mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-28 23:24:50 +00:00
6e6a8b5a38
There are a lot of places where sequences of space/tabs are found. Get rid of all spaces before tabs. Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
4121 lines
126 KiB
C
4121 lines
126 KiB
C
/*
|
|
MaxLinear MXL5005S VSB/QAM/DVBT tuner driver
|
|
|
|
Copyright (C) 2008 MaxLinear
|
|
Copyright (C) 2006 Steven Toth <stoth@linuxtv.org>
|
|
Functions:
|
|
mxl5005s_reset()
|
|
mxl5005s_writereg()
|
|
mxl5005s_writeregs()
|
|
mxl5005s_init()
|
|
mxl5005s_reconfigure()
|
|
mxl5005s_AssignTunerMode()
|
|
mxl5005s_set_params()
|
|
mxl5005s_get_frequency()
|
|
mxl5005s_get_bandwidth()
|
|
mxl5005s_release()
|
|
mxl5005s_attach()
|
|
|
|
Copyright (C) 2008 Realtek
|
|
Copyright (C) 2008 Jan Hoogenraad
|
|
Functions:
|
|
mxl5005s_SetRfFreqHz()
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
/*
|
|
History of this driver (Steven Toth):
|
|
I was given a public release of a linux driver that included
|
|
support for the MaxLinear MXL5005S silicon tuner. Analysis of
|
|
the tuner driver showed clearly three things.
|
|
|
|
1. The tuner driver didn't support the LinuxTV tuner API
|
|
so the code Realtek added had to be removed.
|
|
|
|
2. A significant amount of the driver is reference driver code
|
|
from MaxLinear, I felt it was important to identify and
|
|
preserve this.
|
|
|
|
3. New code has to be added to interface correctly with the
|
|
LinuxTV API, as a regular kernel module.
|
|
|
|
Other than the reference driver enum's, I've clearly marked
|
|
sections of the code and retained the copyright of the
|
|
respective owners.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <media/dvb_frontend.h>
|
|
#include "mxl5005s.h"
|
|
|
|
static int debug;
|
|
|
|
#define dprintk(level, arg...) do { \
|
|
if (level <= debug) \
|
|
printk(arg); \
|
|
} while (0)
|
|
|
|
#define TUNER_REGS_NUM 104
|
|
#define INITCTRL_NUM 40
|
|
|
|
#ifdef _MXL_PRODUCTION
|
|
#define CHCTRL_NUM 39
|
|
#else
|
|
#define CHCTRL_NUM 36
|
|
#endif
|
|
|
|
#define MXLCTRL_NUM 189
|
|
#define MASTER_CONTROL_ADDR 9
|
|
|
|
/* Enumeration of Master Control Register State */
|
|
enum master_control_state {
|
|
MC_LOAD_START = 1,
|
|
MC_POWER_DOWN,
|
|
MC_SYNTH_RESET,
|
|
MC_SEQ_OFF
|
|
};
|
|
|
|
/* Enumeration of MXL5005 Tuner Modulation Type */
|
|
enum {
|
|
MXL_DEFAULT_MODULATION = 0,
|
|
MXL_DVBT,
|
|
MXL_ATSC,
|
|
MXL_QAM,
|
|
MXL_ANALOG_CABLE,
|
|
MXL_ANALOG_OTA
|
|
};
|
|
|
|
/* MXL5005 Tuner Register Struct */
|
|
struct TunerReg {
|
|
u16 Reg_Num; /* Tuner Register Address */
|
|
u16 Reg_Val; /* Current sw programmed value waiting to be written */
|
|
};
|
|
|
|
enum {
|
|
/* Initialization Control Names */
|
|
DN_IQTN_AMP_CUT = 1, /* 1 */
|
|
BB_MODE, /* 2 */
|
|
BB_BUF, /* 3 */
|
|
BB_BUF_OA, /* 4 */
|
|
BB_ALPF_BANDSELECT, /* 5 */
|
|
BB_IQSWAP, /* 6 */
|
|
BB_DLPF_BANDSEL, /* 7 */
|
|
RFSYN_CHP_GAIN, /* 8 */
|
|
RFSYN_EN_CHP_HIGAIN, /* 9 */
|
|
AGC_IF, /* 10 */
|
|
AGC_RF, /* 11 */
|
|
IF_DIVVAL, /* 12 */
|
|
IF_VCO_BIAS, /* 13 */
|
|
CHCAL_INT_MOD_IF, /* 14 */
|
|
CHCAL_FRAC_MOD_IF, /* 15 */
|
|
DRV_RES_SEL, /* 16 */
|
|
I_DRIVER, /* 17 */
|
|
EN_AAF, /* 18 */
|
|
EN_3P, /* 19 */
|
|
EN_AUX_3P, /* 20 */
|
|
SEL_AAF_BAND, /* 21 */
|
|
SEQ_ENCLK16_CLK_OUT, /* 22 */
|
|
SEQ_SEL4_16B, /* 23 */
|
|
XTAL_CAPSELECT, /* 24 */
|
|
IF_SEL_DBL, /* 25 */
|
|
RFSYN_R_DIV, /* 26 */
|
|
SEQ_EXTSYNTHCALIF, /* 27 */
|
|
SEQ_EXTDCCAL, /* 28 */
|
|
AGC_EN_RSSI, /* 29 */
|
|
RFA_ENCLKRFAGC, /* 30 */
|
|
RFA_RSSI_REFH, /* 31 */
|
|
RFA_RSSI_REF, /* 32 */
|
|
RFA_RSSI_REFL, /* 33 */
|
|
RFA_FLR, /* 34 */
|
|
RFA_CEIL, /* 35 */
|
|
SEQ_EXTIQFSMPULSE, /* 36 */
|
|
OVERRIDE_1, /* 37 */
|
|
BB_INITSTATE_DLPF_TUNE, /* 38 */
|
|
TG_R_DIV, /* 39 */
|
|
EN_CHP_LIN_B, /* 40 */
|
|
|
|
/* Channel Change Control Names */
|
|
DN_POLY = 51, /* 51 */
|
|
DN_RFGAIN, /* 52 */
|
|
DN_CAP_RFLPF, /* 53 */
|
|
DN_EN_VHFUHFBAR, /* 54 */
|
|
DN_GAIN_ADJUST, /* 55 */
|
|
DN_IQTNBUF_AMP, /* 56 */
|
|
DN_IQTNGNBFBIAS_BST, /* 57 */
|
|
RFSYN_EN_OUTMUX, /* 58 */
|
|
RFSYN_SEL_VCO_OUT, /* 59 */
|
|
RFSYN_SEL_VCO_HI, /* 60 */
|
|
RFSYN_SEL_DIVM, /* 61 */
|
|
RFSYN_RF_DIV_BIAS, /* 62 */
|
|
DN_SEL_FREQ, /* 63 */
|
|
RFSYN_VCO_BIAS, /* 64 */
|
|
CHCAL_INT_MOD_RF, /* 65 */
|
|
CHCAL_FRAC_MOD_RF, /* 66 */
|
|
RFSYN_LPF_R, /* 67 */
|
|
CHCAL_EN_INT_RF, /* 68 */
|
|
TG_LO_DIVVAL, /* 69 */
|
|
TG_LO_SELVAL, /* 70 */
|
|
TG_DIV_VAL, /* 71 */
|
|
TG_VCO_BIAS, /* 72 */
|
|
SEQ_EXTPOWERUP, /* 73 */
|
|
OVERRIDE_2, /* 74 */
|
|
OVERRIDE_3, /* 75 */
|
|
OVERRIDE_4, /* 76 */
|
|
SEQ_FSM_PULSE, /* 77 */
|
|
GPIO_4B, /* 78 */
|
|
GPIO_3B, /* 79 */
|
|
GPIO_4, /* 80 */
|
|
GPIO_3, /* 81 */
|
|
GPIO_1B, /* 82 */
|
|
DAC_A_ENABLE, /* 83 */
|
|
DAC_B_ENABLE, /* 84 */
|
|
DAC_DIN_A, /* 85 */
|
|
DAC_DIN_B, /* 86 */
|
|
#ifdef _MXL_PRODUCTION
|
|
RFSYN_EN_DIV, /* 87 */
|
|
RFSYN_DIVM, /* 88 */
|
|
DN_BYPASS_AGC_I2C /* 89 */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* The following context is source code provided by MaxLinear.
|
|
* MaxLinear source code - Common_MXL.h (?)
