linux-stable/net/ipv4/tcp_ao.c

2388 lines
63 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP Authentication Option (TCP-AO).
* See RFC5925.
*
* Authors: Dmitry Safonov <dima@arista.com>
* Francesco Ruggeri <fruggeri@arista.com>
* Salam Noureddine <noureddine@arista.com>
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <crypto/hash.h>
#include <linux/inetdevice.h>
#include <linux/tcp.h>
#include <net/tcp.h>
#include <net/ipv6.h>
#include <net/icmp.h>
DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ);
int tcp_ao_calc_traffic_key(struct tcp_ao_key *mkt, u8 *key, void *ctx,
unsigned int len, struct tcp_sigpool *hp)
{
struct scatterlist sg;
int ret;
if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp->req),
mkt->key, mkt->keylen))
goto clear_hash;
ret = crypto_ahash_init(hp->req);
if (ret)
goto clear_hash;
sg_init_one(&sg, ctx, len);
ahash_request_set_crypt(hp->req, &sg, key, len);
crypto_ahash_update(hp->req);
ret = crypto_ahash_final(hp->req);
if (ret)
goto clear_hash;
return 0;
clear_hash:
memset(key, 0, tcp_ao_digest_size(mkt));
return 1;
}
bool tcp_ao_ignore_icmp(const struct sock *sk, int family, int type, int code)
{
bool ignore_icmp = false;
struct tcp_ao_info *ao;
if (!static_branch_unlikely(&tcp_ao_needed.key))
return false;
/* RFC5925, 7.8:
* >> A TCP-AO implementation MUST default to ignore incoming ICMPv4
* messages of Type 3 (destination unreachable), Codes 2-4 (protocol
* unreachable, port unreachable, and fragmentation needed -- hard
* errors), and ICMPv6 Type 1 (destination unreachable), Code 1
* (administratively prohibited) and Code 4 (port unreachable) intended
* for connections in synchronized states (ESTABLISHED, FIN-WAIT-1, FIN-
* WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT) that match MKTs.
*/
if (family == AF_INET) {
if (type != ICMP_DEST_UNREACH)
return false;
if (code < ICMP_PROT_UNREACH || code > ICMP_FRAG_NEEDED)
return false;
} else {
if (type != ICMPV6_DEST_UNREACH)
return false;
if (code != ICMPV6_ADM_PROHIBITED && code != ICMPV6_PORT_UNREACH)
return false;
}
rcu_read_lock();
switch (sk->sk_state) {
case TCP_TIME_WAIT:
ao = rcu_dereference(tcp_twsk(sk)->ao_info);
break;
case TCP_SYN_SENT:
case TCP_SYN_RECV:
case TCP_LISTEN:
case TCP_NEW_SYN_RECV:
/* RFC5925 specifies to ignore ICMPs *only* on connections
* in synchronized states.
*/
rcu_read_unlock();
return false;
default:
ao = rcu_dereference(tcp_sk(sk)->ao_info);
}
if (ao && !ao->accept_icmps) {
ignore_icmp = true;
__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAODROPPEDICMPS);
atomic64_inc(&ao->counters.dropped_icmp);
}
rcu_read_unlock();
return ignore_icmp;
}
/* Optimized version of tcp_ao_do_lookup(): only for sockets for which
* it's known that the keys in ao_info are matching peer's
* family/address/VRF/etc.
*/
struct tcp_ao_key *tcp_ao_established_key(struct tcp_ao_info *ao,
int sndid, int rcvid)
{
struct tcp_ao_key *key;
hlist_for_each_entry_rcu(key, &ao->head, node) {
if ((sndid >= 0 && key->sndid != sndid) ||
(rcvid >= 0 && key->rcvid != rcvid))
continue;
return key;
}
return NULL;
}
static int ipv4_prefix_cmp(const struct in_addr *addr1,
const struct in_addr *addr2,
unsigned int prefixlen)
{
__be32 mask = inet_make_mask(prefixlen);
__be32 a1 = addr1->s_addr & mask;
__be32 a2 = addr2->s_addr & mask;
if (a1 == a2)
return 0;
return memcmp(&a1, &a2, sizeof(a1));
}
static int __tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index,
const union tcp_ao_addr *addr, u8 prefixlen,
int family, int sndid, int rcvid)
{
if (sndid >= 0 && key->sndid != sndid)
return (key->sndid > sndid) ? 1 : -1;
if (rcvid >= 0 && key->rcvid != rcvid)
return (key->rcvid > rcvid) ? 1 : -1;
if (l3index >= 0 && (key->keyflags & TCP_AO_KEYF_IFINDEX)) {
if (key->l3index != l3index)
return (key->l3index > l3index) ? 1 : -1;
}
if (family == AF_UNSPEC)
return 0;
if (key->family != family)
return (key->family > family) ? 1 : -1;
if (family == AF_INET) {
if (ntohl(key->addr.a4.s_addr) == INADDR_ANY)
return 0;
if (ntohl(addr->a4.s_addr) == INADDR_ANY)
return 0;
return ipv4_prefix_cmp(&key->addr.a4, &addr->a4, prefixlen);
#if IS_ENABLED(CONFIG_IPV6)
} else {
if (ipv6_addr_any(&key->addr.a6) || ipv6_addr_any(&addr->a6))
return 0;
if (ipv6_prefix_equal(&key->addr.a6, &addr->a6, prefixlen))
return 0;
return memcmp(&key->addr.a6, &addr->a6, sizeof(addr->a6));
#endif
}
return -1;
}
static int tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index,
const union tcp_ao_addr *addr, u8 prefixlen,
int family, int sndid, int rcvid)
{
#if IS_ENABLED(CONFIG_IPV6)
if (family == AF_INET6 && ipv6_addr_v4mapped(&addr->a6)) {
__be32 addr4 = addr->a6.s6_addr32[3];
return __tcp_ao_key_cmp(key, l3index,
(union tcp_ao_addr *)&addr4,
prefixlen, AF_INET, sndid, rcvid);
}
#endif
return __tcp_ao_key_cmp(key, l3index, addr,
prefixlen, family, sndid, rcvid);
}
static struct tcp_ao_key *__tcp_ao_do_lookup(const struct sock *sk, int l3index,
const union tcp_ao_addr *addr, int family, u8 prefix,
int sndid, int rcvid)
{
struct tcp_ao_key *key;
struct tcp_ao_info *ao;
if (!static_branch_unlikely(&tcp_ao_needed.key))
return NULL;
ao = rcu_dereference_check(tcp_sk(sk)->ao_info,
lockdep_sock_is_held(sk));
if (!ao)
return NULL;
hlist_for_each_entry_rcu(key, &ao->head, node) {
u8 prefixlen = min(prefix, key->prefixlen);
if (!tcp_ao_key_cmp(key, l3index, addr, prefixlen,
family, sndid, rcvid))
return key;
}
return NULL;
}
struct tcp_ao_key *tcp_ao_do_lookup(const struct sock *sk, int l3index,
const union tcp_ao_addr *addr,
int family, int sndid, int rcvid)
{
return __tcp_ao_do_lookup(sk, l3index, addr, family, U8_MAX, sndid, rcvid);
}
static struct tcp_ao_info *tcp_ao_alloc_info(gfp_t flags)
{
struct tcp_ao_info *ao;
ao = kzalloc(sizeof(*ao), flags);
if (!ao)
return NULL;
INIT_HLIST_HEAD(&ao->head);
refcount_set(&ao->refcnt, 1);
return ao;
}
static void tcp_ao_link_mkt(struct tcp_ao_info *ao, struct tcp_ao_key *mkt)
{
hlist_add_head_rcu(&mkt->node, &ao->head);
}
static struct tcp_ao_key *tcp_ao_copy_key(struct sock *sk,
struct tcp_ao_key *key)
{
struct tcp_ao_key *new_key;
new_key = sock_kmalloc(sk, tcp_ao_sizeof_key(key),
GFP_ATOMIC);
if (!new_key)
return NULL;
*new_key = *key;
INIT_HLIST_NODE(&new_key->node);
tcp_sigpool_get(new_key->tcp_sigpool_id);
atomic64_set(&new_key->pkt_good, 0);
atomic64_set(&new_key->pkt_bad, 0);
return new_key;
}
static void tcp_ao_key_free_rcu(struct rcu_head *head)
{
struct tcp_ao_key *key = container_of(head, struct tcp_ao_key, rcu);
tcp_sigpool_release(key->tcp_sigpool_id);
kfree_sensitive(key);
}
void tcp_ao_destroy_sock(struct sock *sk, bool twsk)
{
struct tcp_ao_info *ao;
struct tcp_ao_key *key;
struct hlist_node *n;
if (twsk) {
ao = rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1);
tcp_twsk(sk)->ao_info = NULL;
} else {
ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1);
tcp_sk(sk)->ao_info = NULL;
}
if (!ao || !refcount_dec_and_test(&ao->refcnt))
return;
hlist_for_each_entry_safe(key, n, &ao->head, node) {
hlist_del_rcu(&key->node);
if (!twsk)
atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc);
call_rcu(&key->rcu, tcp_ao_key_free_rcu);
}
kfree_rcu(ao, rcu);
static_branch_slow_dec_deferred(&tcp_ao_needed);
}
void tcp_ao_time_wait(struct tcp_timewait_sock *tcptw, struct tcp_sock *tp)
{
struct tcp_ao_info *ao_info = rcu_dereference_protected(tp->ao_info, 1);
if (ao_info) {
struct tcp_ao_key *key;
struct hlist_node *n;
int omem = 0;
hlist_for_each_entry_safe(key, n, &ao_info->head, node) {
omem += tcp_ao_sizeof_key(key);
}
refcount_inc(&ao_info->refcnt);
atomic_sub(omem, &(((struct sock *)tp)->sk_omem_alloc));
rcu_assign_pointer(tcptw->ao_info, ao_info);
} else {
tcptw->ao_info = NULL;
}
}
/* 4 tuple and ISNs are expected in NBO */
static int tcp_v4_ao_calc_key(struct tcp_ao_key *mkt, u8 *key,
__be32 saddr, __be32 daddr,
__be16 sport, __be16 dport,
__be32 sisn, __be32 disn)
{
/* See RFC5926 3.1.1 */
struct kdf_input_block {
u8 counter;
u8 label[6];
struct tcp4_ao_context ctx;
