx_top is perceived to be set after the buffer
* pointer and that the buffer pointer is set after the annotation and
* the skb data.
*
* Barriers against rxrpc_recvmsg_data() and rxrpc_rotate_rx_window()
* and also rxrpc_fill_out_ack().
*/
rxrpc_get_skb(skb, rxrpc_skb_rx_got);
call->rxtx_annotations[ix] = annotation;
smp_wmb();
call->rxtx_buffer[ix] = skb;
if (after(seq, call->rx_top)) {
smp_store_release(&call->rx_top, seq);
} else if (before(seq, call->rx_top)) {
/* Send an immediate ACK if we fill in a hole */
if (!ack) {
ack = RXRPC_ACK_DELAY;
ack_serial = serial;
}
immediate_ack = true;
}
if (flags & RXRPC_LAST_PACKET) {
set_bit(RXRPC_CALL_RX_LAST, &call->flags);
trace_rxrpc_receive(call, rxrpc_receive_queue_last, serial, seq);
} else {
trace_rxrpc_receive(call, rxrpc_receive_queue, serial, seq);
}
queued = true;
if (after_eq(seq, call->rx_expect_next)) {
if (after(seq, call->rx_expect_next)) {
_net("OOS %u > %u", seq, call->rx_expect_next);
ack = RXRPC_ACK_OUT_OF_SEQUENCE;
ack_serial = serial;
}
call->rx_expect_next = seq + 1;
}
skip:
offset += len;
if (flags & RXRPC_JUMBO_PACKET) {
if (skb_copy_bits(skb, offset, &flags, 1) < 0) {
rxrpc_proto_abort("XJF", call, seq);
goto unlock;
}
offset += sizeof(struct rxrpc_jumbo_header);
seq++;
serial++;
annotation++;
if (flags & RXRPC_JUMBO_PACKET)
annotation |= RXRPC_RX_ANNO_JLAST;
if (after(seq, hard_ack + call->rx_winsize)) {
ack = RXRPC_ACK_EXCEEDS_WINDOW;
ack_serial = serial;
if (!jumbo_bad) {
call->nr_jumbo_bad++;
jumbo_bad = true;
}
goto ack;
}
_proto("Rx DATA Jumbo %%%u", serial);
goto next_subpacket;
}
if (queued && flags & RXRPC_LAST_PACKET && !ack) {
ack = RXRPC_ACK_DELAY;
ack_serial = serial;
}
ack:
if (ack)
rxrpc_propose_ACK(call, ack, skew, ack_serial,
immediate_ack, true,
rxrpc_propose_ack_input_data);
else
rxrpc_propose_ACK(call, RXRPC_ACK_DELAY, skew, serial,
false, true,
rxrpc_propose_ack_input_data);
if (sp->hdr.seq == READ_ONCE(call->rx_hard_ack) + 1) {
trace_rxrpc_notify_socket(call->debug_id, serial);
rxrpc_notify_socket(call);
}
unlock:
spin_unlock(&call->input_lock);
_leave(" [queued]");
}
/*
* Process a requested ACK.
*/
static void rxrpc_input_requested_ack(struct rxrpc_call *call,
ktime_t resp_time,
rxrpc_serial_t orig_serial,
rxrpc_serial_t ack_serial)
{
struct rxrpc_skb_priv *sp;
struct sk_buff *skb;
ktime_t sent_at;
int ix;
for (ix = 0; ix < RXRPC_RXTX_BUFF_SIZE; ix++) {
skb = call->rxtx_buffer[ix];
if (!skb)
continue;
sent_at = skb->tstamp;
smp_rmb(); /* Read timestamp before serial. */
sp = rxrpc_skb(skb);
if (sp->hdr.serial != orig_serial)
continue;
goto found;
}
return;
found:
rxrpc_peer_add_rtt(call, rxrpc_rtt_rx_requested_ack,
orig_serial, ack_serial, sent_at, resp_time);
}
/*
* Process the response to a ping that we sent to find out if we lost an ACK.
*
* If we got back a ping response that indicates a lower tx_top than what we
* had at the time of the ping transmission, we adjudge all the DATA packets
* sent between the response tx_top and the ping-time tx_top to have been lost.