|
|
*/
|
|
|
|
/* Constants */
|
|
#define MXL5005S_REG_WRITING_TABLE_LEN_MAX 104
|
|
#define MXL5005S_LATCH_BYTE 0xfe
|
|
|
|
/* Register address, MSB, and LSB */
|
|
#define MXL5005S_BB_IQSWAP_ADDR 59
|
|
#define MXL5005S_BB_IQSWAP_MSB 0
|
|
#define MXL5005S_BB_IQSWAP_LSB 0
|
|
|
|
#define MXL5005S_BB_DLPF_BANDSEL_ADDR 53
|
|
#define MXL5005S_BB_DLPF_BANDSEL_MSB 4
|
|
#define MXL5005S_BB_DLPF_BANDSEL_LSB 3
|
|
|
|
/* Standard modes */
|
|
enum {
|
|
MXL5005S_STANDARD_DVBT,
|
|
MXL5005S_STANDARD_ATSC,
|
|
};
|
|
#define MXL5005S_STANDARD_MODE_NUM 2
|
|
|
|
/* Bandwidth modes */
|
|
enum {
|
|
MXL5005S_BANDWIDTH_6MHZ = 6000000,
|
|
MXL5005S_BANDWIDTH_7MHZ = 7000000,
|
|
MXL5005S_BANDWIDTH_8MHZ = 8000000,
|
|
};
|
|
#define MXL5005S_BANDWIDTH_MODE_NUM 3
|
|
|
|
/* MXL5005 Tuner Control Struct */
|
|
struct TunerControl {
|
|
u16 Ctrl_Num; /* Control Number */
|
|
u16 size; /* Number of bits to represent Value */
|
|
u16 addr[25]; /* Array of Tuner Register Address for each bit pos */
|
|
u16 bit[25]; /* Array of bit pos in Reg Addr for each bit pos */
|
|
u16 val[25]; /* Binary representation of Value */
|
|
};
|
|
|
|
/* MXL5005 Tuner Struct */
|
|
struct mxl5005s_state {
|
|
u8 Mode; /* 0: Analog Mode ; 1: Digital Mode */
|
|
u8 IF_Mode; /* for Analog Mode, 0: zero IF; 1: low IF */
|
|
u32 Chan_Bandwidth; /* filter channel bandwidth (6, 7, 8) */
|
|
u32 IF_OUT; /* Desired IF Out Frequency */
|
|
u16 IF_OUT_LOAD; /* IF Out Load Resistor (200/300 Ohms) */
|
|
u32 RF_IN; /* RF Input Frequency */
|
|
u32 Fxtal; /* XTAL Frequency */
|
|
u8 AGC_Mode; /* AGC Mode 0: Dual AGC; 1: Single AGC */
|
|
u16 TOP; /* Value: take over point */
|
|
u8 CLOCK_OUT; /* 0: turn off clk out; 1: turn on clock out */
|
|
u8 DIV_OUT; /* 4MHz or 16MHz */
|
|
u8 CAPSELECT; /* 0: disable On-Chip pulling cap; 1: enable */
|
|
u8 EN_RSSI; /* 0: disable RSSI; 1: enable RSSI */
|
|
|
|
/* Modulation Type; */
|
|
/* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
|
|
u8 Mod_Type;
|
|
|
|
/* Tracking Filter Type */
|
|
/* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
|
|
u8 TF_Type;
|
|
|
|
/* Calculated Settings */
|
|
u32 RF_LO; /* Synth RF LO Frequency */
|
|
u32 IF_LO; /* Synth IF LO Frequency */
|
|
u32 TG_LO; /* Synth TG_LO Frequency */
|
|
|
|
/* Pointers to ControlName Arrays */
|
|
u16 Init_Ctrl_Num; /* Number of INIT Control Names */
|
|
struct TunerControl
|
|
Init_Ctrl[INITCTRL_NUM]; /* INIT Control Names Array Pointer */
|
|
|
|
u16 CH_Ctrl_Num; /* Number of CH Control Names */
|
|
struct TunerControl
|
|
CH_Ctrl[CHCTRL_NUM]; /* CH Control Name Array Pointer */
|
|
|
|
u16 MXL_Ctrl_Num; /* Number of MXL Control Names */
|
|
struct TunerControl
|
|
MXL_Ctrl[MXLCTRL_NUM]; /* MXL Control Name Array Pointer */
|
|
|
|
/* Pointer to Tuner Register Array */
|
|
u16 TunerRegs_Num; /* Number of Tuner Registers */
|
|
struct TunerReg
|
|
TunerRegs[TUNER_REGS_NUM]; /* Tuner Register Array Pointer */
|
|
|
|
/* Linux driver framework specific */
|
|
struct mxl5005s_config *config;
|
|
struct dvb_frontend *frontend;
|
|
struct i2c_adapter *i2c;
|
|
|
|
/* Cache values */
|
|
u32 current_mode;
|
|
|
|
};
|
|
|
|
static u16 MXL_GetMasterControl(u8 *MasterReg, int state);
|
|
static u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value);
|
|
static u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value);
|
|
static void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit,
|
|
u8 bitVal);
|
|
static u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum,
|
|
u8 *RegVal, int *count);
|
|
static u32 MXL_Ceiling(u32 value, u32 resolution);
|
|
static u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal);
|
|
static u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum,
|
|
u32 value, u16 controlGroup);
|
|
static u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val);
|
|
static u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 *RegNum,
|
|
u8 *RegVal, int *count);
|
|
static u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq);
|
|
static void MXL_SynthIFLO_Calc(struct dvb_frontend *fe);
|
|
static void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe);
|
|
static u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum,
|
|
u8 *RegVal, int *count);
|
|
static int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable,
|
|
u8 *datatable, u8 len);
|
|
static u16 MXL_IFSynthInit(struct dvb_frontend *fe);
|
|
static int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type,
|
|
u32 bandwidth);
|
|
static int mxl5005s_reconfigure(struct dvb_frontend *fe, u32 mod_type,
|
|
u32 bandwidth);
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Begin: Custom code salvaged from the Realtek driver.
|
|
* Copyright (C) 2008 Realtek
|
|
* Copyright (C) 2008 Jan Hoogenraad
|
|
* This code is placed under the terms of the GNU General Public License
|
|
*
|
|
* Released by Realtek under GPLv2.
|
|
* Thanks to Realtek for a lot of support we received !
|
|
*
|
|
* Revision: 080314 - original version
|
|
*/
|
|
|
|
static int mxl5005s_SetRfFreqHz(struct dvb_frontend *fe, unsigned long RfFreqHz)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
unsigned char AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
|
|
unsigned char ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
|
|
int TableLen;
|
|
|
|
u32 IfDivval = 0;
|
|
unsigned char MasterControlByte;
|
|
|
|
dprintk(1, "%s() freq=%ld\n", __func__, RfFreqHz);
|
|
|
|
/* Set MxL5005S tuner RF frequency according to example code. */
|
|
|
|
/* Tuner RF frequency setting stage 0 */
|
|
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET);
|
|
AddrTable[0] = MASTER_CONTROL_ADDR;
|
|
ByteTable[0] |= state->config->AgcMasterByte;
|
|
|
|
mxl5005s_writeregs(fe, AddrTable, ByteTable, 1);
|
|
|
|
/* Tuner RF frequency setting stage 1 */
|
|
MXL_TuneRF(fe, RfFreqHz);
|
|
|
|
MXL_ControlRead(fe, IF_DIVVAL, &IfDivval);
|
|
|
|
MXL_ControlWrite(fe, SEQ_FSM_PULSE, 0);
|
|
MXL_ControlWrite(fe, SEQ_EXTPOWERUP, 1);
|
|
MXL_ControlWrite(fe, IF_DIVVAL, 8);
|
|
MXL_GetCHRegister(fe, AddrTable, ByteTable, &TableLen);
|
|
|
|
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START);
|
|
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
|
|
ByteTable[TableLen] = MasterControlByte |
|
|
state->config->AgcMasterByte;
|
|
TableLen += 1;
|
|
|
|
mxl5005s_writeregs(fe, AddrTable, ByteTable, TableLen);
|
|
|
|
/* Wait 30 ms. */
|
|
msleep(150);
|
|
|
|
/* Tuner RF frequency setting stage 2 */
|
|
MXL_ControlWrite(fe, SEQ_FSM_PULSE, 1);
|
|
MXL_ControlWrite(fe, IF_DIVVAL, IfDivval);
|
|
MXL_GetCHRegister_ZeroIF(fe, AddrTable, ByteTable, &TableLen);
|
|
|
|
MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START);
|
|
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
|
|
ByteTable[TableLen] = MasterControlByte |
|
|
state->config->AgcMasterByte ;
|
|
TableLen += 1;
|
|
|
|
mxl5005s_writeregs(fe, AddrTable, ByteTable, TableLen);
|
|
|
|
msleep(100);
|
|
|
|
return 0;
|
|
}
|
|
/* End: Custom code taken from the Realtek driver */
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Begin: Reference driver code found in the Realtek driver.