__be16 outlen;
} __packed * tmp;
struct tcp_sigpool hp;
int err;
err = tcp_sigpool_start(mkt->tcp_sigpool_id, &hp);
if (err)
return err;
tmp = hp.scratch;
tmp->counter = 1;
memcpy(tmp->label, "TCP-AO", 6);
tmp->ctx.saddr = saddr;
tmp->ctx.daddr = daddr;
tmp->ctx.sport = sport;
tmp->ctx.dport = dport;
tmp->ctx.sisn = sisn;
tmp->ctx.disn = disn;
tmp->outlen = htons(tcp_ao_digest_size(mkt) * 8); /* in bits */
err = tcp_ao_calc_traffic_key(mkt, key, tmp, sizeof(*tmp), &hp);
tcp_sigpool_end(&hp);
return err;
}
int tcp_v4_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key,
const struct sock *sk,
__be32 sisn, __be32 disn, bool send)
{
if (send)
return tcp_v4_ao_calc_key(mkt, key, sk->sk_rcv_saddr,
sk->sk_daddr, htons(sk->sk_num),
sk->sk_dport, sisn, disn);
else
return tcp_v4_ao_calc_key(mkt, key, sk->sk_daddr,
sk->sk_rcv_saddr, sk->sk_dport,
htons(sk->sk_num), disn, sisn);
}
static int tcp_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key,
const struct sock *sk,
__be32 sisn, __be32 disn, bool send)
{
if (mkt->family == AF_INET)
return tcp_v4_ao_calc_key_sk(mkt, key, sk, sisn, disn, send);
#if IS_ENABLED(CONFIG_IPV6)
else if (mkt->family == AF_INET6)
return tcp_v6_ao_calc_key_sk(mkt, key, sk, sisn, disn, send);
#endif
else
return -EOPNOTSUPP;
}
int tcp_v4_ao_calc_key_rsk(struct tcp_ao_key *mkt, u8 *key,
struct request_sock *req)
{
struct inet_request_sock *ireq = inet_rsk(req);
return tcp_v4_ao_calc_key(mkt, key,
ireq->ir_loc_addr, ireq->ir_rmt_addr,
htons(ireq->ir_num), ireq->ir_rmt_port,
htonl(tcp_rsk(req)->snt_isn),
htonl(tcp_rsk(req)->rcv_isn));
}
static int tcp_v4_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key,
const struct sk_buff *skb,
__be32 sisn, __be32 disn)
{
const struct iphdr *iph = ip_hdr(skb);
const struct tcphdr *th = tcp_hdr(skb);
return tcp_v4_ao_calc_key(mkt, key, iph->saddr, iph->daddr,
th->source, th->dest, sisn, disn);
}
static int tcp_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key,
const struct sk_buff *skb,
__be32 sisn, __be32 disn, int family)
{
if (family == AF_INET)
return tcp_v4_ao_calc_key_skb(mkt, key, skb, sisn, disn);
#if IS_ENABLED(CONFIG_IPV6)
else if (family == AF_INET6)
return tcp_v6_ao_calc_key_skb(mkt, key, skb, sisn, disn);
#endif
return -EAFNOSUPPORT;
}
static int tcp_v4_ao_hash_pseudoheader(struct tcp_sigpool *hp,
__be32 daddr, __be32 saddr,
int nbytes)
{
struct tcp4_pseudohdr *bp;
struct scatterlist sg;
bp = hp->scratch;
bp->saddr = saddr;
bp->daddr = daddr;
bp->pad = 0;
bp->protocol = IPPROTO_TCP;
bp->len = cpu_to_be16(nbytes);
sg_init_one(&sg, bp, sizeof(*bp));
ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp));
return crypto_ahash_update(hp->req);
}
static int tcp_ao_hash_pseudoheader(unsigned short int family,
const struct sock *sk,
const struct sk_buff *skb,
struct tcp_sigpool *hp, int nbytes)
{
const struct tcphdr *th = tcp_hdr(skb);
/* TODO: Can we rely on checksum being zero to mean outbound pkt? */
if (!th->check) {
if (family == AF_INET)
return tcp_v4_ao_hash_pseudoheader(hp, sk->sk_daddr,
sk->sk_rcv_saddr, skb->len);
#if IS_ENABLED(CONFIG_IPV6)
else if (family == AF_INET6)
return tcp_v6_ao_hash_pseudoheader(hp, &sk->sk_v6_daddr,
&sk->sk_v6_rcv_saddr, skb->len);
#endif
else
return -EAFNOSUPPORT;
}
if (family == AF_INET) {
const struct iphdr *iph = ip_hdr(skb);
return tcp_v4_ao_hash_pseudoheader(hp, iph->daddr,
iph->saddr, skb->len);
#if IS_ENABLED(CONFIG_IPV6)
} else if (family == AF_INET6) {
const struct ipv6hdr *iph = ipv6_hdr(skb);
return tcp_v6_ao_hash_pseudoheader(hp, &iph->daddr,
&iph->saddr, skb->len);
#endif
}
return -EAFNOSUPPORT;
}
u32 tcp_ao_compute_sne(u32 next_sne, u32 next_seq, u32 seq)
{
u32 sne = next_sne;
if (before(seq, next_seq)) {
if (seq > next_seq)
sne--;
} else {
if (seq < next_seq)
sne++;
}
return sne;
}
/* tcp_ao_hash_sne(struct tcp_sigpool *hp)
* @hp - used for hashing
* @sne - sne value
*/
static int tcp_ao_hash_sne(struct tcp_sigpool *hp, u32 sne)
{
struct scatterlist sg;
__be32 *bp;
bp = (__be32 *)hp->scratch;
*bp = htonl(sne);
sg_init_one(&sg, bp, sizeof(*bp));
ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp));
return crypto_ahash_update(hp->req);
}
static int tcp_ao_hash_header(struct tcp_sigpool *hp,
const struct tcphdr *th,
bool exclude_options, u8 *hash,
int hash_offset, int hash_len)
{
int err, len = th->doff << 2;
struct scatterlist sg;
u8 *hdr = hp->scratch;
/* We are not allowed to change tcphdr, make a local copy */
if (exclude_options) {
len = sizeof(*th) + sizeof(struct tcp_ao_hdr) + hash_len;
memcpy(hdr, th, sizeof(*th));
memcpy(hdr + sizeof(*th),
(u8 *)th + hash_offset - sizeof(struct tcp_ao_hdr),
sizeof(struct tcp_ao_hdr));
memset(hdr + sizeof(*th) + sizeof(struct tcp_ao_hdr),
0, hash_len);
((struct tcphdr *)hdr)->check = 0;
} else {
len = th->doff << 2;
memcpy(hdr, th, len);
/* zero out tcp-ao hash */
((struct tcphdr *)hdr)->check = 0;
memset(hdr + hash_offset, 0, hash_len);
}
sg_init_one(&sg, hdr, len);
ahash_request_set_crypt(hp->req, &sg, NULL, len);
err = crypto_ahash_update(hp->req);
WARN_ON_ONCE(err != 0);
return err;
}
int tcp_ao_hash_hdr(unsigned short int family, char *ao_hash,
struct tcp_ao_key *key, const u8 *tkey,
const union tcp_ao_addr *daddr,
const union tcp_ao_addr *saddr,
const struct tcphdr *th, u32 sne)
{
int tkey_len = tcp_ao_digest_size(key);
int hash_offset = ao_hash - (char *)th;
struct tcp_sigpool hp;
void *hash_buf = NULL;
hash_buf = kmalloc(tkey_len, GFP_ATOMIC);
if (!hash_buf)
goto clear_hash_noput;
if (tcp_sigpool_start(key->tcp_sigpool_id, &hp))
goto clear_hash_noput;
if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len))
goto clear_hash;
if (crypto_ahash_init(hp.req))
goto clear_hash;
if (tcp_ao_hash_sne(&hp, sne))
goto clear_hash;
if (family == AF_INET) {
if (tcp_v4_ao_hash_pseudoheader(&hp, daddr->a4.s_addr,
saddr->a4.s_addr, th->doff * 4))
goto clear_hash;
#if IS_ENABLED(CONFIG_IPV6)
} else if (family == AF_INET6) {
if (tcp_v6_ao_hash_pseudoheader(&hp, &daddr->a6,
&saddr->a6, th->doff * 4))
goto clear_hash;
#endif
} else {
WARN_ON_ONCE(1);
goto clear_hash;
}
if (tcp_ao_hash_header(&hp, th,
!!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT),
ao_hash, hash_offset, tcp_ao_maclen(key)))
goto clear_hash;
ahash_request_set_crypt(hp.req, NULL, hash_buf, 0);
if (crypto_ahash_final(hp.req))
goto clear_hash;
memcpy(ao_hash, hash_buf, tcp_ao_maclen(key));
tcp_sigpool_end(&hp);
kfree(hash_buf);
return 0;
clear_hash:
tcp_sigpool_end(&hp);
clear_hash_noput:
memset(ao_hash, 0, tcp_ao_maclen(key));
kfree(hash_buf);
return 1;
}
int tcp_ao_hash_skb(unsigned short int family,
char *ao_hash, struct tcp_ao_key *key,
const struct sock *sk, const struct sk_buff *skb,
const u8 *tkey, int hash_offset, u32 sne)
{
const struct tcphdr *th = tcp_hdr(skb);
int tkey_len = tcp_ao_digest_size(key);
struct tcp_sigpool hp;
void *hash_buf = NULL;
hash_buf = kmalloc(tkey_len, GFP_ATOMIC);
if (!hash_buf)
goto clear_hash_noput;
if (tcp_sigpool_start(key->tcp_sigpool_id, &hp))
goto clear_hash_noput;
if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len))
goto clear_hash;
/* For now use sha1 by default. Depends on alg in tcp_ao_key */
if (crypto_ahash_init(hp.req))
goto clear_hash;
if (tcp_ao_hash_sne(&hp, sne))
goto clear_hash;
if (tcp_ao_hash_pseudoheader(family, sk, skb, &hp, skb->len))
goto clear_hash;
if (tcp_ao_hash_header(&hp, th,
!!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT),
ao_hash, hash_offset, tcp_ao_maclen(key)))
goto clear_hash;
if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
goto clear_hash;
ahash_request_set_crypt(hp.req, NULL, hash_buf, 0);
if (crypto_ahash_final(hp.req))
goto clear_hash;
memcpy(ao_hash, hash_buf, tcp_ao_maclen(key));
tcp_sigpool_end(&hp);
kfree(hash_buf);
return 0;
clear_hash:
tcp_sigpool_end(&hp);
clear_hash_noput:
memset(ao_hash, 0, tcp_ao_maclen(key));
kfree(hash_buf);
return 1;
}
int tcp_v4_ao_hash_skb(char *ao_hash, struct tcp_ao_key *key,
const struct sock *sk, const struct sk_buff *skb,