*/
static void rxrpc_input_check_for_lost_ack(struct rxrpc_call *call)
{
rxrpc_seq_t top, bottom, seq;
bool resend = false;
spin_lock_bh(&call->lock);
bottom = call->tx_hard_ack + 1;
top = call->acks_lost_top;
if (before(bottom, top)) {
for (seq = bottom; before_eq(seq, top); seq++) {
int ix = seq & RXRPC_RXTX_BUFF_MASK;
u8 annotation = call->rxtx_annotations[ix];
u8 anno_type = annotation & RXRPC_TX_ANNO_MASK;
if (anno_type != RXRPC_TX_ANNO_UNACK)
continue;
annotation &= ~RXRPC_TX_ANNO_MASK;
annotation |= RXRPC_TX_ANNO_RETRANS;
call->rxtx_annotations[ix] = annotation;
resend = true;
}
}
spin_unlock_bh(&call->lock);
if (resend && !test_and_set_bit(RXRPC_CALL_EV_RESEND, &call->events))
rxrpc_queue_call(call);
}
/*
* Process a ping response.
*/
static void rxrpc_input_ping_response(struct rxrpc_call *call,
ktime_t resp_time,
rxrpc_serial_t orig_serial,
rxrpc_serial_t ack_serial)
{
rxrpc_serial_t ping_serial;
ktime_t ping_time;
ping_time = call->ping_time;
smp_rmb();
ping_serial = READ_ONCE(call->ping_serial);
if (orig_serial == call->acks_lost_ping)
rxrpc_input_check_for_lost_ack(call);
if (before(orig_serial, ping_serial) ||
!test_and_clear_bit(RXRPC_CALL_PINGING, &call->flags))
return;
if (after(orig_serial, ping_serial))
return;
rxrpc_peer_add_rtt(call, rxrpc_rtt_rx_ping_response,
orig_serial, ack_serial, ping_time, resp_time);
}
/*
* Process the extra information that may be appended to an ACK packet
*/
static void rxrpc_input_ackinfo(struct rxrpc_call *call, struct sk_buff *skb,
struct rxrpc_ackinfo *ackinfo)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
struct rxrpc_peer *peer;
unsigned int mtu;
bool wake = false;
u32 rwind = ntohl(ackinfo->rwind);
_proto("Rx ACK %%%u Info { rx=%u max=%u rwin=%u jm=%u }",
sp->hdr.serial,
ntohl(ackinfo->rxMTU), ntohl(ackinfo->maxMTU),
rwind, ntohl(ackinfo->jumbo_max));
if (call->tx_winsize != rwind) {
if (rwind > RXRPC_RXTX_BUFF_SIZE - 1)
rwind = RXRPC_RXTX_BUFF_SIZE - 1;
if (rwind > call->tx_winsize)
wake = true;
trace_rxrpc_rx_rwind_change(call, sp->hdr.serial,
ntohl(ackinfo->rwind), wake);
call->tx_winsize = rwind;
}
if (call->cong_ssthresh > rwind)
call->cong_ssthresh = rwind;
mtu = min(ntohl(ackinfo->rxMTU), ntohl(ackinfo->maxMTU));
peer = call->peer;
if (mtu < peer->maxdata) {
spin_lock_bh(&peer->lock);
peer->maxdata = mtu;
peer->mtu = mtu + peer->hdrsize;
spin_unlock_bh(&peer->lock);
_net("Net MTU %u (maxdata %u)", peer->mtu, peer->maxdata);
}
if (wake)
wake_up(&call->waitq);
}
/*
* Process individual soft ACKs.
*
* Each ACK in the array corresponds to one packet and can be either an ACK or
* a NAK. If we get find an explicitly NAK'd packet we resend immediately;
* packets that lie beyond the end of the ACK list are scheduled for resend by
* the timer on the basis that the peer might just not have processed them at
* the time the ACK was sent.