|
|
* Copyright (C) 2008 MaxLinear
|
|
*/
|
|
static u16 MXL5005_RegisterInit(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
state->TunerRegs_Num = TUNER_REGS_NUM ;
|
|
|
|
state->TunerRegs[0].Reg_Num = 9 ;
|
|
state->TunerRegs[0].Reg_Val = 0x40 ;
|
|
|
|
state->TunerRegs[1].Reg_Num = 11 ;
|
|
state->TunerRegs[1].Reg_Val = 0x19 ;
|
|
|
|
state->TunerRegs[2].Reg_Num = 12 ;
|
|
state->TunerRegs[2].Reg_Val = 0x60 ;
|
|
|
|
state->TunerRegs[3].Reg_Num = 13 ;
|
|
state->TunerRegs[3].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[4].Reg_Num = 14 ;
|
|
state->TunerRegs[4].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[5].Reg_Num = 15 ;
|
|
state->TunerRegs[5].Reg_Val = 0xC0 ;
|
|
|
|
state->TunerRegs[6].Reg_Num = 16 ;
|
|
state->TunerRegs[6].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[7].Reg_Num = 17 ;
|
|
state->TunerRegs[7].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[8].Reg_Num = 18 ;
|
|
state->TunerRegs[8].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[9].Reg_Num = 19 ;
|
|
state->TunerRegs[9].Reg_Val = 0x34 ;
|
|
|
|
state->TunerRegs[10].Reg_Num = 21 ;
|
|
state->TunerRegs[10].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[11].Reg_Num = 22 ;
|
|
state->TunerRegs[11].Reg_Val = 0x6B ;
|
|
|
|
state->TunerRegs[12].Reg_Num = 23 ;
|
|
state->TunerRegs[12].Reg_Val = 0x35 ;
|
|
|
|
state->TunerRegs[13].Reg_Num = 24 ;
|
|
state->TunerRegs[13].Reg_Val = 0x70 ;
|
|
|
|
state->TunerRegs[14].Reg_Num = 25 ;
|
|
state->TunerRegs[14].Reg_Val = 0x3E ;
|
|
|
|
state->TunerRegs[15].Reg_Num = 26 ;
|
|
state->TunerRegs[15].Reg_Val = 0x82 ;
|
|
|
|
state->TunerRegs[16].Reg_Num = 31 ;
|
|
state->TunerRegs[16].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[17].Reg_Num = 32 ;
|
|
state->TunerRegs[17].Reg_Val = 0x40 ;
|
|
|
|
state->TunerRegs[18].Reg_Num = 33 ;
|
|
state->TunerRegs[18].Reg_Val = 0x53 ;
|
|
|
|
state->TunerRegs[19].Reg_Num = 34 ;
|
|
state->TunerRegs[19].Reg_Val = 0x81 ;
|
|
|
|
state->TunerRegs[20].Reg_Num = 35 ;
|
|
state->TunerRegs[20].Reg_Val = 0xC9 ;
|
|
|
|
state->TunerRegs[21].Reg_Num = 36 ;
|
|
state->TunerRegs[21].Reg_Val = 0x01 ;
|
|
|
|
state->TunerRegs[22].Reg_Num = 37 ;
|
|
state->TunerRegs[22].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[23].Reg_Num = 41 ;
|
|
state->TunerRegs[23].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[24].Reg_Num = 42 ;
|
|
state->TunerRegs[24].Reg_Val = 0xF8 ;
|
|
|
|
state->TunerRegs[25].Reg_Num = 43 ;
|
|
state->TunerRegs[25].Reg_Val = 0x43 ;
|
|
|
|
state->TunerRegs[26].Reg_Num = 44 ;
|
|
state->TunerRegs[26].Reg_Val = 0x20 ;
|
|
|
|
state->TunerRegs[27].Reg_Num = 45 ;
|
|
state->TunerRegs[27].Reg_Val = 0x80 ;
|
|
|
|
state->TunerRegs[28].Reg_Num = 46 ;
|
|
state->TunerRegs[28].Reg_Val = 0x88 ;
|
|
|
|
state->TunerRegs[29].Reg_Num = 47 ;
|
|
state->TunerRegs[29].Reg_Val = 0x86 ;
|
|
|
|
state->TunerRegs[30].Reg_Num = 48 ;
|
|
state->TunerRegs[30].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[31].Reg_Num = 49 ;
|
|
state->TunerRegs[31].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[32].Reg_Num = 53 ;
|
|
state->TunerRegs[32].Reg_Val = 0x94 ;
|
|
|
|
state->TunerRegs[33].Reg_Num = 54 ;
|
|
state->TunerRegs[33].Reg_Val = 0xFA ;
|
|
|
|
state->TunerRegs[34].Reg_Num = 55 ;
|
|
state->TunerRegs[34].Reg_Val = 0x92 ;
|
|
|
|
state->TunerRegs[35].Reg_Num = 56 ;
|
|
state->TunerRegs[35].Reg_Val = 0x80 ;
|
|
|
|
state->TunerRegs[36].Reg_Num = 57 ;
|
|
state->TunerRegs[36].Reg_Val = 0x41 ;
|
|
|
|
state->TunerRegs[37].Reg_Num = 58 ;
|
|
state->TunerRegs[37].Reg_Val = 0xDB ;
|
|
|
|
state->TunerRegs[38].Reg_Num = 59 ;
|
|
state->TunerRegs[38].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[39].Reg_Num = 60 ;
|
|
state->TunerRegs[39].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[40].Reg_Num = 61 ;
|
|
state->TunerRegs[40].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[41].Reg_Num = 62 ;
|
|
state->TunerRegs[41].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[42].Reg_Num = 65 ;
|
|
state->TunerRegs[42].Reg_Val = 0xF8 ;
|
|
|
|
state->TunerRegs[43].Reg_Num = 66 ;
|
|
state->TunerRegs[43].Reg_Val = 0xE4 ;
|
|
|
|
state->TunerRegs[44].Reg_Num = 67 ;
|
|
state->TunerRegs[44].Reg_Val = 0x90 ;
|
|
|
|
state->TunerRegs[45].Reg_Num = 68 ;
|
|
state->TunerRegs[45].Reg_Val = 0xC0 ;
|
|
|
|
state->TunerRegs[46].Reg_Num = 69 ;
|
|
state->TunerRegs[46].Reg_Val = 0x01 ;
|
|
|
|
state->TunerRegs[47].Reg_Num = 70 ;
|
|
state->TunerRegs[47].Reg_Val = 0x50 ;
|
|
|
|
state->TunerRegs[48].Reg_Num = 71 ;
|
|
state->TunerRegs[48].Reg_Val = 0x06 ;
|
|
|
|
state->TunerRegs[49].Reg_Num = 72 ;
|
|
state->TunerRegs[49].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[50].Reg_Num = 73 ;
|
|
state->TunerRegs[50].Reg_Val = 0x20 ;
|
|
|
|
state->TunerRegs[51].Reg_Num = 76 ;
|
|
state->TunerRegs[51].Reg_Val = 0xBB ;
|
|
|
|
state->TunerRegs[52].Reg_Num = 77 ;
|
|
state->TunerRegs[52].Reg_Val = 0x13 ;
|
|
|
|
state->TunerRegs[53].Reg_Num = 81 ;
|
|
state->TunerRegs[53].Reg_Val = 0x04 ;
|
|
|
|
state->TunerRegs[54].Reg_Num = 82 ;
|
|
state->TunerRegs[54].Reg_Val = 0x75 ;
|
|
|
|
state->TunerRegs[55].Reg_Num = 83 ;
|
|
state->TunerRegs[55].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[56].Reg_Num = 84 ;
|
|
state->TunerRegs[56].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[57].Reg_Num = 85 ;
|
|
state->TunerRegs[57].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[58].Reg_Num = 91 ;
|
|
state->TunerRegs[58].Reg_Val = 0x70 ;
|
|
|
|
state->TunerRegs[59].Reg_Num = 92 ;
|
|
state->TunerRegs[59].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[60].Reg_Num = 93 ;
|
|
state->TunerRegs[60].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[61].Reg_Num = 94 ;
|
|
state->TunerRegs[61].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[62].Reg_Num = 95 ;
|
|