const u8 *tkey, int hash_offset, u32 sne)
{
return tcp_ao_hash_skb(AF_INET, ao_hash, key, sk, skb,
tkey, hash_offset, sne);
}
int tcp_v4_ao_synack_hash(char *ao_hash, struct tcp_ao_key *ao_key,
struct request_sock *req, const struct sk_buff *skb,
int hash_offset, u32 sne)
{
void *hash_buf = NULL;
int err;
hash_buf = kmalloc(tcp_ao_digest_size(ao_key), GFP_ATOMIC);
if (!hash_buf)
return -ENOMEM;
err = tcp_v4_ao_calc_key_rsk(ao_key, hash_buf, req);
if (err)
goto out;
err = tcp_ao_hash_skb(AF_INET, ao_hash, ao_key, req_to_sk(req), skb,
hash_buf, hash_offset, sne);
out:
kfree(hash_buf);
return err;
}
struct tcp_ao_key *tcp_v4_ao_lookup_rsk(const struct sock *sk,
struct request_sock *req,
int sndid, int rcvid)
{
struct inet_request_sock *ireq = inet_rsk(req);
union tcp_ao_addr *addr = (union tcp_ao_addr *)&ireq->ir_rmt_addr;
int l3index;
l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid);
}
struct tcp_ao_key *tcp_v4_ao_lookup(const struct sock *sk, struct sock *addr_sk,
int sndid, int rcvid)
{
int l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
addr_sk->sk_bound_dev_if);
union tcp_ao_addr *addr = (union tcp_ao_addr *)&addr_sk->sk_daddr;
return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid);
}
int tcp_ao_prepare_reset(const struct sock *sk, struct sk_buff *skb,
const struct tcp_ao_hdr *aoh, int l3index, u32 seq,
struct tcp_ao_key **key, char **traffic_key,
bool *allocated_traffic_key, u8 *keyid, u32 *sne)
{
const struct tcphdr *th = tcp_hdr(skb);
struct tcp_ao_info *ao_info;
*allocated_traffic_key = false;
/* If there's no socket - than initial sisn/disn are unknown.
* Drop the segment. RFC5925 (7.7) advises to require graceful
* restart [RFC4724]. Alternatively, the RFC5925 advises to
* save/restore traffic keys before/after reboot.
* Linux TCP-AO support provides TCP_AO_ADD_KEY and TCP_AO_REPAIR
* options to restore a socket post-reboot.
*/
if (!sk)
return -ENOTCONN;
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) {
unsigned int family = READ_ONCE(sk->sk_family);
union tcp_ao_addr *addr;
__be32 disn, sisn;
if (sk->sk_state == TCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
sisn = htonl(tcp_rsk(req)->rcv_isn);
disn = htonl(tcp_rsk(req)->snt_isn);
*sne = tcp_ao_compute_sne(0, tcp_rsk(req)->snt_isn, seq);
} else {
sisn = th->seq;
disn = 0;
}
if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
addr = (union tcp_md5_addr *)&ipv6_hdr(skb)->saddr;
else
addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
#if IS_ENABLED(CONFIG_IPV6)
if (family == AF_INET6 && ipv6_addr_v4mapped(&sk->sk_v6_daddr))
family = AF_INET;
#endif
sk = sk_const_to_full_sk(sk);
ao_info = rcu_dereference(tcp_sk(sk)->ao_info);
if (!ao_info)
return -ENOENT;
*key = tcp_ao_do_lookup(sk, l3index, addr, family,
-1, aoh->rnext_keyid);
if (!*key)
return -ENOENT;
*traffic_key = kmalloc(tcp_ao_digest_size(*key), GFP_ATOMIC);
if (!*traffic_key)
return -ENOMEM;
*allocated_traffic_key = true;
if (tcp_ao_calc_key_skb(*key, *traffic_key, skb,
sisn, disn, family))
return -1;
*keyid = (*key)->rcvid;
} else {
struct tcp_ao_key *rnext_key;
u32 snd_basis;
if (sk->sk_state == TCP_TIME_WAIT) {
ao_info = rcu_dereference(tcp_twsk(sk)->ao_info);
snd_basis = tcp_twsk(sk)->tw_snd_nxt;
} else {
ao_info = rcu_dereference(tcp_sk(sk)->ao_info);
snd_basis = tcp_sk(sk)->snd_una;
}
if (!ao_info)
return -ENOENT;
*key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
if (!*key)
return -ENOENT;
*traffic_key = snd_other_key(*key);
rnext_key = READ_ONCE(ao_info->rnext_key);
*keyid = rnext_key->rcvid;
*sne = tcp_ao_compute_sne(READ_ONCE(ao_info->snd_sne),
snd_basis, seq);
}
return 0;
}
int tcp_ao_transmit_skb(struct sock *sk, struct sk_buff *skb,
struct tcp_ao_key *key, struct tcphdr *th,
__u8 *hash_location)
{
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_ao_info *ao;
void *tkey_buf = NULL;
u8 *traffic_key;
u32 sne;
ao = rcu_dereference_protected(tcp_sk(sk)->ao_info,
lockdep_sock_is_held(sk));
traffic_key = snd_other_key(key);
if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
__be32 disn;
if (!(tcb->tcp_flags & TCPHDR_ACK)) {
disn = 0;
tkey_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC);
if (!tkey_buf)
return -ENOMEM;
traffic_key = tkey_buf;
} else {
disn = ao->risn;
}
tp->af_specific->ao_calc_key_sk(key, traffic_key,
sk, ao->lisn, disn, true);
}
sne = tcp_ao_compute_sne(READ_ONCE(ao->snd_sne), READ_ONCE(tp->snd_una),
ntohl(th->seq));
tp->af_specific->calc_ao_hash(hash_location, key, sk, skb, traffic_key,
hash_location - (u8 *)th, sne);
kfree(tkey_buf);
return 0;
}
static struct tcp_ao_key *tcp_ao_inbound_lookup(unsigned short int family,
const struct sock *sk, const struct sk_buff *skb,
int sndid, int rcvid, int l3index)
{
if (family == AF_INET) {
const struct iphdr *iph = ip_hdr(skb);
return tcp_ao_do_lookup(sk, l3index,
(union tcp_ao_addr *)&iph->saddr,
AF_INET, sndid, rcvid);
} else {
const struct ipv6hdr *iph = ipv6_hdr(skb);
return tcp_ao_do_lookup(sk, l3index,
(union tcp_ao_addr *)&iph->saddr,
AF_INET6, sndid, rcvid);
}
}
void tcp_ao_syncookie(struct sock *sk, const struct sk_buff *skb,
struct tcp_request_sock *treq,
unsigned short int family, int l3index)
{
const struct tcphdr *th = tcp_hdr(skb);
const struct tcp_ao_hdr *aoh;
struct tcp_ao_key *key;
treq->maclen = 0;
if (tcp_parse_auth_options(th, NULL, &aoh) || !aoh)
return;
key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index);
if (!key)
/* Key not found, continue without TCP-AO */
return;
treq->ao_rcv_next = aoh->keyid;
treq->ao_keyid = aoh->rnext_keyid;
treq->maclen = tcp_ao_maclen(key);
}
static enum skb_drop_reason
tcp_ao_verify_hash(const struct sock *sk, const struct sk_buff *skb,
unsigned short int family, struct tcp_ao_info *info,
const struct tcp_ao_hdr *aoh, struct tcp_ao_key *key,
u8 *traffic_key, u8 *phash, u32 sne, int l3index)
{
u8 maclen = aoh->length - sizeof(struct tcp_ao_hdr);
const struct tcphdr *th = tcp_hdr(skb);
void *hash_buf = NULL;
if (maclen != tcp_ao_maclen(key)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
atomic64_inc(&info->counters.pkt_bad);
atomic64_inc(&key->pkt_bad);
tcp_hash_fail("AO hash wrong length", family, skb,
"%u != %d L3index: %d", maclen,
tcp_ao_maclen(key), l3index);
return SKB_DROP_REASON_TCP_AOFAILURE;
}
hash_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC);
if (!hash_buf)
return SKB_DROP_REASON_NOT_SPECIFIED;
/* XXX: make it per-AF callback? */
tcp_ao_hash_skb(family, hash_buf, key, sk, skb, traffic_key,
(phash - (u8 *)th), sne);
if (memcmp(phash, hash_buf, maclen)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
atomic64_inc(&info->counters.pkt_bad);
atomic64_inc(&key->pkt_bad);
tcp_hash_fail("AO hash mismatch", family, skb,
"L3index: %d", l3index);
kfree(hash_buf);
return SKB_DROP_REASON_TCP_AOFAILURE;
}
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOGOOD);
atomic64_inc(&info->counters.pkt_good);
atomic64_inc(&key->pkt_good);
kfree(hash_buf);
return SKB_NOT_DROPPED_YET;
}
enum skb_drop_reason
tcp_inbound_ao_hash(struct sock *sk, const struct sk_buff *skb,
unsigned short int family, const struct request_sock *req,
int l3index, const struct tcp_ao_hdr *aoh)
{
const struct tcphdr *th = tcp_hdr(skb);
u8 *phash = (u8 *)(aoh + 1); /* hash goes just after the header */
struct tcp_ao_info *info;
enum skb_drop_reason ret;
struct tcp_ao_key *key;
__be32 sisn, disn;
u8 *traffic_key;
u32 sne = 0;
info = rcu_dereference(tcp_sk(sk)->ao_info);
if (!info) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND);
tcp_hash_fail("AO key not found", family, skb,
"keyid: %u L3index: %d", aoh->keyid, l3index);
return SKB_DROP_REASON_TCP_AOUNEXPECTED;
}
if (unlikely(th->syn)) {
sisn = th->seq;
disn = 0;
}
/* Fast-path */
if (likely((1 << sk->sk_state) & TCP_AO_ESTABLISHED)) {
enum skb_drop_reason err;
struct tcp_ao_key *current_key;
/* Check if this socket's rnext_key matches the keyid in the
* packet. If not we lookup the key based on the keyid
* matching the rcvid in the mkt.