*/
static void rxrpc_input_soft_acks(struct rxrpc_call *call, u8 *acks,
rxrpc_seq_t seq, int nr_acks,
struct rxrpc_ack_summary *summary)
{
int ix;
u8 annotation, anno_type;
for (; nr_acks > 0; nr_acks--, seq++) {
ix = seq & RXRPC_RXTX_BUFF_MASK;
annotation = call->rxtx_annotations[ix];
anno_type = annotation & RXRPC_TX_ANNO_MASK;
annotation &= ~RXRPC_TX_ANNO_MASK;
switch (*acks++) {
case RXRPC_ACK_TYPE_ACK:
summary->nr_acks++;
if (anno_type == RXRPC_TX_ANNO_ACK)
continue;
summary->nr_new_acks++;
call->rxtx_annotations[ix] =
RXRPC_TX_ANNO_ACK | annotation;
break;
case RXRPC_ACK_TYPE_NACK:
if (!summary->nr_nacks &&
call->acks_lowest_nak != seq) {
call->acks_lowest_nak = seq;
summary->new_low_nack = true;
}
summary->nr_nacks++;
if (anno_type == RXRPC_TX_ANNO_NAK)
continue;
summary->nr_new_nacks++;
if (anno_type == RXRPC_TX_ANNO_RETRANS)
continue;
call->rxtx_annotations[ix] =
RXRPC_TX_ANNO_NAK | annotation;
break;
default:
return rxrpc_proto_abort("SFT", call, 0);
}
}
}
/*
* Process an ACK packet.
*
* ack.firstPacket is the sequence number of the first soft-ACK'd/NAK'd packet
* in the ACK array. Anything before that is hard-ACK'd and may be discarded.
*
* A hard-ACK means that a packet has been processed and may be discarded; a
* soft-ACK means that the packet may be discarded and retransmission
* requested. A phase is complete when all packets are hard-ACK'd.
*/
static void rxrpc_input_ack(struct rxrpc_call *call, struct sk_buff *skb,
u16 skew)
{
struct rxrpc_ack_summary summary = { 0 };
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
union {
struct rxrpc_ackpacket ack;
struct rxrpc_ackinfo info;
u8 acks[RXRPC_MAXACKS];
} buf;
rxrpc_serial_t acked_serial;
rxrpc_seq_t first_soft_ack, hard_ack;
int nr_acks, offset, ioffset;
_enter("");
offset = sizeof(struct rxrpc_wire_header);
if (skb_copy_bits(skb, offset, &buf.ack, sizeof(buf.ack)) < 0) {
_debug("extraction failure");
return rxrpc_proto_abort("XAK", call, 0);
}
offset += sizeof(buf.ack);
acked_serial = ntohl(buf.ack.serial);
first_soft_ack = ntohl(buf.ack.firstPacket);
hard_ack = first_soft_ack - 1;
nr_acks = buf.ack.nAcks;
summary.ack_reason = (buf.ack.reason < RXRPC_ACK__INVALID ?
buf.ack.reason : RXRPC_ACK__INVALID);
trace_rxrpc_rx_ack(call, sp->hdr.serial, acked_serial,
first_soft_ack, ntohl(buf.ack.previousPacket),
summary.ack_reason, nr_acks);
if (buf.ack.reason == RXRPC_ACK_PING_RESPONSE)
rxrpc_input_ping_response(call, skb->tstamp, acked_serial,
sp->hdr.serial);
if (buf.ack.reason == RXRPC_ACK_REQUESTED)
rxrpc_input_requested_ack(call, skb->tstamp, acked_serial,
sp->hdr.serial);
if (buf.ack.reason == RXRPC_ACK_PING) {
_proto("Rx ACK %%%u PING Request", sp->hdr.serial);
rxrpc_propose_ACK(call, RXRPC_ACK_PING_RESPONSE,
skew, sp->hdr.serial, true, true,
rxrpc_propose_ack_respond_to_ping);
} else if (sp->hdr.flags & RXRPC_REQUEST_ACK) {
rxrpc_propose_ACK(call, RXRPC_ACK_REQUESTED,
skew, sp->hdr.serial, true, true,