state->TunerRegs[62].Reg_Val = 0x0C ;
|
|
|
|
state->TunerRegs[63].Reg_Num = 96 ;
|
|
state->TunerRegs[63].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[64].Reg_Num = 97 ;
|
|
state->TunerRegs[64].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[65].Reg_Num = 98 ;
|
|
state->TunerRegs[65].Reg_Val = 0xE2 ;
|
|
|
|
state->TunerRegs[66].Reg_Num = 99 ;
|
|
state->TunerRegs[66].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[67].Reg_Num = 100 ;
|
|
state->TunerRegs[67].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[68].Reg_Num = 101 ;
|
|
state->TunerRegs[68].Reg_Val = 0x12 ;
|
|
|
|
state->TunerRegs[69].Reg_Num = 102 ;
|
|
state->TunerRegs[69].Reg_Val = 0x80 ;
|
|
|
|
state->TunerRegs[70].Reg_Num = 103 ;
|
|
state->TunerRegs[70].Reg_Val = 0x32 ;
|
|
|
|
state->TunerRegs[71].Reg_Num = 104 ;
|
|
state->TunerRegs[71].Reg_Val = 0xB4 ;
|
|
|
|
state->TunerRegs[72].Reg_Num = 105 ;
|
|
state->TunerRegs[72].Reg_Val = 0x60 ;
|
|
|
|
state->TunerRegs[73].Reg_Num = 106 ;
|
|
state->TunerRegs[73].Reg_Val = 0x83 ;
|
|
|
|
state->TunerRegs[74].Reg_Num = 107 ;
|
|
state->TunerRegs[74].Reg_Val = 0x84 ;
|
|
|
|
state->TunerRegs[75].Reg_Num = 108 ;
|
|
state->TunerRegs[75].Reg_Val = 0x9C ;
|
|
|
|
state->TunerRegs[76].Reg_Num = 109 ;
|
|
state->TunerRegs[76].Reg_Val = 0x02 ;
|
|
|
|
state->TunerRegs[77].Reg_Num = 110 ;
|
|
state->TunerRegs[77].Reg_Val = 0x81 ;
|
|
|
|
state->TunerRegs[78].Reg_Num = 111 ;
|
|
state->TunerRegs[78].Reg_Val = 0xC0 ;
|
|
|
|
state->TunerRegs[79].Reg_Num = 112 ;
|
|
state->TunerRegs[79].Reg_Val = 0x10 ;
|
|
|
|
state->TunerRegs[80].Reg_Num = 131 ;
|
|
state->TunerRegs[80].Reg_Val = 0x8A ;
|
|
|
|
state->TunerRegs[81].Reg_Num = 132 ;
|
|
state->TunerRegs[81].Reg_Val = 0x10 ;
|
|
|
|
state->TunerRegs[82].Reg_Num = 133 ;
|
|
state->TunerRegs[82].Reg_Val = 0x24 ;
|
|
|
|
state->TunerRegs[83].Reg_Num = 134 ;
|
|
state->TunerRegs[83].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[84].Reg_Num = 135 ;
|
|
state->TunerRegs[84].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[85].Reg_Num = 136 ;
|
|
state->TunerRegs[85].Reg_Val = 0x7E ;
|
|
|
|
state->TunerRegs[86].Reg_Num = 137 ;
|
|
state->TunerRegs[86].Reg_Val = 0x40 ;
|
|
|
|
state->TunerRegs[87].Reg_Num = 138 ;
|
|
state->TunerRegs[87].Reg_Val = 0x38 ;
|
|
|
|
state->TunerRegs[88].Reg_Num = 146 ;
|
|
state->TunerRegs[88].Reg_Val = 0xF6 ;
|
|
|
|
state->TunerRegs[89].Reg_Num = 147 ;
|
|
state->TunerRegs[89].Reg_Val = 0x1A ;
|
|
|
|
state->TunerRegs[90].Reg_Num = 148 ;
|
|
state->TunerRegs[90].Reg_Val = 0x62 ;
|
|
|
|
state->TunerRegs[91].Reg_Num = 149 ;
|
|
state->TunerRegs[91].Reg_Val = 0x33 ;
|
|
|
|
state->TunerRegs[92].Reg_Num = 150 ;
|
|
state->TunerRegs[92].Reg_Val = 0x80 ;
|
|
|
|
state->TunerRegs[93].Reg_Num = 156 ;
|
|
state->TunerRegs[93].Reg_Val = 0x56 ;
|
|
|
|
state->TunerRegs[94].Reg_Num = 157 ;
|
|
state->TunerRegs[94].Reg_Val = 0x17 ;
|
|
|
|
state->TunerRegs[95].Reg_Num = 158 ;
|
|
state->TunerRegs[95].Reg_Val = 0xA9 ;
|
|
|
|
state->TunerRegs[96].Reg_Num = 159 ;
|
|
state->TunerRegs[96].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[97].Reg_Num = 160 ;
|
|
state->TunerRegs[97].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[98].Reg_Num = 161 ;
|
|
state->TunerRegs[98].Reg_Val = 0x00 ;
|
|
|
|
state->TunerRegs[99].Reg_Num = 162 ;
|
|
state->TunerRegs[99].Reg_Val = 0x40 ;
|
|
|
|
state->TunerRegs[100].Reg_Num = 166 ;
|
|
state->TunerRegs[100].Reg_Val = 0xAE ;
|
|
|
|
state->TunerRegs[101].Reg_Num = 167 ;
|
|
state->TunerRegs[101].Reg_Val = 0x1B ;
|
|
|
|
state->TunerRegs[102].Reg_Num = 168 ;
|
|
state->TunerRegs[102].Reg_Val = 0xF2 ;
|
|
|
|
state->TunerRegs[103].Reg_Num = 195 ;
|
|
state->TunerRegs[103].Reg_Val = 0x00 ;
|
|
|
|
return 0 ;
|
|
}
|
|
|
|
static u16 MXL5005_ControlInit(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
state->Init_Ctrl_Num = INITCTRL_NUM;
|
|
|
|
state->Init_Ctrl[0].Ctrl_Num = DN_IQTN_AMP_CUT ;
|
|
state->Init_Ctrl[0].size = 1 ;
|
|
state->Init_Ctrl[0].addr[0] = 73;
|
|
state->Init_Ctrl[0].bit[0] = 7;
|
|
state->Init_Ctrl[0].val[0] = 0;
|
|
|
|
state->Init_Ctrl[1].Ctrl_Num = BB_MODE ;
|
|
state->Init_Ctrl[1].size = 1 ;
|
|
state->Init_Ctrl[1].addr[0] = 53;
|
|
state->Init_Ctrl[1].bit[0] = 2;
|
|
state->Init_Ctrl[1].val[0] = 1;
|
|
|
|
state->Init_Ctrl[2].Ctrl_Num = BB_BUF ;
|
|
state->Init_Ctrl[2].size = 2 ;
|
|
state->Init_Ctrl[2].addr[0] = 53;
|
|
state->Init_Ctrl[2].bit[0] = 1;
|
|
state->Init_Ctrl[2].val[0] = 0;
|
|
state->Init_Ctrl[2].addr[1] = 57;
|
|
state->Init_Ctrl[2].bit[1] = 0;
|
|
state->Init_Ctrl[2].val[1] = 1;
|
|
|
|
state->Init_Ctrl[3].Ctrl_Num = BB_BUF_OA ;
|
|
state->Init_Ctrl[3].size = 1 ;
|
|
state->Init_Ctrl[3].addr[0] = 53;
|
|
state->Init_Ctrl[3].bit[0] = 0;
|
|
state->Init_Ctrl[3].val[0] = 0;
|
|
|
|
state->Init_Ctrl[4].Ctrl_Num = BB_ALPF_BANDSELECT ;
|
|
state->Init_Ctrl[4].size = 3 ;
|
|
state->Init_Ctrl[4].addr[0] = 53;
|
|
state->Init_Ctrl[4].bit[0] = 5;
|
|
state->Init_Ctrl[4].val[0] = 0;
|
|
state->Init_Ctrl[4].addr[1] = 53;
|
|
state->Init_Ctrl[4].bit[1] = 6;
|
|
state->Init_Ctrl[4].val[1] = 0;
|
|
state->Init_Ctrl[4].addr[2] = 53;
|
|
state->Init_Ctrl[4].bit[2] = 7;
|
|
state->Init_Ctrl[4].val[2] = 1;
|
|
|
|
state->Init_Ctrl[5].Ctrl_Num = BB_IQSWAP ;
|
|
state->Init_Ctrl[5].size = 1 ;
|
|
state->Init_Ctrl[5].addr[0] = 59;
|
|
state->Init_Ctrl[5].bit[0] = 0;
|
|
state->Init_Ctrl[5].val[0] = 0;
|
|
|
|
state->Init_Ctrl[6].Ctrl_Num = BB_DLPF_BANDSEL ;
|
|
state->Init_Ctrl[6].size = 2 ;
|
|
state->Init_Ctrl[6].addr[0] = 53;
|
|
state->Init_Ctrl[6].bit[0] = 3;
|
|
state->Init_Ctrl[6].val[0] = 0;
|
|
state->Init_Ctrl[6].addr[1] = 53;
|
|
state->Init_Ctrl[6].bit[1] = 4;
|
|
state->Init_Ctrl[6].val[1] = 1;
|
|
|
|
state->Init_Ctrl[7].Ctrl_Num = RFSYN_CHP_GAIN ;
|
|
state->Init_Ctrl[7].size = 4 ;
|
|
state->Init_Ctrl[7].addr[0] = 22;
|
|