*/
key = READ_ONCE(info->rnext_key);
if (key->rcvid != aoh->keyid) {
key = tcp_ao_established_key(info, -1, aoh->keyid);
if (!key)
goto key_not_found;
}
/* Delayed retransmitted SYN */
if (unlikely(th->syn && !th->ack))
goto verify_hash;
sne = tcp_ao_compute_sne(info->rcv_sne, tcp_sk(sk)->rcv_nxt,
ntohl(th->seq));
/* Established socket, traffic key are cached */
traffic_key = rcv_other_key(key);
err = tcp_ao_verify_hash(sk, skb, family, info, aoh, key,
traffic_key, phash, sne, l3index);
if (err)
return err;
current_key = READ_ONCE(info->current_key);
/* Key rotation: the peer asks us to use new key (RNext) */
if (unlikely(aoh->rnext_keyid != current_key->sndid)) {
/* If the key is not found we do nothing. */
key = tcp_ao_established_key(info, aoh->rnext_keyid, -1);
if (key)
/* pairs with tcp_ao_del_cmd */
WRITE_ONCE(info->current_key, key);
}
return SKB_NOT_DROPPED_YET;
}
/* Lookup key based on peer address and keyid.
* current_key and rnext_key must not be used on tcp listen
* sockets as otherwise:
* - request sockets would race on those key pointers
* - tcp_ao_del_cmd() allows async key removal
*/
key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index);
if (!key)
goto key_not_found;
if (th->syn && !th->ack)
goto verify_hash;
if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) {
/* Make the initial syn the likely case here */
if (unlikely(req)) {
sne = tcp_ao_compute_sne(0, tcp_rsk(req)->rcv_isn,
ntohl(th->seq));
sisn = htonl(tcp_rsk(req)->rcv_isn);
disn = htonl(tcp_rsk(req)->snt_isn);
} else if (unlikely(th->ack && !th->syn)) {
/* Possible syncookie packet */
sisn = htonl(ntohl(th->seq) - 1);
disn = htonl(ntohl(th->ack_seq) - 1);
sne = tcp_ao_compute_sne(0, ntohl(sisn),
ntohl(th->seq));
} else if (unlikely(!th->syn)) {
/* no way to figure out initial sisn/disn - drop */
return SKB_DROP_REASON_TCP_FLAGS;
}
} else if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
disn = info->lisn;
if (th->syn || th->rst)
sisn = th->seq;
else
sisn = info->risn;
} else {
WARN_ONCE(1, "TCP-AO: Unexpected sk_state %d", sk->sk_state);
return SKB_DROP_REASON_TCP_AOFAILURE;
}
verify_hash:
traffic_key = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC);
if (!traffic_key)
return SKB_DROP_REASON_NOT_SPECIFIED;
tcp_ao_calc_key_skb(key, traffic_key, skb, sisn, disn, family);
ret = tcp_ao_verify_hash(sk, skb, family, info, aoh, key,
traffic_key, phash, sne, l3index);
kfree(traffic_key);
return ret;
key_not_found:
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND);
atomic64_inc(&info->counters.key_not_found);
tcp_hash_fail("Requested by the peer AO key id not found",
family, skb, "L3index: %d", l3index);
return SKB_DROP_REASON_TCP_AOKEYNOTFOUND;
}
static int tcp_ao_cache_traffic_keys(const struct sock *sk,
struct tcp_ao_info *ao,
struct tcp_ao_key *ao_key)
{
u8 *traffic_key = snd_other_key(ao_key);
int ret;
ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk,
ao->lisn, ao->risn, true);
if (ret)
return ret;
traffic_key = rcv_other_key(ao_key);
ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk,
ao->lisn, ao->risn, false);
return ret;
}
void tcp_ao_connect_init(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_ao_info *ao_info;
union tcp_ao_addr *addr;
struct tcp_ao_key *key;
int family, l3index;
ao_info = rcu_dereference_protected(tp->ao_info,
lockdep_sock_is_held(sk));
if (!ao_info)
return;
/* Remove all keys that don't match the peer */
family = sk->sk_family;
if (family == AF_INET)
addr = (union tcp_ao_addr *)&sk->sk_daddr;
#if IS_ENABLED(CONFIG_IPV6)
else if (family == AF_INET6)
addr = (union tcp_ao_addr *)&sk->sk_v6_daddr;
#endif
else
return;
l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
sk->sk_bound_dev_if);
hlist_for_each_entry_rcu(key, &ao_info->head, node) {
if (!tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1))
continue;
if (key == ao_info->current_key)
ao_info->current_key = NULL;
if (key == ao_info->rnext_key)
ao_info->rnext_key = NULL;
hlist_del_rcu(&key->node);
atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc);
call_rcu(&key->rcu, tcp_ao_key_free_rcu);
}
key = tp->af_specific->ao_lookup(sk, sk, -1, -1);
if (key) {
/* if current_key or rnext_key were not provided,
* use the first key matching the peer
*/
if (!ao_info->current_key)
ao_info->current_key = key;
if (!ao_info->rnext_key)
ao_info->rnext_key = key;
tp->tcp_header_len += tcp_ao_len(key);
ao_info->lisn = htonl(tp->write_seq);
ao_info->snd_sne = 0;
} else {
/* Can't happen: tcp_connect() verifies that there's
* at least one tcp-ao key that matches the remote peer.
*/
WARN_ON_ONCE(1);
rcu_assign_pointer(tp->ao_info, NULL);
kfree(ao_info);
}
}
void tcp_ao_established(struct sock *sk)
{
struct tcp_ao_info *ao;
struct tcp_ao_key *key;
ao = rcu_dereference_protected(tcp_sk(sk)->ao_info,
lockdep_sock_is_held(sk));
if (!ao)
return;
hlist_for_each_entry_rcu(key, &ao->head, node)
tcp_ao_cache_traffic_keys(sk, ao, key);
}
void tcp_ao_finish_connect(struct sock *sk, struct sk_buff *skb)
{
struct tcp_ao_info *ao;
struct tcp_ao_key *key;
ao = rcu_dereference_protected(tcp_sk(sk)->ao_info,
lockdep_sock_is_held(sk));
if (!ao)
return;
WRITE_ONCE(ao->risn, tcp_hdr(skb)->seq);
ao->rcv_sne = 0;
hlist_for_each_entry_rcu(key, &ao->head, node)
tcp_ao_cache_traffic_keys(sk, ao, key);
}
int tcp_ao_copy_all_matching(const struct sock *sk, struct sock *newsk,
struct request_sock *req, struct sk_buff *skb,
int family)
{
struct tcp_ao_key *key, *new_key, *first_key;
struct tcp_ao_info *new_ao, *ao;
struct hlist_node *key_head;
int l3index, ret = -ENOMEM;
union tcp_ao_addr *addr;
bool match = false;
ao = rcu_dereference(tcp_sk(sk)->ao_info);
if (!ao)
return 0;
/* New socket without TCP-AO on it */
if (!tcp_rsk_used_ao(req))
return 0;
new_ao = tcp_ao_alloc_info(GFP_ATOMIC);
if (!new_ao)
return -ENOMEM;
new_ao->lisn = htonl(tcp_rsk(req)->snt_isn);
new_ao->risn = htonl(tcp_rsk(req)->rcv_isn);
new_ao->ao_required = ao->ao_required;
new_ao->accept_icmps = ao->accept_icmps;
if (family == AF_INET) {
addr = (union tcp_ao_addr *)&newsk->sk_daddr;
#if IS_ENABLED(CONFIG_IPV6)
} else if (family == AF_INET6) {
addr = (union tcp_ao_addr *)&newsk->sk_v6_daddr;
#endif
} else {
ret = -EAFNOSUPPORT;
goto free_ao;
}
l3index = l3mdev_master_ifindex_by_index(sock_net(newsk),
newsk->sk_bound_dev_if);
hlist_for_each_entry_rcu(key, &ao->head, node) {
if (tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1))
continue;
new_key = tcp_ao_copy_key(newsk, key);
if (!new_key)
goto free_and_exit;
tcp_ao_cache_traffic_keys(newsk, new_ao, new_key);
tcp_ao_link_mkt(new_ao, new_key);
match = true;
}
if (!match) {
/* RFC5925 (7.4.1) specifies that the TCP-AO status
* of a connection is determined on the initial SYN.