rxrpc_propose_ack_respond_to_ack);
}
/* Discard any out-of-order or duplicate ACKs. */
if (before_eq(sp->hdr.serial, call->acks_latest))
return;
buf.info.rxMTU = 0;
ioffset = offset + nr_acks + 3;
if (skb->len >= ioffset + sizeof(buf.info) &&
skb_copy_bits(skb, ioffset, &buf.info, sizeof(buf.info)) < 0)
return rxrpc_proto_abort("XAI", call, 0);
spin_lock(&call->input_lock);
/* Discard any out-of-order or duplicate ACKs. */
if (before_eq(sp->hdr.serial, call->acks_latest))
goto out;
call->acks_latest_ts = skb->tstamp;
call->acks_latest = sp->hdr.serial;
/* Parse rwind and mtu sizes if provided. */
if (buf.info.rxMTU)
rxrpc_input_ackinfo(call, skb, &buf.info);
if (first_soft_ack == 0) {
rxrpc_proto_abort("AK0", call, 0);
goto out;
}
/* Ignore ACKs unless we are or have just been transmitting. */
switch (READ_ONCE(call->state)) {
case RXRPC_CALL_CLIENT_SEND_REQUEST:
case RXRPC_CALL_CLIENT_AWAIT_REPLY:
case RXRPC_CALL_SERVER_SEND_REPLY:
case RXRPC_CALL_SERVER_AWAIT_ACK:
break;
default:
goto out;
}
if (before(hard_ack, call->tx_hard_ack) ||
after(hard_ack, call->tx_top)) {
rxrpc_proto_abort("AKW", call, 0);
goto out;
}
if (nr_acks > call->tx_top - hard_ack) {
rxrpc_proto_abort("AKN", call, 0);
goto out;
}
if (after(hard_ack, call->tx_hard_ack)) {
if (rxrpc_rotate_tx_window(call, hard_ack, &summary)) {
rxrpc_end_tx_phase(call, false, "ETA");
goto out;
}
}
if (nr_acks > 0) {
if (skb_copy_bits(skb, offset, buf.acks, nr_acks) < 0) {
rxrpc_proto_abort("XSA", call, 0);
goto out;
}
rxrpc_input_soft_acks(call, buf.acks, first_soft_ack, nr_acks,
&summary);
}
if (call->rxtx_annotations[call->tx_top & RXRPC_RXTX_BUFF_MASK] &
RXRPC_TX_ANNO_LAST &&
summary.nr_acks == call->tx_top - hard_ack &&
rxrpc_is_client_call(call))
rxrpc_propose_ACK(call, RXRPC_ACK_PING, skew, sp->hdr.serial,
false, true,
rxrpc_propose_ack_ping_for_lost_reply);
rxrpc_congestion_management(call, skb, &summary, acked_serial);
out:
spin_unlock(&call->input_lock);
}
/*
* Process an ACKALL packet.
*/
static void rxrpc_input_ackall(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_ack_summary summary = { 0 };
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
_proto("Rx ACKALL %%%u", sp->hdr.serial);
spin_lock(&call->input_lock);
if (rxrpc_rotate_tx_window(call, call->tx_top, &summary))
rxrpc_end_tx_phase(call, false, "ETL");
spin_unlock(&call->input_lock);
}
/*
* Process an ABORT packet directed at a call.
*/
static void rxrpc_input_abort(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
__be32 wtmp;
u32 abort_code = RX_CALL_DEAD;
_enter("");
if (skb->len >= 4 &&
skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
&wtmp, sizeof(wtmp)) >= 0)
abort_code = ntohl(wtmp);
trace_rxrpc_rx_abort(call, sp->hdr.serial, abort_code);
_proto("Rx ABORT %%%u { %x }", sp->hdr.serial, abort_code);
if (rxrpc_set_call_completion(call, RXRPC_CALL_REMOTELY_ABORTED,
abort_code, -ECONNABORTED))
rxrpc_notify_socket(call);
}
/*
* Process an incoming call packet.