state->Init_Ctrl[7].bit[0] = 4;
|
|
state->Init_Ctrl[7].val[0] = 0;
|
|
state->Init_Ctrl[7].addr[1] = 22;
|
|
state->Init_Ctrl[7].bit[1] = 5;
|
|
state->Init_Ctrl[7].val[1] = 1;
|
|
state->Init_Ctrl[7].addr[2] = 22;
|
|
state->Init_Ctrl[7].bit[2] = 6;
|
|
state->Init_Ctrl[7].val[2] = 1;
|
|
state->Init_Ctrl[7].addr[3] = 22;
|
|
state->Init_Ctrl[7].bit[3] = 7;
|
|
state->Init_Ctrl[7].val[3] = 0;
|
|
|
|
state->Init_Ctrl[8].Ctrl_Num = RFSYN_EN_CHP_HIGAIN ;
|
|
state->Init_Ctrl[8].size = 1 ;
|
|
state->Init_Ctrl[8].addr[0] = 22;
|
|
state->Init_Ctrl[8].bit[0] = 2;
|
|
state->Init_Ctrl[8].val[0] = 0;
|
|
|
|
state->Init_Ctrl[9].Ctrl_Num = AGC_IF ;
|
|
state->Init_Ctrl[9].size = 4 ;
|
|
state->Init_Ctrl[9].addr[0] = 76;
|
|
state->Init_Ctrl[9].bit[0] = 0;
|
|
state->Init_Ctrl[9].val[0] = 1;
|
|
state->Init_Ctrl[9].addr[1] = 76;
|
|
state->Init_Ctrl[9].bit[1] = 1;
|
|
state->Init_Ctrl[9].val[1] = 1;
|
|
state->Init_Ctrl[9].addr[2] = 76;
|
|
state->Init_Ctrl[9].bit[2] = 2;
|
|
state->Init_Ctrl[9].val[2] = 0;
|
|
state->Init_Ctrl[9].addr[3] = 76;
|
|
state->Init_Ctrl[9].bit[3] = 3;
|
|
state->Init_Ctrl[9].val[3] = 1;
|
|
|
|
state->Init_Ctrl[10].Ctrl_Num = AGC_RF ;
|
|
state->Init_Ctrl[10].size = 4 ;
|
|
state->Init_Ctrl[10].addr[0] = 76;
|
|
state->Init_Ctrl[10].bit[0] = 4;
|
|
state->Init_Ctrl[10].val[0] = 1;
|
|
state->Init_Ctrl[10].addr[1] = 76;
|
|
state->Init_Ctrl[10].bit[1] = 5;
|
|
state->Init_Ctrl[10].val[1] = 1;
|
|
state->Init_Ctrl[10].addr[2] = 76;
|
|
state->Init_Ctrl[10].bit[2] = 6;
|
|
state->Init_Ctrl[10].val[2] = 0;
|
|
state->Init_Ctrl[10].addr[3] = 76;
|
|
state->Init_Ctrl[10].bit[3] = 7;
|
|
state->Init_Ctrl[10].val[3] = 1;
|
|
|
|
state->Init_Ctrl[11].Ctrl_Num = IF_DIVVAL ;
|
|
state->Init_Ctrl[11].size = 5 ;
|
|
state->Init_Ctrl[11].addr[0] = 43;
|
|
state->Init_Ctrl[11].bit[0] = 3;
|
|
state->Init_Ctrl[11].val[0] = 0;
|
|
state->Init_Ctrl[11].addr[1] = 43;
|
|
state->Init_Ctrl[11].bit[1] = 4;
|
|
state->Init_Ctrl[11].val[1] = 0;
|
|
state->Init_Ctrl[11].addr[2] = 43;
|
|
state->Init_Ctrl[11].bit[2] = 5;
|
|
state->Init_Ctrl[11].val[2] = 0;
|
|
state->Init_Ctrl[11].addr[3] = 43;
|
|
state->Init_Ctrl[11].bit[3] = 6;
|
|
state->Init_Ctrl[11].val[3] = 1;
|
|
state->Init_Ctrl[11].addr[4] = 43;
|
|
state->Init_Ctrl[11].bit[4] = 7;
|
|
state->Init_Ctrl[11].val[4] = 0;
|
|
|
|
state->Init_Ctrl[12].Ctrl_Num = IF_VCO_BIAS ;
|
|
state->Init_Ctrl[12].size = 6 ;
|
|
state->Init_Ctrl[12].addr[0] = 44;
|
|
state->Init_Ctrl[12].bit[0] = 2;
|
|
state->Init_Ctrl[12].val[0] = 0;
|
|
state->Init_Ctrl[12].addr[1] = 44;
|
|
state->Init_Ctrl[12].bit[1] = 3;
|
|
state->Init_Ctrl[12].val[1] = 0;
|
|
state->Init_Ctrl[12].addr[2] = 44;
|
|
state->Init_Ctrl[12].bit[2] = 4;
|
|
state->Init_Ctrl[12].val[2] = 0;
|
|
state->Init_Ctrl[12].addr[3] = 44;
|
|
state->Init_Ctrl[12].bit[3] = 5;
|
|
state->Init_Ctrl[12].val[3] = 1;
|
|
state->Init_Ctrl[12].addr[4] = 44;
|
|
state->Init_Ctrl[12].bit[4] = 6;
|
|
state->Init_Ctrl[12].val[4] = 0;
|
|
state->Init_Ctrl[12].addr[5] = 44;
|
|
state->Init_Ctrl[12].bit[5] = 7;
|
|
state->Init_Ctrl[12].val[5] = 0;
|
|
|
|
state->Init_Ctrl[13].Ctrl_Num = CHCAL_INT_MOD_IF ;
|
|
state->Init_Ctrl[13].size = 7 ;
|
|
state->Init_Ctrl[13].addr[0] = 11;
|
|
state->Init_Ctrl[13].bit[0] = 0;
|
|
state->Init_Ctrl[13].val[0] = 1;
|
|
state->Init_Ctrl[13].addr[1] = 11;
|
|
state->Init_Ctrl[13].bit[1] = 1;
|
|
state->Init_Ctrl[13].val[1] = 0;
|
|
state->Init_Ctrl[13].addr[2] = 11;
|
|
state->Init_Ctrl[13].bit[2] = 2;
|
|
state->Init_Ctrl[13].val[2] = 0;
|
|
state->Init_Ctrl[13].addr[3] = 11;
|
|
state->Init_Ctrl[13].bit[3] = 3;
|
|
state->Init_Ctrl[13].val[3] = 1;
|
|
state->Init_Ctrl[13].addr[4] = 11;
|
|
state->Init_Ctrl[13].bit[4] = 4;
|
|
state->Init_Ctrl[13].val[4] = 1;
|
|
state->Init_Ctrl[13].addr[5] = 11;
|
|
state->Init_Ctrl[13].bit[5] = 5;
|
|
state->Init_Ctrl[13].val[5] = 0;
|
|
state->Init_Ctrl[13].addr[6] = 11;
|
|
state->Init_Ctrl[13].bit[6] = 6;
|
|
state->Init_Ctrl[13].val[6] = 0;
|
|
|
|
state->Init_Ctrl[14].Ctrl_Num = CHCAL_FRAC_MOD_IF ;
|
|
state->Init_Ctrl[14].size = 16 ;
|
|
state->Init_Ctrl[14].addr[0] = 13;
|
|
state->Init_Ctrl[14].bit[0] = 0;
|
|
state->Init_Ctrl[14].val[0] = 0;
|
|
state->Init_Ctrl[14].addr[1] = 13;
|
|
state->Init_Ctrl[14].bit[1] = 1;
|
|
state->Init_Ctrl[14].val[1] = 0;
|
|
state->Init_Ctrl[14].addr[2] = 13;
|
|
state->Init_Ctrl[14].bit[2] = 2;
|
|
state->Init_Ctrl[14].val[2] = 0;
|
|
state->Init_Ctrl[14].addr[3] = 13;
|
|
state->Init_Ctrl[14].bit[3] = 3;
|
|
state->Init_Ctrl[14].val[3] = 0;
|
|
state->Init_Ctrl[14].addr[4] = 13;
|
|
state->Init_Ctrl[14].bit[4] = 4;
|
|
state->Init_Ctrl[14].val[4] = 0;
|
|
state->Init_Ctrl[14].addr[5] = 13;
|
|
state->Init_Ctrl[14].bit[5] = 5;
|
|
state->Init_Ctrl[14].val[5] = 0;
|
|
state->Init_Ctrl[14].addr[6] = 13;
|
|
state->Init_Ctrl[14].bit[6] = 6;
|
|
state->Init_Ctrl[14].val[6] = 0;
|
|
state->Init_Ctrl[14].addr[7] = 13;
|
|
state->Init_Ctrl[14].bit[7] = 7;
|
|
state->Init_Ctrl[14].val[7] = 0;
|
|
state->Init_Ctrl[14].addr[8] = 12;
|
|
state->Init_Ctrl[14].bit[8] = 0;
|
|
state->Init_Ctrl[14].val[8] = 0;
|
|
state->Init_Ctrl[14].addr[9] = 12;
|
|
state->Init_Ctrl[14].bit[9] = 1;
|
|
state->Init_Ctrl[14].val[9] = 0;
|
|
state->Init_Ctrl[14].addr[10] = 12;
|
|
state->Init_Ctrl[14].bit[10] = 2;
|
|
state->Init_Ctrl[14].val[10] = 0;
|
|
state->Init_Ctrl[14].addr[11] = 12;
|
|
state->Init_Ctrl[14].bit[11] = 3;
|
|
state->Init_Ctrl[14].val[11] = 0;
|
|
state->Init_Ctrl[14].addr[12] = 12;
|
|
state->Init_Ctrl[14].bit[12] = 4;
|
|
state->Init_Ctrl[14].val[12] = 0;
|
|
state->Init_Ctrl[14].addr[13] = 12;
|
|
state->Init_Ctrl[14].bit[13] = 5;
|
|
state->Init_Ctrl[14].val[13] = 1;
|
|
state->Init_Ctrl[14].addr[14] = 12;
|
|
state->Init_Ctrl[14].bit[14] = 6;
|
|
state->Init_Ctrl[14].val[14] = 1;
|
|
state->Init_Ctrl[14].addr[15] = 12;