* At this point the connection was TCP-AO enabled, so
* it can't switch to being unsigned if peer's key
* disappears on the listening socket.
*/
ret = -EKEYREJECTED;
goto free_and_exit;
}
if (!static_key_fast_inc_not_disabled(&tcp_ao_needed.key.key)) {
ret = -EUSERS;
goto free_and_exit;
}
key_head = rcu_dereference(hlist_first_rcu(&new_ao->head));
first_key = hlist_entry_safe(key_head, struct tcp_ao_key, node);
key = tcp_ao_established_key(new_ao, tcp_rsk(req)->ao_keyid, -1);
if (key)
new_ao->current_key = key;
else
new_ao->current_key = first_key;
/* set rnext_key */
key = tcp_ao_established_key(new_ao, -1, tcp_rsk(req)->ao_rcv_next);
if (key)
new_ao->rnext_key = key;
else
new_ao->rnext_key = first_key;
sk_gso_disable(newsk);
rcu_assign_pointer(tcp_sk(newsk)->ao_info, new_ao);
return 0;
free_and_exit:
hlist_for_each_entry_safe(key, key_head, &new_ao->head, node) {
hlist_del(&key->node);
tcp_sigpool_release(key->tcp_sigpool_id);
atomic_sub(tcp_ao_sizeof_key(key), &newsk->sk_omem_alloc);
kfree_sensitive(key);
}
free_ao:
kfree(new_ao);
return ret;
}
static bool tcp_ao_can_set_current_rnext(struct sock *sk)
{
/* There aren't current/rnext keys on TCP_LISTEN sockets */
if (sk->sk_state == TCP_LISTEN)
return false;
return true;
}
static int tcp_ao_verify_ipv4(struct sock *sk, struct tcp_ao_add *cmd,
union tcp_ao_addr **addr)
{
struct sockaddr_in *sin = (struct sockaddr_in *)&cmd->addr;
struct inet_sock *inet = inet_sk(sk);
if (sin->sin_family != AF_INET)
return -EINVAL;
/* Currently matching is not performed on port (or port ranges) */
if (sin->sin_port != 0)
return -EINVAL;
/* Check prefix and trailing 0's in addr */
if (cmd->prefix != 0) {
__be32 mask;
if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY)
return -EINVAL;
if (cmd->prefix > 32)
return -EINVAL;
mask = inet_make_mask(cmd->prefix);
if (sin->sin_addr.s_addr & ~mask)
return -EINVAL;
/* Check that MKT address is consistent with socket */
if (ntohl(inet->inet_daddr) != INADDR_ANY &&
(inet->inet_daddr & mask) != sin->sin_addr.s_addr)
return -EINVAL;
} else {
if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY)
return -EINVAL;
}
*addr = (union tcp_ao_addr *)&sin->sin_addr;
return 0;
}
static int tcp_ao_parse_crypto(struct tcp_ao_add *cmd, struct tcp_ao_key *key)
{
unsigned int syn_tcp_option_space;
bool is_kdf_aes_128_cmac = false;
struct crypto_ahash *tfm;
struct tcp_sigpool hp;
void *tmp_key = NULL;
int err;
/* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */
if (!strcmp("cmac(aes128)", cmd->alg_name)) {
strscpy(cmd->alg_name, "cmac(aes)", sizeof(cmd->alg_name));
is_kdf_aes_128_cmac = (cmd->keylen != 16);
tmp_key = kmalloc(cmd->keylen, GFP_KERNEL);
if (!tmp_key)
return -ENOMEM;
}
key->maclen = cmd->maclen ?: 12; /* 12 is the default in RFC5925 */
/* Check: maclen + tcp-ao header <= (MAX_TCP_OPTION_SPACE - mss
* - tstamp (including sackperm)
* - wscale),
* see tcp_syn_options(), tcp_synack_options(), commit 33ad798c924b.
*
* In order to allow D-SACK with TCP-AO, the header size should be:
* (MAX_TCP_OPTION_SPACE - TCPOLEN_TSTAMP_ALIGNED
* - TCPOLEN_SACK_BASE_ALIGNED
* - 2 * TCPOLEN_SACK_PERBLOCK) = 8 (maclen = 4),
* see tcp_established_options().
*
* RFC5925, 2.2:
* Typical MACs are 96-128 bits (12-16 bytes), but any length
* that fits in the header of the segment being authenticated
* is allowed.
*
* RFC5925, 7.6:
* TCP-AO continues to consume 16 bytes in non-SYN segments,
* leaving a total of 24 bytes for other options, of which
* the timestamp consumes 10. This leaves 14 bytes, of which 10
* are used for a single SACK block. When two SACK blocks are used,
* such as to handle D-SACK, a smaller TCP-AO MAC would be required
* to make room for the additional SACK block (i.e., to leave 18
* bytes for the D-SACK variant of the SACK option) [RFC2883].
* Note that D-SACK is not supportable in TCP MD5 in the presence
* of timestamps, because TCP MD5s MAC length is fixed and too
* large to leave sufficient option space.
*/
syn_tcp_option_space = MAX_TCP_OPTION_SPACE;
syn_tcp_option_space -= TCPOLEN_MSS_ALIGNED;
syn_tcp_option_space -= TCPOLEN_TSTAMP_ALIGNED;
syn_tcp_option_space -= TCPOLEN_WSCALE_ALIGNED;
if (tcp_ao_len(key) > syn_tcp_option_space) {
err = -EMSGSIZE;
goto err_kfree;
}
key->keylen = cmd->keylen;
memcpy(key->key, cmd->key, cmd->keylen);
err = tcp_sigpool_start(key->tcp_sigpool_id, &hp);
if (err)
goto err_kfree;
tfm = crypto_ahash_reqtfm(hp.req);
if (is_kdf_aes_128_cmac) {
void *scratch = hp.scratch;
struct scatterlist sg;
memcpy(tmp_key, cmd->key, cmd->keylen);
sg_init_one(&sg, tmp_key, cmd->keylen);
/* Using zero-key of 16 bytes as described in RFC5926 */
memset(scratch, 0, 16);
err = crypto_ahash_setkey(tfm, scratch, 16);
if (err)
goto err_pool_end;
err = crypto_ahash_init(hp.req);
if (err)
goto err_pool_end;
ahash_request_set_crypt(hp.req, &sg, key->key, cmd->keylen);
err = crypto_ahash_update(hp.req);
if (err)
goto err_pool_end;
err |= crypto_ahash_final(hp.req);
if (err)
goto err_pool_end;
key->keylen = 16;
}
err = crypto_ahash_setkey(tfm, key->key, key->keylen);
if (err)
goto err_pool_end;
tcp_sigpool_end(&hp);
kfree_sensitive(tmp_key);
if (tcp_ao_maclen(key) > key->digest_size)
return -EINVAL;
return 0;
err_pool_end:
tcp_sigpool_end(&hp);
err_kfree:
kfree_sensitive(tmp_key);
return err;
}
#if IS_ENABLED(CONFIG_IPV6)
static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd,
union tcp_ao_addr **paddr,
unsigned short int *family)
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd->addr;
struct in6_addr *addr = &sin6->sin6_addr;
u8 prefix = cmd->prefix;
if (sin6->sin6_family != AF_INET6)
return -EINVAL;
/* Currently matching is not performed on port (or port ranges) */
if (sin6->sin6_port != 0)
return -EINVAL;
/* Check prefix and trailing 0's in addr */
if (cmd->prefix != 0 && ipv6_addr_v4mapped(addr)) {
__be32 addr4 = addr->s6_addr32[3];
__be32 mask;
if (prefix > 32 || ntohl(addr4) == INADDR_ANY)
return -EINVAL;
mask = inet_make_mask(prefix);
if (addr4 & ~mask)
return -EINVAL;
/* Check that MKT address is consistent with socket */
if (!ipv6_addr_any(&sk->sk_v6_daddr)) {
__be32 daddr4 = sk->sk_v6_daddr.s6_addr32[3];
if (!ipv6_addr_v4mapped(&sk->sk_v6_daddr))
return -EINVAL;
if ((daddr4 & mask) != addr4)
return -EINVAL;
}
*paddr = (union tcp_ao_addr *)&addr->s6_addr32[3];
*family = AF_INET;
return 0;
} else if (cmd->prefix != 0) {
struct in6_addr pfx;
if (ipv6_addr_any(addr) || prefix > 128)
return -EINVAL;
ipv6_addr_prefix(&pfx, addr, prefix);
if (ipv6_addr_cmp(&pfx, addr))
return -EINVAL;
/* Check that MKT address is consistent with socket */
if (!ipv6_addr_any(&sk->sk_v6_daddr) &&
!ipv6_prefix_equal(&sk->sk_v6_daddr, addr, prefix))
return -EINVAL;
} else {
if (!ipv6_addr_any(addr))
return -EINVAL;
}
*paddr = (union tcp_ao_addr *)addr;
return 0;
}
#else
static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd,
union tcp_ao_addr **paddr,
unsigned short int *family)
{
return -EOPNOTSUPP;
}
#endif
static struct tcp_ao_info *setsockopt_ao_info(struct sock *sk)
{
if (sk_fullsock(sk)) {
return rcu_dereference_protected(tcp_sk(sk)->ao_info,
lockdep_sock_is_held(sk));
} else if (sk->sk_state == TCP_TIME_WAIT) {
return rcu_dereference_protected(tcp_twsk(sk)->ao_info,
lockdep_sock_is_held(sk));
}
return ERR_PTR(-ESOCKTNOSUPPORT);
}
static struct tcp_ao_info *getsockopt_ao_info(struct sock *sk)
{
if (sk_fullsock(sk))
return rcu_dereference(tcp_sk(sk)->ao_info);
else if (sk->sk_state == TCP_TIME_WAIT)
return rcu_dereference(tcp_twsk(sk)->ao_info);
return ERR_PTR(-ESOCKTNOSUPPORT);
}
#define TCP_AO_KEYF_ALL (TCP_AO_KEYF_IFINDEX | TCP_AO_KEYF_EXCLUDE_OPT)
#define TCP_AO_GET_KEYF_VALID (TCP_AO_KEYF_IFINDEX)
static struct tcp_ao_key *tcp_ao_key_alloc(struct sock *sk,
struct tcp_ao_add *cmd)
{
const char *algo = cmd->alg_name;
unsigned int digest_size;
struct crypto_ahash *tfm;
struct tcp_ao_key *key;
struct tcp_sigpool hp;
int err, pool_id;
size_t size;
/* Force null-termination of alg_name */
cmd->alg_name[ARRAY_SIZE(cmd->alg_name) - 1] = '\0';
/* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */
if (!strcmp("cmac(aes128)", algo))
algo = "cmac(aes)";
/* Full TCP header (th->doff << 2) should fit into scratch area,
* see tcp_ao_hash_header().