*/
static void rxrpc_input_call_packet(struct rxrpc_call *call,
struct sk_buff *skb, u16 skew)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
unsigned long timo;
_enter("%p,%p", call, skb);
timo = READ_ONCE(call->next_rx_timo);
if (timo) {
unsigned long now = jiffies, expect_rx_by;
expect_rx_by = now + timo;
WRITE_ONCE(call->expect_rx_by, expect_rx_by);
rxrpc_reduce_call_timer(call, expect_rx_by, now,
rxrpc_timer_set_for_normal);
}
switch (sp->hdr.type) {
case RXRPC_PACKET_TYPE_DATA:
rxrpc_input_data(call, skb, skew);
break;
case RXRPC_PACKET_TYPE_ACK:
rxrpc_input_ack(call, skb, skew);
break;
case RXRPC_PACKET_TYPE_BUSY:
_proto("Rx BUSY %%%u", sp->hdr.serial);
/* Just ignore BUSY packets from the server; the retry and
* lifespan timers will take care of business. BUSY packets
* from the client don't make sense.
*/
break;
case RXRPC_PACKET_TYPE_ABORT:
rxrpc_input_abort(call, skb);
break;
case RXRPC_PACKET_TYPE_ACKALL:
rxrpc_input_ackall(call, skb);
break;
default:
break;
}
_leave("");
}
/*
* Handle a new service call on a channel implicitly completing the preceding
* call on that channel. This does not apply to client conns.
*
* TODO: If callNumber > call_id + 1, renegotiate security.
*/
static void rxrpc_input_implicit_end_call(struct rxrpc_sock *rx,
struct rxrpc_connection *conn,
struct rxrpc_call *call)
{
switch (READ_ONCE(call->state)) {
case RXRPC_CALL_SERVER_AWAIT_ACK:
rxrpc_call_completed(call);
/* Fall through */
case RXRPC_CALL_COMPLETE:
break;
default:
if (rxrpc_abort_call("IMP", call, 0, RX_CALL_DEAD, -ESHUTDOWN)) {
set_bit(RXRPC_CALL_EV_ABORT, &call->events);
rxrpc_queue_call(call);
}
trace_rxrpc_improper_term(call);
break;
}
spin_lock(&rx->incoming_lock);
__rxrpc_disconnect_call(conn, call);
spin_unlock(&rx->incoming_lock);
rxrpc_notify_socket(call);
}
/*
* post connection-level events to the connection
* - this includes challenges, responses, some aborts and call terminal packet
* retransmission.
*/
static void rxrpc_post_packet_to_conn(struct rxrpc_connection *conn,
struct sk_buff *skb)
{
_enter("%p,%p", conn, skb);
skb_queue_tail(&conn->rx_queue, skb);
rxrpc_queue_conn(conn);
}
/*
* post endpoint-level events to the local endpoint
* - this includes debug and version messages
*/
static void rxrpc_post_packet_to_local(struct rxrpc_local *local,
struct sk_buff *skb)
{
_enter("%p,%p", local, skb);
skb_queue_tail(&local->event_queue, skb);
rxrpc_queue_local(local);
}
/*
* put a packet up for transport-level abort
*/
static void rxrpc_reject_packet(struct rxrpc_local *local, struct sk_buff *skb)
{
CHECK_SLAB_OKAY(&local->usage);
skb_queue_tail(&local->reject_queue, skb);
rxrpc_queue_local(local);
}
/*
* Extract the wire header from a packet and translate the byte order.
*/
static noinline
int rxrpc_extract_header(struct rxrpc_skb_priv *sp, struct sk_buff *skb)
{
struct rxrpc_wire_header whdr;
/* dig out the RxRPC connection details */
if (skb_copy_bits(skb, 0, &whdr, sizeof(whdr)) < 0) {
trace_rxrpc_rx_eproto(NULL, sp->hdr.serial,
tracepoint_string("bad_hdr"));
return -EBADMSG;
}
memset(sp, 0, sizeof(*sp));
sp->hdr.epoch = ntohl(whdr.epoch);
sp->hdr.cid = ntohl(whdr.cid);
sp->hdr.callNumber = ntohl(whdr.callNumber);
sp->hdr.seq = ntohl(whdr.seq);
sp->hdr.serial = ntohl(whdr.serial);
sp->hdr.flags = whdr.flags;
sp->hdr.type = whdr.type;
sp->hdr.userStatus = whdr.userStatus;
sp->hdr.securityIndex = whdr.securityIndex;
sp->hdr._rsvd = ntohs(whdr._rsvd);
sp->hdr.serviceId = ntohs(whdr.serviceId);
return 0;
}
/*
* handle data received on the local endpoint
* - may be called in interrupt context
*
* The socket is locked by the caller and this prevents the socket from being
* shut down and the local endpoint from going away, thus sk_user_data will not
* be cleared until this function returns.