|
|
state->Init_Ctrl[14].bit[15] = 7;
|
|
state->Init_Ctrl[14].val[15] = 0;
|
|
|
|
state->Init_Ctrl[15].Ctrl_Num = DRV_RES_SEL ;
|
|
state->Init_Ctrl[15].size = 3 ;
|
|
state->Init_Ctrl[15].addr[0] = 147;
|
|
state->Init_Ctrl[15].bit[0] = 2;
|
|
state->Init_Ctrl[15].val[0] = 0;
|
|
state->Init_Ctrl[15].addr[1] = 147;
|
|
state->Init_Ctrl[15].bit[1] = 3;
|
|
state->Init_Ctrl[15].val[1] = 1;
|
|
state->Init_Ctrl[15].addr[2] = 147;
|
|
state->Init_Ctrl[15].bit[2] = 4;
|
|
state->Init_Ctrl[15].val[2] = 1;
|
|
|
|
state->Init_Ctrl[16].Ctrl_Num = I_DRIVER ;
|
|
state->Init_Ctrl[16].size = 2 ;
|
|
state->Init_Ctrl[16].addr[0] = 147;
|
|
state->Init_Ctrl[16].bit[0] = 0;
|
|
state->Init_Ctrl[16].val[0] = 0;
|
|
state->Init_Ctrl[16].addr[1] = 147;
|
|
state->Init_Ctrl[16].bit[1] = 1;
|
|
state->Init_Ctrl[16].val[1] = 1;
|
|
|
|
state->Init_Ctrl[17].Ctrl_Num = EN_AAF ;
|
|
state->Init_Ctrl[17].size = 1 ;
|
|
state->Init_Ctrl[17].addr[0] = 147;
|
|
state->Init_Ctrl[17].bit[0] = 7;
|
|
state->Init_Ctrl[17].val[0] = 0;
|
|
|
|
state->Init_Ctrl[18].Ctrl_Num = EN_3P ;
|
|
state->Init_Ctrl[18].size = 1 ;
|
|
state->Init_Ctrl[18].addr[0] = 147;
|
|
state->Init_Ctrl[18].bit[0] = 6;
|
|
state->Init_Ctrl[18].val[0] = 0;
|
|
|
|
state->Init_Ctrl[19].Ctrl_Num = EN_AUX_3P ;
|
|
state->Init_Ctrl[19].size = 1 ;
|
|
state->Init_Ctrl[19].addr[0] = 156;
|
|
state->Init_Ctrl[19].bit[0] = 0;
|
|
state->Init_Ctrl[19].val[0] = 0;
|
|
|
|
state->Init_Ctrl[20].Ctrl_Num = SEL_AAF_BAND ;
|
|
state->Init_Ctrl[20].size = 1 ;
|
|
state->Init_Ctrl[20].addr[0] = 147;
|
|
state->Init_Ctrl[20].bit[0] = 5;
|
|
state->Init_Ctrl[20].val[0] = 0;
|
|
|
|
state->Init_Ctrl[21].Ctrl_Num = SEQ_ENCLK16_CLK_OUT ;
|
|
state->Init_Ctrl[21].size = 1 ;
|
|
state->Init_Ctrl[21].addr[0] = 137;
|
|
state->Init_Ctrl[21].bit[0] = 4;
|
|
state->Init_Ctrl[21].val[0] = 0;
|
|
|
|
state->Init_Ctrl[22].Ctrl_Num = SEQ_SEL4_16B ;
|
|
state->Init_Ctrl[22].size = 1 ;
|
|
state->Init_Ctrl[22].addr[0] = 137;
|
|
state->Init_Ctrl[22].bit[0] = 7;
|
|
state->Init_Ctrl[22].val[0] = 0;
|
|
|
|
state->Init_Ctrl[23].Ctrl_Num = XTAL_CAPSELECT ;
|
|
state->Init_Ctrl[23].size = 1 ;
|
|
state->Init_Ctrl[23].addr[0] = 91;
|
|
state->Init_Ctrl[23].bit[0] = 5;
|
|
state->Init_Ctrl[23].val[0] = 1;
|
|
|
|
state->Init_Ctrl[24].Ctrl_Num = IF_SEL_DBL ;
|
|
state->Init_Ctrl[24].size = 1 ;
|
|
state->Init_Ctrl[24].addr[0] = 43;
|
|
state->Init_Ctrl[24].bit[0] = 0;
|
|
state->Init_Ctrl[24].val[0] = 1;
|
|
|
|
state->Init_Ctrl[25].Ctrl_Num = RFSYN_R_DIV ;
|
|
state->Init_Ctrl[25].size = 2 ;
|
|
state->Init_Ctrl[25].addr[0] = 22;
|
|
state->Init_Ctrl[25].bit[0] = 0;
|
|
state->Init_Ctrl[25].val[0] = 1;
|
|
state->Init_Ctrl[25].addr[1] = 22;
|
|
state->Init_Ctrl[25].bit[1] = 1;
|
|
state->Init_Ctrl[25].val[1] = 1;
|
|
|
|
state->Init_Ctrl[26].Ctrl_Num = SEQ_EXTSYNTHCALIF ;
|
|
state->Init_Ctrl[26].size = 1 ;
|
|
state->Init_Ctrl[26].addr[0] = 134;
|
|
state->Init_Ctrl[26].bit[0] = 2;
|
|
state->Init_Ctrl[26].val[0] = 0;
|
|
|
|
state->Init_Ctrl[27].Ctrl_Num = SEQ_EXTDCCAL ;
|
|
state->Init_Ctrl[27].size = 1 ;
|
|
state->Init_Ctrl[27].addr[0] = 137;
|
|
state->Init_Ctrl[27].bit[0] = 3;
|
|
state->Init_Ctrl[27].val[0] = 0;
|
|
|
|
state->Init_Ctrl[28].Ctrl_Num = AGC_EN_RSSI ;
|
|
state->Init_Ctrl[28].size = 1 ;
|
|
state->Init_Ctrl[28].addr[0] = 77;
|
|
state->Init_Ctrl[28].bit[0] = 7;
|
|
state->Init_Ctrl[28].val[0] = 0;
|
|
|
|
state->Init_Ctrl[29].Ctrl_Num = RFA_ENCLKRFAGC ;
|
|
state->Init_Ctrl[29].size = 1 ;
|
|
state->Init_Ctrl[29].addr[0] = 166;
|
|
state->Init_Ctrl[29].bit[0] = 7;
|
|
state->Init_Ctrl[29].val[0] = 1;
|
|
|
|
state->Init_Ctrl[30].Ctrl_Num = RFA_RSSI_REFH ;
|
|
state->Init_Ctrl[30].size = 3 ;
|
|
state->Init_Ctrl[30].addr[0] = 166;
|
|
state->Init_Ctrl[30].bit[0] = 0;
|
|
state->Init_Ctrl[30].val[0] = 0;
|
|
state->Init_Ctrl[30].addr[1] = 166;
|
|
state->Init_Ctrl[30].bit[1] = 1;
|
|
state->Init_Ctrl[30].val[1] = 1;
|
|
state->Init_Ctrl[30].addr[2] = 166;
|
|
state->Init_Ctrl[30].bit[2] = 2;
|
|
state->Init_Ctrl[30].val[2] = 1;
|
|
|
|
state->Init_Ctrl[31].Ctrl_Num = RFA_RSSI_REF ;
|
|
state->Init_Ctrl[31].size = 3 ;
|
|
state->Init_Ctrl[31].addr[0] = 166;
|
|
state->Init_Ctrl[31].bit[0] = 3;
|
|
state->Init_Ctrl[31].val[0] = 1;
|
|
state->Init_Ctrl[31].addr[1] = 166;
|
|
state->Init_Ctrl[31].bit[1] = 4;
|
|
state->Init_Ctrl[31].val[1] = 0;
|
|
state->Init_Ctrl[31].addr[2] = 166;
|
|
state->Init_Ctrl[31].bit[2] = 5;
|
|
state->Init_Ctrl[31].val[2] = 1;
|
|
|
|
state->Init_Ctrl[32].Ctrl_Num = RFA_RSSI_REFL ;
|
|
state->Init_Ctrl[32].size = 3 ;
|
|
state->Init_Ctrl[32].addr[0] = 167;
|
|
state->Init_Ctrl[32].bit[0] = 0;
|
|
state->Init_Ctrl[32].val[0] = 1;
|
|
state->Init_Ctrl[32].addr[1] = 167;
|
|
state->Init_Ctrl[32].bit[1] = 1;
|
|
state->Init_Ctrl[32].val[1] = 1;
|
|
state->Init_Ctrl[32].addr[2] = 167;
|
|
state->Init_Ctrl[32].bit[2] = 2;
|
|
state->Init_Ctrl[32].val[2] = 0;
|
|
|
|
state->Init_Ctrl[33].Ctrl_Num = RFA_FLR ;
|
|
state->Init_Ctrl[33].size = 4 ;
|
|
state->Init_Ctrl[33].addr[0] = 168;
|
|
state->Init_Ctrl[33].bit[0] = 0;
|
|
state->Init_Ctrl[33].val[0] = 0;
|
|
state->Init_Ctrl[33].addr[1] = 168;
|
|
state->Init_Ctrl[33].bit[1] = 1;
|
|
state->Init_Ctrl[33].val[1] = 1;
|
|
state->Init_Ctrl[33].addr[2] = 168;
|
|
state->Init_Ctrl[33].bit[2] = 2;
|
|
state->Init_Ctrl[33].val[2] = 0;
|
|
state->Init_Ctrl[33].addr[3] = 168;
|
|
state->Init_Ctrl[33].bit[3] = 3;
|
|
state->Init_Ctrl[33].val[3] = 0;
|
|
|
|
state->Init_Ctrl[34].Ctrl_Num = RFA_CEIL ;
|
|
state->Init_Ctrl[34].size = 4 ;
|
|
state->Init_Ctrl[34].addr[0] = 168;
|
|
state->Init_Ctrl[34].bit[0] = 4;
|
|
state->Init_Ctrl[34].val[0] = 1;
|
|
state->Init_Ctrl[34].addr[1] = 168;
|
|
state->Init_Ctrl[34].bit[1] = 5;
|
|
state->Init_Ctrl[34].val[1] = 1;
|
|
state->Init_Ctrl[34].addr[2] = 168;
|
|