*/
pool_id = tcp_sigpool_alloc_ahash(algo, 60);
if (pool_id < 0)
return ERR_PTR(pool_id);
err = tcp_sigpool_start(pool_id, &hp);
if (err)
goto err_free_pool;
tfm = crypto_ahash_reqtfm(hp.req);
digest_size = crypto_ahash_digestsize(tfm);
tcp_sigpool_end(&hp);
size = sizeof(struct tcp_ao_key) + (digest_size << 1);
key = sock_kmalloc(sk, size, GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto err_free_pool;
}
key->tcp_sigpool_id = pool_id;
key->digest_size = digest_size;
return key;
err_free_pool:
tcp_sigpool_release(pool_id);
return ERR_PTR(err);
}
static int tcp_ao_add_cmd(struct sock *sk, unsigned short int family,
sockptr_t optval, int optlen)
{
struct tcp_ao_info *ao_info;
union tcp_ao_addr *addr;
struct tcp_ao_key *key;
struct tcp_ao_add cmd;
int ret, l3index = 0;
bool first = false;
if (optlen < sizeof(cmd))
return -EINVAL;
ret = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen);
if (ret)
return ret;
if (cmd.keylen > TCP_AO_MAXKEYLEN)
return -EINVAL;
if (cmd.reserved != 0 || cmd.reserved2 != 0)
return -EINVAL;
if (family == AF_INET)
ret = tcp_ao_verify_ipv4(sk, &cmd, &addr);
else
ret = tcp_ao_verify_ipv6(sk, &cmd, &addr, &family);
if (ret)
return ret;
if (cmd.keyflags & ~TCP_AO_KEYF_ALL)
return -EINVAL;
if (cmd.set_current || cmd.set_rnext) {
if (!tcp_ao_can_set_current_rnext(sk))
return -EINVAL;
}
if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX))
return -EINVAL;
/* For cmd.tcp_ifindex = 0 the key will apply to the default VRF */
if (cmd.keyflags & TCP_AO_KEYF_IFINDEX && cmd.ifindex) {
int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
struct net_device *dev;
rcu_read_lock();
dev = dev_get_by_index_rcu(sock_net(sk), cmd.ifindex);
if (dev && netif_is_l3_master(dev))
l3index = dev->ifindex;
rcu_read_unlock();
if (!dev || !l3index)
return -EINVAL;
/* It's still possible to bind after adding keys or even
* re-bind to a different dev (with CAP_NET_RAW).
* So, no reason to return error here, rather try to be
* nice and warn the user.
*/
if (bound_dev_if && bound_dev_if != cmd.ifindex)
net_warn_ratelimited("AO key ifindex %d != sk bound ifindex %d\n",
cmd.ifindex, bound_dev_if);
}
/* Don't allow keys for peers that have a matching TCP-MD5 key */
if (cmd.keyflags & TCP_AO_KEYF_IFINDEX) {
/* Non-_exact version of tcp_md5_do_lookup() will
* as well match keys that aren't bound to a specific VRF
* (that will make them match AO key with
* sysctl_tcp_l3dev_accept = 1
*/
if (tcp_md5_do_lookup(sk, l3index, addr, family))
return -EKEYREJECTED;
} else {
if (tcp_md5_do_lookup_any_l3index(sk, addr, family))
return -EKEYREJECTED;
}
ao_info = setsockopt_ao_info(sk);
if (IS_ERR(ao_info))
return PTR_ERR(ao_info);
if (!ao_info) {
ao_info = tcp_ao_alloc_info(GFP_KERNEL);
if (!ao_info)
return -ENOMEM;
first = true;
} else {
/* Check that neither RecvID nor SendID match any
* existing key for the peer, RFC5925 3.1:
* > The IDs of MKTs MUST NOT overlap where their
* > TCP connection identifiers overlap.
*/
if (__tcp_ao_do_lookup(sk, l3index, addr, family, cmd.prefix, -1, cmd.rcvid))
return -EEXIST;
if (__tcp_ao_do_lookup(sk, l3index, addr, family,
cmd.prefix, cmd.sndid, -1))
return -EEXIST;
}
key = tcp_ao_key_alloc(sk, &cmd);
if (IS_ERR(key)) {
ret = PTR_ERR(key);
goto err_free_ao;
}
INIT_HLIST_NODE(&key->node);
memcpy(&key->addr, addr, (family == AF_INET) ? sizeof(struct in_addr) :
sizeof(struct in6_addr));
key->prefixlen = cmd.prefix;
key->family = family;
key->keyflags = cmd.keyflags;
key->sndid = cmd.sndid;
key->rcvid = cmd.rcvid;
key->l3index = l3index;
atomic64_set(&key->pkt_good, 0);
atomic64_set(&key->pkt_bad, 0);
ret = tcp_ao_parse_crypto(&cmd, key);
if (ret < 0)
goto err_free_sock;
if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) {
tcp_ao_cache_traffic_keys(sk, ao_info, key);
if (first) {
ao_info->current_key = key;
ao_info->rnext_key = key;
}
}
tcp_ao_link_mkt(ao_info, key);
if (first) {
if (!static_branch_inc(&tcp_ao_needed.key)) {
ret = -EUSERS;
goto err_free_sock;
}
sk_gso_disable(sk);
rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info);
}
if (cmd.set_current)
WRITE_ONCE(ao_info->current_key, key);
if (cmd.set_rnext)
WRITE_ONCE(ao_info->rnext_key, key);
return 0;
err_free_sock:
atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc);
tcp_sigpool_release(key->tcp_sigpool_id);
kfree_sensitive(key);
err_free_ao:
if (first)
kfree(ao_info);
return ret;
}
static int tcp_ao_delete_key(struct sock *sk, struct tcp_ao_info *ao_info,
bool del_async, struct tcp_ao_key *key,
struct tcp_ao_key *new_current,
struct tcp_ao_key *new_rnext)
{
int err;
hlist_del_rcu(&key->node);
/* Support for async delete on listening sockets: as they don't
* need current_key/rnext_key maintaining, we don't need to check
* them and we can just free all resources in RCU fashion.
*/
if (del_async) {
atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc);
call_rcu(&key->rcu, tcp_ao_key_free_rcu);
return 0;
}
/* At this moment another CPU could have looked this key up
* while it was unlinked from the list. Wait for RCU grace period,
* after which the key is off-list and can't be looked up again;
* the rx path [just before RCU came] might have used it and set it
* as current_key (very unlikely).
* Free the key with next RCU grace period (in case it was
* current_key before tcp_ao_current_rnext() might have
* changed it in forced-delete).
*/
synchronize_rcu();
if (new_current)
WRITE_ONCE(ao_info->current_key, new_current);
if (new_rnext)
WRITE_ONCE(ao_info->rnext_key, new_rnext);
if (unlikely(READ_ONCE(ao_info->current_key) == key ||
READ_ONCE(ao_info->rnext_key) == key)) {
err = -EBUSY;
goto add_key;
}
atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc);
call_rcu(&key->rcu, tcp_ao_key_free_rcu);
return 0;
add_key:
hlist_add_head_rcu(&key->node, &ao_info->head);
return err;
}
#define TCP_AO_DEL_KEYF_ALL (TCP_AO_KEYF_IFINDEX)
static int tcp_ao_del_cmd(struct sock *sk, unsigned short int family,
sockptr_t optval, int optlen)
{
struct tcp_ao_key *key, *new_current = NULL, *new_rnext = NULL;
int err, addr_len, l3index = 0;
struct tcp_ao_info *ao_info;
union tcp_ao_addr *addr;
struct tcp_ao_del cmd;
__u8 prefix;
u16 port;
if (optlen < sizeof(cmd))
return -EINVAL;
err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen);
if (err)
return err;
if (cmd.reserved != 0 || cmd.reserved2 != 0)
return -EINVAL;
if (cmd.set_current || cmd.set_rnext) {
if (!tcp_ao_can_set_current_rnext(sk))
return -EINVAL;
}
if (cmd.keyflags & ~TCP_AO_DEL_KEYF_ALL)
return -EINVAL;
/* No sanity check for TCP_AO_KEYF_IFINDEX as if a VRF
* was destroyed, there still should be a way to delete keys,
* that were bound to that l3intf. So, fail late at lookup stage
* if there is no key for that ifindex.