*
* Called with the RCU read lock held from the IP layer via UDP.
*/
int rxrpc_input_packet(struct sock *udp_sk, struct sk_buff *skb)
{
struct rxrpc_connection *conn;
struct rxrpc_channel *chan;
struct rxrpc_call *call = NULL;
struct rxrpc_skb_priv *sp;
struct rxrpc_local *local = udp_sk->sk_user_data;
struct rxrpc_peer *peer = NULL;
struct rxrpc_sock *rx = NULL;
unsigned int channel;
int skew = 0;
_enter("%p", udp_sk);
if (skb->tstamp == 0)
skb->tstamp = ktime_get_real();
rxrpc_new_skb(skb, rxrpc_skb_rx_received);
skb_pull(skb, sizeof(struct udphdr));
/* The UDP protocol already released all skb resources;
* we are free to add our own data there.
*/
sp = rxrpc_skb(skb);
/* dig out the RxRPC connection details */
if (rxrpc_extract_header(sp, skb) < 0)
goto bad_message;
if (IS_ENABLED(CONFIG_AF_RXRPC_INJECT_LOSS)) {
static int lose;
if ((lose++ & 7) == 7) {
trace_rxrpc_rx_lose(sp);
rxrpc_free_skb(skb, rxrpc_skb_rx_lost);
return 0;
}
}
if (skb->tstamp == 0)
skb->tstamp = ktime_get_real();
trace_rxrpc_rx_packet(sp);
switch (sp->hdr.type) {
case RXRPC_PACKET_TYPE_VERSION:
if (rxrpc_to_client(sp))
goto discard;
rxrpc_post_packet_to_local(local, skb);
goto out;
case RXRPC_PACKET_TYPE_BUSY:
if (rxrpc_to_server(sp))
goto discard;
/* Fall through */
case RXRPC_PACKET_TYPE_ACK:
case RXRPC_PACKET_TYPE_ACKALL:
if (sp->hdr.callNumber == 0)
goto bad_message;
/* Fall through */
case RXRPC_PACKET_TYPE_ABORT:
break;
case RXRPC_PACKET_TYPE_DATA:
if (sp->hdr.callNumber == 0 ||
sp->hdr.seq == 0)
goto bad_message;
if (sp->hdr.flags & RXRPC_JUMBO_PACKET &&
!rxrpc_validate_jumbo(skb))
goto bad_message;
break;
case RXRPC_PACKET_TYPE_CHALLENGE:
if (rxrpc_to_server(sp))
goto discard;
break;
case RXRPC_PACKET_TYPE_RESPONSE:
if (rxrpc_to_client(sp))
goto discard;
break;
/* Packet types 9-11 should just be ignored. */
case RXRPC_PACKET_TYPE_PARAMS:
case RXRPC_PACKET_TYPE_10:
case RXRPC_PACKET_TYPE_11:
goto discard;
default:
_proto("Rx Bad Packet Type %u", sp->hdr.type);
goto bad_message;
}
if (sp->hdr.serviceId == 0)
goto bad_message;
if (rxrpc_to_server(sp)) {
/* Weed out packets to services we're not offering. Packets
* that would begin a call are explicitly rejected and the rest
* are just discarded.