state->Init_Ctrl[34].bit[2] = 6;
|
|
state->Init_Ctrl[34].val[2] = 1;
|
|
state->Init_Ctrl[34].addr[3] = 168;
|
|
state->Init_Ctrl[34].bit[3] = 7;
|
|
state->Init_Ctrl[34].val[3] = 1;
|
|
|
|
state->Init_Ctrl[35].Ctrl_Num = SEQ_EXTIQFSMPULSE ;
|
|
state->Init_Ctrl[35].size = 1 ;
|
|
state->Init_Ctrl[35].addr[0] = 135;
|
|
state->Init_Ctrl[35].bit[0] = 0;
|
|
state->Init_Ctrl[35].val[0] = 0;
|
|
|
|
state->Init_Ctrl[36].Ctrl_Num = OVERRIDE_1 ;
|
|
state->Init_Ctrl[36].size = 1 ;
|
|
state->Init_Ctrl[36].addr[0] = 56;
|
|
state->Init_Ctrl[36].bit[0] = 3;
|
|
state->Init_Ctrl[36].val[0] = 0;
|
|
|
|
state->Init_Ctrl[37].Ctrl_Num = BB_INITSTATE_DLPF_TUNE ;
|
|
state->Init_Ctrl[37].size = 7 ;
|
|
state->Init_Ctrl[37].addr[0] = 59;
|
|
state->Init_Ctrl[37].bit[0] = 1;
|
|
state->Init_Ctrl[37].val[0] = 0;
|
|
state->Init_Ctrl[37].addr[1] = 59;
|
|
state->Init_Ctrl[37].bit[1] = 2;
|
|
state->Init_Ctrl[37].val[1] = 0;
|
|
state->Init_Ctrl[37].addr[2] = 59;
|
|
state->Init_Ctrl[37].bit[2] = 3;
|
|
state->Init_Ctrl[37].val[2] = 0;
|
|
state->Init_Ctrl[37].addr[3] = 59;
|
|
state->Init_Ctrl[37].bit[3] = 4;
|
|
state->Init_Ctrl[37].val[3] = 0;
|
|
state->Init_Ctrl[37].addr[4] = 59;
|
|
state->Init_Ctrl[37].bit[4] = 5;
|
|
state->Init_Ctrl[37].val[4] = 0;
|
|
state->Init_Ctrl[37].addr[5] = 59;
|
|
state->Init_Ctrl[37].bit[5] = 6;
|
|
state->Init_Ctrl[37].val[5] = 0;
|
|
state->Init_Ctrl[37].addr[6] = 59;
|
|
state->Init_Ctrl[37].bit[6] = 7;
|
|
state->Init_Ctrl[37].val[6] = 0;
|
|
|
|
state->Init_Ctrl[38].Ctrl_Num = TG_R_DIV ;
|
|
state->Init_Ctrl[38].size = 6 ;
|
|
state->Init_Ctrl[38].addr[0] = 32;
|
|
state->Init_Ctrl[38].bit[0] = 2;
|
|
state->Init_Ctrl[38].val[0] = 0;
|
|
state->Init_Ctrl[38].addr[1] = 32;
|
|
state->Init_Ctrl[38].bit[1] = 3;
|
|
state->Init_Ctrl[38].val[1] = 0;
|
|
state->Init_Ctrl[38].addr[2] = 32;
|
|
state->Init_Ctrl[38].bit[2] = 4;
|
|
state->Init_Ctrl[38].val[2] = 0;
|
|
state->Init_Ctrl[38].addr[3] = 32;
|
|
state->Init_Ctrl[38].bit[3] = 5;
|
|
state->Init_Ctrl[38].val[3] = 0;
|
|
state->Init_Ctrl[38].addr[4] = 32;
|
|
state->Init_Ctrl[38].bit[4] = 6;
|
|
state->Init_Ctrl[38].val[4] = 1;
|
|
state->Init_Ctrl[38].addr[5] = 32;
|
|
state->Init_Ctrl[38].bit[5] = 7;
|
|
state->Init_Ctrl[38].val[5] = 0;
|
|
|
|
state->Init_Ctrl[39].Ctrl_Num = EN_CHP_LIN_B ;
|
|
state->Init_Ctrl[39].size = 1 ;
|
|
state->Init_Ctrl[39].addr[0] = 25;
|
|
state->Init_Ctrl[39].bit[0] = 3;
|
|
state->Init_Ctrl[39].val[0] = 1;
|
|
|
|
|
|
state->CH_Ctrl_Num = CHCTRL_NUM ;
|
|
|
|
state->CH_Ctrl[0].Ctrl_Num = DN_POLY ;
|
|
state->CH_Ctrl[0].size = 2 ;
|
|
state->CH_Ctrl[0].addr[0] = 68;
|
|
state->CH_Ctrl[0].bit[0] = 6;
|
|
state->CH_Ctrl[0].val[0] = 1;
|
|
state->CH_Ctrl[0].addr[1] = 68;
|
|
state->CH_Ctrl[0].bit[1] = 7;
|
|
state->CH_Ctrl[0].val[1] = 1;
|
|
|
|
state->CH_Ctrl[1].Ctrl_Num = DN_RFGAIN ;
|
|
state->CH_Ctrl[1].size = 2 ;
|
|
state->CH_Ctrl[1].addr[0] = 70;
|
|
state->CH_Ctrl[1].bit[0] = 6;
|
|
state->CH_Ctrl[1].val[0] = 1;
|
|
state->CH_Ctrl[1].addr[1] = 70;
|
|
state->CH_Ctrl[1].bit[1] = 7;
|
|
state->CH_Ctrl[1].val[1] = 0;
|
|
|
|
state->CH_Ctrl[2].Ctrl_Num = DN_CAP_RFLPF ;
|
|
state->CH_Ctrl[2].size = 9 ;
|
|
state->CH_Ctrl[2].addr[0] = 69;
|
|
state->CH_Ctrl[2].bit[0] = 5;
|
|
state->CH_Ctrl[2].val[0] = 0;
|
|
state->CH_Ctrl[2].addr[1] = 69;
|
|
state->CH_Ctrl[2].bit[1] = 6;
|
|
state->CH_Ctrl[2].val[1] = 0;
|
|
state->CH_Ctrl[2].addr[2] = 69;
|
|
state->CH_Ctrl[2].bit[2] = 7;
|
|
state->CH_Ctrl[2].val[2] = 0;
|
|
state->CH_Ctrl[2].addr[3] = 68;
|
|
state->CH_Ctrl[2].bit[3] = 0;
|
|
state->CH_Ctrl[2].val[3] = 0;
|
|
state->CH_Ctrl[2].addr[4] = 68;
|
|
state->CH_Ctrl[2].bit[4] = 1;
|
|
state->CH_Ctrl[2].val[4] = 0;
|
|
state->CH_Ctrl[2].addr[5] = 68;
|
|
state->CH_Ctrl[2].bit[5] = 2;
|
|
state->CH_Ctrl[2].val[5] = 0;
|
|
state->CH_Ctrl[2].addr[6] = 68;
|
|
state->CH_Ctrl[2].bit[6] = 3;
|
|
state->CH_Ctrl[2].val[6] = 0;
|
|
state->CH_Ctrl[2].addr[7] = 68;
|
|
state->CH_Ctrl[2].bit[7] = 4;
|
|
state->CH_Ctrl[2].val[7] = 0;
|
|
state->CH_Ctrl[2].addr[8] = 68;
|
|
state->CH_Ctrl[2].bit[8] = 5;
|
|
state->CH_Ctrl[2].val[8] = 0;
|
|
|
|
state->CH_Ctrl[3].Ctrl_Num = DN_EN_VHFUHFBAR ;
|
|
state->CH_Ctrl[3].size = 1 ;
|
|
state->CH_Ctrl[3].addr[0] = 70;
|
|
state->CH_Ctrl[3].bit[0] = 5;
|
|
state->CH_Ctrl[3].val[0] = 0;
|
|
|
|
state->CH_Ctrl[4].Ctrl_Num = DN_GAIN_ADJUST ;
|
|
state->CH_Ctrl[4].size = 3 ;
|
|
state->CH_Ctrl[4].addr[0] = 73;
|
|
state->CH_Ctrl[4].bit[0] = 4;
|
|
state->CH_Ctrl[4].val[0] = 0;
|
|
state->CH_Ctrl[4].addr[1] = 73;
|
|
state->CH_Ctrl[4].bit[1] = 5;
|
|
state->CH_Ctrl[4].val[1] = 1;
|
|
state->CH_Ctrl[4].addr[2] = 73;
|
|
state->CH_Ctrl[4].bit[2] = 6;
|
|
state->CH_Ctrl[4].val[2] = 0;
|
|
|
|
state->CH_Ctrl[5].Ctrl_Num = DN_IQTNBUF_AMP ;
|
|
state->CH_Ctrl[5].size = 4 ;
|
|
state->CH_Ctrl[5].addr[0] = 70;
|
|
state->CH_Ctrl[5].bit[0] = 0;
|
|
state->CH_Ctrl[5].val[0] = 0;
|
|
state->CH_Ctrl[5].addr[1] = 70;
|
|
state->CH_Ctrl[5].bit[1] = 1;
|
|
state->CH_Ctrl[5].val[1] = 0;
|
|
state->CH_Ctrl[5].addr[2] = 70;
|
|
state->CH_Ctrl[5].bit[2] = 2;
|
|
state->CH_Ctrl[5].val[2] = 0;
|
|
state->CH_Ctrl[5].addr[3] = 70;
|
|
state->CH_Ctrl[5].bit[3] = 3;
|
|
state->CH_Ctrl[5].val[3] = 0;
|
|
|
|
state->CH_Ctrl[6].Ctrl_Num = DN_IQTNGNBFBIAS_BST ;
|
|
state->CH_Ctrl[6].size = 1 ;
|
|
state->CH_Ctrl[6].addr[0] = 70;
|
|
state->CH_Ctrl[6].bit[0] = 4;
|
|
state->CH_Ctrl[6].val[0] = 1;
|
|
|
|
state->CH_Ctrl[7].Ctrl_Num = RFSYN_EN_OUTMUX ;
|
|
state->CH_Ctrl[7].size = 1 ;
|
|
state->CH_Ctrl[7].addr[0] = 111;
|
|
state->CH_Ctrl[7].bit[0] = 4;
|
|
state->CH_Ctrl[7].val[0] = 0;
|
|
|
|
state->CH_Ctrl[8].Ctrl_Num = RFSYN_SEL_VCO_OUT ;
|
|
state->CH_Ctrl[8].size = 1 ;
|
|
state->CH_Ctrl[8].addr[0] = 111;
|
|
state->CH_Ctrl[8].bit[0] = 7;
|
|
state->CH_Ctrl[8].val[0] = 1;
|
|
|
|
state->CH_Ctrl[9].Ctrl_Num = RFSYN_SEL_VCO_HI ;