*/
if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX))
return -EINVAL;
ao_info = setsockopt_ao_info(sk);
if (IS_ERR(ao_info))
return PTR_ERR(ao_info);
if (!ao_info)
return -ENOENT;
/* For sockets in TCP_CLOSED it's possible set keys that aren't
* matching the future peer (address/VRF/etc),
* tcp_ao_connect_init() will choose a correct matching MKT
* if there's any.
*/
if (cmd.set_current) {
new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1);
if (!new_current)
return -ENOENT;
}
if (cmd.set_rnext) {
new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext);
if (!new_rnext)
return -ENOENT;
}
if (cmd.del_async && sk->sk_state != TCP_LISTEN)
return -EINVAL;
if (family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.addr;
addr = (union tcp_ao_addr *)&sin->sin_addr;
addr_len = sizeof(struct in_addr);
port = ntohs(sin->sin_port);
} else {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.addr;
struct in6_addr *addr6 = &sin6->sin6_addr;
if (ipv6_addr_v4mapped(addr6)) {
addr = (union tcp_ao_addr *)&addr6->s6_addr32[3];
addr_len = sizeof(struct in_addr);
family = AF_INET;
} else {
addr = (union tcp_ao_addr *)addr6;
addr_len = sizeof(struct in6_addr);
}
port = ntohs(sin6->sin6_port);
}
prefix = cmd.prefix;
/* Currently matching is not performed on port (or port ranges) */
if (port != 0)
return -EINVAL;
/* We could choose random present key here for current/rnext
* but that's less predictable. Let's be strict and don't
* allow removing a key that's in use. RFC5925 doesn't
* specify how-to coordinate key removal, but says:
* "It is presumed that an MKT affecting a particular
* connection cannot be destroyed during an active connection"
*/
hlist_for_each_entry_rcu(key, &ao_info->head, node) {
if (cmd.sndid != key->sndid ||
cmd.rcvid != key->rcvid)
continue;
if (family != key->family ||
prefix != key->prefixlen ||
memcmp(addr, &key->addr, addr_len))
continue;
if ((cmd.keyflags & TCP_AO_KEYF_IFINDEX) !=
(key->keyflags & TCP_AO_KEYF_IFINDEX))
continue;
if (key->l3index != l3index)
continue;
if (key == new_current || key == new_rnext)
continue;
return tcp_ao_delete_key(sk, ao_info, cmd.del_async, key,
new_current, new_rnext);
}
return -ENOENT;
}
/* cmd.ao_required makes a socket TCP-AO only.
* Don't allow any md5 keys for any l3intf on the socket together with it.
* Restricting it early in setsockopt() removes a check for
* ao_info->ao_required on inbound tcp segment fast-path.
*/
static int tcp_ao_required_verify(struct sock *sk)
{
#ifdef CONFIG_TCP_MD5SIG
const struct tcp_md5sig_info *md5sig;
if (!static_branch_unlikely(&tcp_md5_needed.key))
return 0;
md5sig = rcu_dereference_check(tcp_sk(sk)->md5sig_info,
lockdep_sock_is_held(sk));
if (!md5sig)
return 0;
if (rcu_dereference_check(hlist_first_rcu(&md5sig->head),
lockdep_sock_is_held(sk)))
return 1;
#endif
return 0;
}
static int tcp_ao_info_cmd(struct sock *sk, unsigned short int family,
sockptr_t optval, int optlen)
{
struct tcp_ao_key *new_current = NULL, *new_rnext = NULL;
struct tcp_ao_info *ao_info;
struct tcp_ao_info_opt cmd;
bool first = false;
int err;
if (optlen < sizeof(cmd))
return -EINVAL;
err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen);
if (err)
return err;
if (cmd.set_current || cmd.set_rnext) {
if (!tcp_ao_can_set_current_rnext(sk))
return -EINVAL;
}
if (cmd.reserved != 0 || cmd.reserved2 != 0)
return -EINVAL;
ao_info = setsockopt_ao_info(sk);
if (IS_ERR(ao_info))
return PTR_ERR(ao_info);
if (!ao_info) {
if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)))
return -EINVAL;
ao_info = tcp_ao_alloc_info(GFP_KERNEL);
if (!ao_info)
return -ENOMEM;
first = true;
}
if (cmd.ao_required && tcp_ao_required_verify(sk))
return -EKEYREJECTED;
/* For sockets in TCP_CLOSED it's possible set keys that aren't
* matching the future peer (address/port/VRF/etc),
* tcp_ao_connect_init() will choose a correct matching MKT
* if there's any.
*/
if (cmd.set_current) {
new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1);
if (!new_current) {
err = -ENOENT;
goto out;
}
}
if (cmd.set_rnext) {
new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext);
if (!new_rnext) {
err = -ENOENT;
goto out;
}
}
if (cmd.set_counters) {
atomic64_set(&ao_info->counters.pkt_good, cmd.pkt_good);
atomic64_set(&ao_info->counters.pkt_bad, cmd.pkt_bad);
atomic64_set(&ao_info->counters.key_not_found, cmd.pkt_key_not_found);
atomic64_set(&ao_info->counters.ao_required, cmd.pkt_ao_required);
atomic64_set(&ao_info->counters.dropped_icmp, cmd.pkt_dropped_icmp);
}
ao_info->ao_required = cmd.ao_required;
ao_info->accept_icmps = cmd.accept_icmps;
if (new_current)
WRITE_ONCE(ao_info->current_key, new_current);
if (new_rnext)
WRITE_ONCE(ao_info->rnext_key, new_rnext);
if (first) {
if (!static_branch_inc(&tcp_ao_needed.key)) {
err = -EUSERS;
goto out;
}
sk_gso_disable(sk);
rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info);
}
return 0;
out:
if (first)
kfree(ao_info);
return err;
}
int tcp_parse_ao(struct sock *sk, int cmd, unsigned short int family,
sockptr_t optval, int optlen)
{
if (WARN_ON_ONCE(family != AF_INET && family != AF_INET6))
return -EAFNOSUPPORT;
switch (cmd) {
case TCP_AO_ADD_KEY:
return tcp_ao_add_cmd(sk, family, optval, optlen);
case TCP_AO_DEL_KEY:
return tcp_ao_del_cmd(sk, family, optval, optlen);
case TCP_AO_INFO:
return tcp_ao_info_cmd(sk, family, optval, optlen);
default:
WARN_ON_ONCE(1);
return -EINVAL;
}
}
int tcp_v4_parse_ao(struct sock *sk, int cmd, sockptr_t optval, int optlen)
{
return tcp_parse_ao(sk, cmd, AF_INET, optval, optlen);
}
/* tcp_ao_copy_mkts_to_user(ao_info, optval, optlen)
*
* @ao_info: struct tcp_ao_info on the socket that
* socket getsockopt(TCP_AO_GET_KEYS) is executed on
* @optval: pointer to array of tcp_ao_getsockopt structures in user space.
* Must be != NULL.
* @optlen: pointer to size of tcp_ao_getsockopt structure.
* Must be != NULL.
*
* Return value: 0 on success, a negative error number otherwise.
*
* optval points to an array of tcp_ao_getsockopt structures in user space.
* optval[0] is used as both input and output to getsockopt. It determines
* which keys are returned by the kernel.
* optval[0].nkeys is the size of the array in user space. On return it contains
* the number of keys matching the search criteria.
* If tcp_ao_getsockopt::get_all is set, then all keys in the socket are
* returned, otherwise only keys matching <addr, prefix, sndid, rcvid>
* in optval[0] are returned.
* optlen is also used as both input and output. The user provides the size
* of struct tcp_ao_getsockopt in user space, and the kernel returns the size
* of the structure in kernel space.
* The size of struct tcp_ao_getsockopt may differ between user and kernel.
* There are three cases to consider:
* * If usize == ksize, then keys are copied verbatim.
* * If usize < ksize, then the userspace has passed an old struct to a
* newer kernel. The rest of the trailing bytes in optval[0]
* (ksize - usize) are interpreted as 0 by the kernel.
* * If usize > ksize, then the userspace has passed a new struct to an
* older kernel. The trailing bytes unknown to the kernel (usize - ksize)
* are checked to ensure they are zeroed, otherwise -E2BIG is returned.
* On return the kernel fills in min(usize, ksize) in each entry of the array.
* The layout of the fields in the user and kernel structures is expected to
* be the same (including in the 32bit vs 64bit case).