*/
rx = rcu_dereference(local->service);
if (!rx || (sp->hdr.serviceId != rx->srx.srx_service &&
sp->hdr.serviceId != rx->second_service)) {
if (sp->hdr.type == RXRPC_PACKET_TYPE_DATA &&
sp->hdr.seq == 1)
goto unsupported_service;
goto discard;
}
}
conn = rxrpc_find_connection_rcu(local, skb, &peer);
if (conn) {
if (sp->hdr.securityIndex != conn->security_ix)
goto wrong_security;
if (sp->hdr.serviceId != conn->service_id) {
int old_id;
if (!test_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags))
goto reupgrade;
old_id = cmpxchg(&conn->service_id, conn->params.service_id,
sp->hdr.serviceId);
if (old_id != conn->params.service_id &&
old_id != sp->hdr.serviceId)
goto reupgrade;
}
if (sp->hdr.callNumber == 0) {
/* Connection-level packet */
_debug("CONN %p {%d}", conn, conn->debug_id);
rxrpc_post_packet_to_conn(conn, skb);
goto out;
}
/* Note the serial number skew here */
skew = (int)sp->hdr.serial - (int)conn->hi_serial;
if (skew >= 0) {
if (skew > 0)
conn->hi_serial = sp->hdr.serial;
} else {
skew = -skew;
skew = min(skew, 65535);
}
/* Call-bound packets are routed by connection channel. */
channel = sp->hdr.cid & RXRPC_CHANNELMASK;
chan = &conn->channels[channel];
/* Ignore really old calls */
if (sp->hdr.callNumber < chan->last_call)
goto discard;
if (sp->hdr.callNumber == chan->last_call) {
if (chan->call ||
sp->hdr.type == RXRPC_PACKET_TYPE_ABORT)
goto discard;
/* For the previous service call, if completed
* successfully, we discard all further packets.
*/
if (rxrpc_conn_is_service(conn) &&
chan->last_type == RXRPC_PACKET_TYPE_ACK)
goto discard;
/* But otherwise we need to retransmit the final packet
* from data cached in the connection record.
*/
if (sp->hdr.type == RXRPC_PACKET_TYPE_DATA)
trace_rxrpc_rx_data(chan->call_debug_id,
sp->hdr.seq,
sp->hdr.serial,
sp->hdr.flags, 0);
rxrpc_post_packet_to_conn(conn, skb);
goto out;
}
call = rcu_dereference(chan->call);
if (sp->hdr.callNumber > chan->call_id) {
if (rxrpc_to_client(sp))
goto reject_packet;
if (call)
rxrpc_input_implicit_end_call(rx, conn, call);
call = NULL;
}
if (call) {
if (sp->hdr.serviceId != call->service_id)
call->service_id = sp->hdr.serviceId;
if ((int)sp->hdr.serial - (int)call->rx_serial > 0)
call->rx_serial = sp->hdr.serial;
if (!test_bit(RXRPC_CALL_RX_HEARD, &call->flags))
set_bit(RXRPC_CALL_RX_HEARD, &call->flags);
}
}
if (!call || atomic_read(&call->usage) == 0) {
if (rxrpc_to_client(sp) ||
sp->hdr.type != RXRPC_PACKET_TYPE_DATA)
goto bad_message;
if (sp->hdr.seq != 1)
goto discard;
call = rxrpc_new_incoming_call(local, rx, skb);
if (!call)
goto reject_packet;
rxrpc_send_ping(call, skb, skew);
mutex_unlock(&call->user_mutex);
}
rxrpc_input_call_packet(call, skb, skew);
goto discard;
discard:
rxrpc_free_skb(skb, rxrpc_skb_rx_freed);
out:
trace_rxrpc_rx_done(0, 0);
return 0;
wrong_security:
trace_rxrpc_abort(0, "SEC", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RXKADINCONSISTENCY, EBADMSG);
skb->priority = RXKADINCONSISTENCY;
goto post_abort;
unsupported_service:
trace_rxrpc_abort(0, "INV", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_INVALID_OPERATION, EOPNOTSUPP);
skb->priority = RX_INVALID_OPERATION;
goto post_abort;
reupgrade:
trace_rxrpc_abort(0, "UPG", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_PROTOCOL_ERROR, EBADMSG);
goto protocol_error;
bad_message:
trace_rxrpc_abort(0, "BAD", sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
RX_PROTOCOL_ERROR, EBADMSG);
protocol_error:
skb->priority = RX_PROTOCOL_ERROR;
post_abort:
skb->mark = RXRPC_SKB_MARK_REJECT_ABORT;
reject_packet:
trace_rxrpc_rx_done(skb->mark, skb->priority);
rxrpc_reject_packet(local, skb);
_leave(" [badmsg]");
return 0;
}