*/
static int tcp_ao_copy_mkts_to_user(struct tcp_ao_info *ao_info,
sockptr_t optval, sockptr_t optlen)
{
struct tcp_ao_getsockopt opt_in, opt_out;
struct tcp_ao_key *key, *current_key;
bool do_address_matching = true;
union tcp_ao_addr *addr = NULL;
int err, l3index, user_len;
unsigned int max_keys; /* maximum number of keys to copy to user */
size_t out_offset = 0;
size_t bytes_to_write; /* number of bytes to write to user level */
u32 matched_keys; /* keys from ao_info matched so far */
int optlen_out;
__be16 port = 0;
if (copy_from_sockptr(&user_len, optlen, sizeof(int)))
return -EFAULT;
if (user_len <= 0)
return -EINVAL;
memset(&opt_in, 0, sizeof(struct tcp_ao_getsockopt));
err = copy_struct_from_sockptr(&opt_in, sizeof(opt_in),
optval, user_len);
if (err < 0)
return err;
if (opt_in.pkt_good || opt_in.pkt_bad)
return -EINVAL;
if (opt_in.keyflags & ~TCP_AO_GET_KEYF_VALID)
return -EINVAL;
if (opt_in.ifindex && !(opt_in.keyflags & TCP_AO_KEYF_IFINDEX))
return -EINVAL;
if (opt_in.reserved != 0)
return -EINVAL;
max_keys = opt_in.nkeys;
l3index = (opt_in.keyflags & TCP_AO_KEYF_IFINDEX) ? opt_in.ifindex : -1;
if (opt_in.get_all || opt_in.is_current || opt_in.is_rnext) {
if (opt_in.get_all && (opt_in.is_current || opt_in.is_rnext))
return -EINVAL;
do_address_matching = false;
}
switch (opt_in.addr.ss_family) {
case AF_INET: {
struct sockaddr_in *sin;
__be32 mask;
sin = (struct sockaddr_in *)&opt_in.addr;
port = sin->sin_port;
addr = (union tcp_ao_addr *)&sin->sin_addr;
if (opt_in.prefix > 32)
return -EINVAL;
if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY &&
opt_in.prefix != 0)
return -EINVAL;
mask = inet_make_mask(opt_in.prefix);
if (sin->sin_addr.s_addr & ~mask)
return -EINVAL;
break;
}
case AF_INET6: {
struct sockaddr_in6 *sin6;
struct in6_addr *addr6;
sin6 = (struct sockaddr_in6 *)&opt_in.addr;
addr = (union tcp_ao_addr *)&sin6->sin6_addr;
addr6 = &sin6->sin6_addr;
port = sin6->sin6_port;
/* We don't have to change family and @addr here if
* ipv6_addr_v4mapped() like in key adding:
* tcp_ao_key_cmp() does it. Do the sanity checks though.
*/
if (opt_in.prefix != 0) {
if (ipv6_addr_v4mapped(addr6)) {
__be32 mask, addr4 = addr6->s6_addr32[3];
if (opt_in.prefix > 32 ||
ntohl(addr4) == INADDR_ANY)
return -EINVAL;
mask = inet_make_mask(opt_in.prefix);
if (addr4 & ~mask)
return -EINVAL;
} else {
struct in6_addr pfx;
if (ipv6_addr_any(addr6) ||
opt_in.prefix > 128)
return -EINVAL;
ipv6_addr_prefix(&pfx, addr6, opt_in.prefix);
if (ipv6_addr_cmp(&pfx, addr6))
return -EINVAL;
}
} else if (!ipv6_addr_any(addr6)) {
return -EINVAL;
}
break;
}
case 0:
if (!do_address_matching)
break;
fallthrough;
default:
return -EAFNOSUPPORT;
}
if (!do_address_matching) {
/* We could just ignore those, but let's do stricter checks */
if (addr || port)
return -EINVAL;
if (opt_in.prefix || opt_in.sndid || opt_in.rcvid)
return -EINVAL;
}
bytes_to_write = min_t(int, user_len, sizeof(struct tcp_ao_getsockopt));
matched_keys = 0;
/* May change in RX, while we're dumping, pre-fetch it */
current_key = READ_ONCE(ao_info->current_key);
hlist_for_each_entry_rcu(key, &ao_info->head, node) {
if (opt_in.get_all)
goto match;
if (opt_in.is_current || opt_in.is_rnext) {
if (opt_in.is_current && key == current_key)
goto match;
if (opt_in.is_rnext && key == ao_info->rnext_key)
goto match;
continue;
}
if (tcp_ao_key_cmp(key, l3index, addr, opt_in.prefix,
opt_in.addr.ss_family,
opt_in.sndid, opt_in.rcvid) != 0)
continue;
match:
matched_keys++;
if (matched_keys > max_keys)
continue;
memset(&opt_out, 0, sizeof(struct tcp_ao_getsockopt));
if (key->family == AF_INET) {
struct sockaddr_in *sin_out = (struct sockaddr_in *)&opt_out.addr;
sin_out->sin_family = key->family;
sin_out->sin_port = 0;
memcpy(&sin_out->sin_addr, &key->addr, sizeof(struct in_addr));
} else {
struct sockaddr_in6 *sin6_out = (struct sockaddr_in6 *)&opt_out.addr;
sin6_out->sin6_family = key->family;
sin6_out->sin6_port = 0;
memcpy(&sin6_out->sin6_addr, &key->addr, sizeof(struct in6_addr));
}
opt_out.sndid = key->sndid;
opt_out.rcvid = key->rcvid;
opt_out.prefix = key->prefixlen;
opt_out.keyflags = key->keyflags;
opt_out.is_current = (key == current_key);
opt_out.is_rnext = (key == ao_info->rnext_key);
opt_out.nkeys = 0;
opt_out.maclen = key->maclen;
opt_out.keylen = key->keylen;
opt_out.ifindex = key->l3index;
opt_out.pkt_good = atomic64_read(&key->pkt_good);
opt_out.pkt_bad = atomic64_read(&key->pkt_bad);
memcpy(&opt_out.key, key->key, key->keylen);
tcp_sigpool_algo(key->tcp_sigpool_id, opt_out.alg_name, 64);
/* Copy key to user */
if (copy_to_sockptr_offset(optval, out_offset,
&opt_out, bytes_to_write))
return -EFAULT;
out_offset += user_len;
}
optlen_out = (int)sizeof(struct tcp_ao_getsockopt);
if (copy_to_sockptr(optlen, &optlen_out, sizeof(int)))
return -EFAULT;
out_offset = offsetof(struct tcp_ao_getsockopt, nkeys);
if (copy_to_sockptr_offset(optval, out_offset,
&matched_keys, sizeof(u32)))
return -EFAULT;
return 0;
}
int tcp_ao_get_mkts(struct sock *sk, sockptr_t optval, sockptr_t optlen)
{
struct tcp_ao_info *ao_info;
ao_info = setsockopt_ao_info(sk);
if (IS_ERR(ao_info))
return PTR_ERR(ao_info);
if (!ao_info)
return -ENOENT;
return tcp_ao_copy_mkts_to_user(ao_info, optval, optlen);
}
int tcp_ao_get_sock_info(struct sock *sk, sockptr_t optval, sockptr_t optlen)
{
struct tcp_ao_info_opt out, in = {};
struct tcp_ao_key *current_key;
struct tcp_ao_info *ao;
int err, len;
if (copy_from_sockptr(&len, optlen, sizeof(int)))
return -EFAULT;
if (len <= 0)
return -EINVAL;
/* Copying this "in" only to check ::reserved, ::reserved2,
* that may be needed to extend (struct tcp_ao_info_opt) and
* what getsockopt() provides in future.
*/
err = copy_struct_from_sockptr(&in, sizeof(in), optval, len);
if (err)
return err;
if (in.reserved != 0 || in.reserved2 != 0)
return -EINVAL;
ao = setsockopt_ao_info(sk);
if (IS_ERR(ao))
return PTR_ERR(ao);
if (!ao)
return -ENOENT;
memset(&out, 0, sizeof(out));
out.ao_required = ao->ao_required;
out.accept_icmps = ao->accept_icmps;
out.pkt_good = atomic64_read(&ao->counters.pkt_good);
out.pkt_bad = atomic64_read(&ao->counters.pkt_bad);
out.pkt_key_not_found = atomic64_read(&ao->counters.key_not_found);
out.pkt_ao_required = atomic64_read(&ao->counters.ao_required);
out.pkt_dropped_icmp = atomic64_read(&ao->counters.dropped_icmp);
current_key = READ_ONCE(ao->current_key);
if (current_key) {
out.set_current = 1;
out.current_key = current_key->sndid;
}
if (ao->rnext_key) {
out.set_rnext = 1;
out.rnext = ao->rnext_key->rcvid;
}
if (copy_to_sockptr(optval, &out, min_t(int, len, sizeof(out))))
return -EFAULT;
return 0;
}
int tcp_ao_set_repair(struct sock *sk, sockptr_t optval, unsigned int optlen)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_ao_repair cmd;
struct tcp_ao_key *key;
struct tcp_ao_info *ao;
int err;
if (optlen < sizeof(cmd))
return -EINVAL;
err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen);
if (err)
return err;
if (!tp->repair)
return -EPERM;
ao = setsockopt_ao_info(sk);
if (IS_ERR(ao))
return PTR_ERR(ao);
if (!ao)
return -ENOENT;
WRITE_ONCE(ao->lisn, cmd.snt_isn);
WRITE_ONCE(ao->risn, cmd.rcv_isn);
WRITE_ONCE(ao->snd_sne, cmd.snd_sne);
WRITE_ONCE(ao->rcv_sne, cmd.rcv_sne);
hlist_for_each_entry_rcu(key, &ao->head, node)
tcp_ao_cache_traffic_keys(sk, ao, key);
return 0;
}
int tcp_ao_get_repair(struct sock *sk, sockptr_t optval, sockptr_t optlen)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_ao_repair opt;
struct tcp_ao_info *ao;
int len;
if (copy_from_sockptr(&len, optlen, sizeof(int)))
return -EFAULT;
if (len <= 0)
return -EINVAL;
if (!tp->repair)
return -EPERM;
rcu_read_lock();
ao = getsockopt_ao_info(sk);
if (IS_ERR_OR_NULL(ao)) {
rcu_read_unlock();
return ao ? PTR_ERR(ao) : -ENOENT;
}
opt.snt_isn = ao->lisn;
opt.rcv_isn = ao->risn;
opt.snd_sne = READ_ONCE(ao->snd_sne);
opt.rcv_sne = READ_ONCE(ao->rcv_sne);
rcu_read_unlock();
if (copy_to_sockptr(optval, &opt, min_t(int, len, sizeof(opt))))
return -EFAULT;
return 0;
}