|
|
state->CH_Ctrl[9].size = 1 ;
|
|
state->CH_Ctrl[9].addr[0] = 111;
|
|
state->CH_Ctrl[9].bit[0] = 6;
|
|
state->CH_Ctrl[9].val[0] = 1;
|
|
|
|
state->CH_Ctrl[10].Ctrl_Num = RFSYN_SEL_DIVM ;
|
|
state->CH_Ctrl[10].size = 1 ;
|
|
state->CH_Ctrl[10].addr[0] = 111;
|
|
state->CH_Ctrl[10].bit[0] = 5;
|
|
state->CH_Ctrl[10].val[0] = 0;
|
|
|
|
state->CH_Ctrl[11].Ctrl_Num = RFSYN_RF_DIV_BIAS ;
|
|
state->CH_Ctrl[11].size = 2 ;
|
|
state->CH_Ctrl[11].addr[0] = 110;
|
|
state->CH_Ctrl[11].bit[0] = 0;
|
|
state->CH_Ctrl[11].val[0] = 1;
|
|
state->CH_Ctrl[11].addr[1] = 110;
|
|
state->CH_Ctrl[11].bit[1] = 1;
|
|
state->CH_Ctrl[11].val[1] = 0;
|
|
|
|
state->CH_Ctrl[12].Ctrl_Num = DN_SEL_FREQ ;
|
|
state->CH_Ctrl[12].size = 3 ;
|
|
state->CH_Ctrl[12].addr[0] = 69;
|
|
state->CH_Ctrl[12].bit[0] = 2;
|
|
state->CH_Ctrl[12].val[0] = 0;
|
|
state->CH_Ctrl[12].addr[1] = 69;
|
|
state->CH_Ctrl[12].bit[1] = 3;
|
|
state->CH_Ctrl[12].val[1] = 0;
|
|
state->CH_Ctrl[12].addr[2] = 69;
|
|
state->CH_Ctrl[12].bit[2] = 4;
|
|
state->CH_Ctrl[12].val[2] = 0;
|
|
|
|
state->CH_Ctrl[13].Ctrl_Num = RFSYN_VCO_BIAS ;
|
|
state->CH_Ctrl[13].size = 6 ;
|
|
state->CH_Ctrl[13].addr[0] = 110;
|
|
state->CH_Ctrl[13].bit[0] = 2;
|
|
state->CH_Ctrl[13].val[0] = 0;
|
|
state->CH_Ctrl[13].addr[1] = 110;
|
|
state->CH_Ctrl[13].bit[1] = 3;
|
|
state->CH_Ctrl[13].val[1] = 0;
|
|
state->CH_Ctrl[13].addr[2] = 110;
|
|
state->CH_Ctrl[13].bit[2] = 4;
|
|
state->CH_Ctrl[13].val[2] = 0;
|
|
state->CH_Ctrl[13].addr[3] = 110;
|
|
state->CH_Ctrl[13].bit[3] = 5;
|
|
state->CH_Ctrl[13].val[3] = 0;
|
|
state->CH_Ctrl[13].addr[4] = 110;
|
|
state->CH_Ctrl[13].bit[4] = 6;
|
|
state->CH_Ctrl[13].val[4] = 0;
|
|
state->CH_Ctrl[13].addr[5] = 110;
|
|
state->CH_Ctrl[13].bit[5] = 7;
|
|
state->CH_Ctrl[13].val[5] = 1;
|
|
|
|
state->CH_Ctrl[14].Ctrl_Num = CHCAL_INT_MOD_RF ;
|
|
state->CH_Ctrl[14].size = 7 ;
|
|
state->CH_Ctrl[14].addr[0] = 14;
|
|
state->CH_Ctrl[14].bit[0] = 0;
|
|
state->CH_Ctrl[14].val[0] = 0;
|
|
state->CH_Ctrl[14].addr[1] = 14;
|
|
state->CH_Ctrl[14].bit[1] = 1;
|
|
state->CH_Ctrl[14].val[1] = 0;
|
|
state->CH_Ctrl[14].addr[2] = 14;
|
|
state->CH_Ctrl[14].bit[2] = 2;
|
|
state->CH_Ctrl[14].val[2] = 0;
|
|
state->CH_Ctrl[14].addr[3] = 14;
|
|
state->CH_Ctrl[14].bit[3] = 3;
|
|
state->CH_Ctrl[14].val[3] = 0;
|
|
state->CH_Ctrl[14].addr[4] = 14;
|
|
state->CH_Ctrl[14].bit[4] = 4;
|
|
state->CH_Ctrl[14].val[4] = 0;
|
|
state->CH_Ctrl[14].addr[5] = 14;
|
|
state->CH_Ctrl[14].bit[5] = 5;
|
|
state->CH_Ctrl[14].val[5] = 0;
|
|
state->CH_Ctrl[14].addr[6] = 14;
|
|
state->CH_Ctrl[14].bit[6] = 6;
|
|
state->CH_Ctrl[14].val[6] = 0;
|
|
|
|
state->CH_Ctrl[15].Ctrl_Num = CHCAL_FRAC_MOD_RF ;
|
|
state->CH_Ctrl[15].size = 18 ;
|
|
state->CH_Ctrl[15].addr[0] = 17;
|
|
state->CH_Ctrl[15].bit[0] = 6;
|
|
state->CH_Ctrl[15].val[0] = 0;
|
|
state->CH_Ctrl[15].addr[1] = 17;
|
|
state->CH_Ctrl[15].bit[1] = 7;
|
|
state->CH_Ctrl[15].val[1] = 0;
|
|
state->CH_Ctrl[15].addr[2] = 16;
|
|
state->CH_Ctrl[15].bit[2] = 0;
|
|
state->CH_Ctrl[15].val[2] = 0;
|
|
state->CH_Ctrl[15].addr[3] = 16;
|
|
state->CH_Ctrl[15].bit[3] = 1;
|
|
state->CH_Ctrl[15].val[3] = 0;
|
|
state->CH_Ctrl[15].addr[4] = 16;
|
|
state->CH_Ctrl[15].bit[4] = 2;
|
|
state->CH_Ctrl[15].val[4] = 0;
|
|
state->CH_Ctrl[15].addr[5] = 16;
|
|
state->CH_Ctrl[15].bit[5] = 3;
|
|
state->CH_Ctrl[15].val[5] = 0;
|
|
state->CH_Ctrl[15].addr[6] = 16;
|
|
state->CH_Ctrl[15].bit[6] = 4;
|
|
state->CH_Ctrl[15].val[6] = 0;
|
|
state->CH_Ctrl[15].addr[7] = 16;
|
|
state->CH_Ctrl[15].bit[7] = 5;
|
|
state->CH_Ctrl[15].val[7] = 0;
|
|
state->CH_Ctrl[15].addr[8] = 16;
|
|
state->CH_Ctrl[15].bit[8] = 6;
|
|
state->CH_Ctrl[15].val[8] = 0;
|
|
state->CH_Ctrl[15].addr[9] = 16;
|
|
state->CH_Ctrl[15].bit[9] = 7;
|
|
state->CH_Ctrl[15].val[9] = 0;
|
|
state->CH_Ctrl[15].addr[10] = 15;
|
|
state->CH_Ctrl[15].bit[10] = 0;
|
|
state->CH_Ctrl[15].val[10] = 0;
|
|
state->CH_Ctrl[15].addr[11] = 15;
|
|
state->CH_Ctrl[15].bit[11] = 1;
|
|
state->CH_Ctrl[15].val[11] = 0;
|
|
state->CH_Ctrl[15].addr[12] = 15;
|
|
state->CH_Ctrl[15].bit[12] = 2;
|
|
state->CH_Ctrl[15].val[12] = 0;
|
|
state->CH_Ctrl[15].addr[13] = 15;
|
|
state->CH_Ctrl[15].bit[13] = 3;
|
|
state->CH_Ctrl[15].val[13] = 0;
|
|
state->CH_Ctrl[15].addr[14] = 15;
|
|
state->CH_Ctrl[15].bit[14] = 4;
|
|
state->CH_Ctrl[15].val[14] = 0;
|
|
state->CH_Ctrl[15].addr[15] = 15;
|
|
state->CH_Ctrl[15].bit[15] = 5;
|
|
state->CH_Ctrl[15].val[15] = 0;
|
|
state->CH_Ctrl[15].addr[16] = 15;
|
|
state->CH_Ctrl[15].bit[16] = 6;
|
|
state->CH_Ctrl[15].val[16] = 1;
|
|
state->CH_Ctrl[15].addr[17] = 15;
|
|
state->CH_Ctrl[15].bit[17] = 7;
|
|
state->CH_Ctrl[15].val[17] = 1;
|
|
|
|
state->CH_Ctrl[16].Ctrl_Num = RFSYN_LPF_R ;
|
|
state->CH_Ctrl[16].size = 5 ;
|
|
state->CH_Ctrl[16].addr[0] = 112;
|
|
state->CH_Ctrl[16].bit[0] = 0;
|
|
state->CH_Ctrl[16].val[0] = 0;
|
|
state->CH_Ctrl[16].addr[1] = 112;
|
|
state->CH_Ctrl[16].bit[1] = 1;
|
|
state->CH_Ctrl[16].val[1] = 0;
|
|
state->CH_Ctrl[16].addr[2] = 112;
|
|
state->CH_Ctrl[16].bit[2] = 2;
|
|
state->CH_Ctrl[16].val[2] = 0;
|
|
state->CH_Ctrl[16].addr[3] = 112;
|
|
state->CH_Ctrl[16].bit[3] = 3;
|
|
state->CH_Ctrl[16].val[3] = 0;
|
|
state->CH_Ctrl[16].addr[4] = 112;
|
|
state->CH_Ctrl[16].bit[4] = 4;
|
|
state->CH_Ctrl[16].val[4] = 1;
|
|
|
|
state->CH_Ctrl[17].Ctrl_Num = CHCAL_EN_INT_RF ;
|
|
state->CH_Ctrl[17].size = 1 ;
|
|
state->CH_Ctrl[17].addr[0] = 14;
|
|
state->CH_Ctrl[17].bit[0] = 7;
|
|
state->CH_Ctrl[17].val[0] = 0;
|
|
|
|
state->CH_Ctrl[18].Ctrl_Num = TG_LO_DIVVAL ;
|
|
state->CH_Ctrl[18].size = 4 ;
|
|
state->CH_Ctrl[18].addr[0] = 107;
|
|
state->CH_Ctrl[18].bit[0] = 3;
|
|
state->CH_Ctrl[18].val[0] = 0;
|
|
state->CH_Ctrl[18].addr[1] = 107;
|
|
state->CH_Ctrl[18].bit[1] = 4;
|
|
state->CH_Ctrl[18].val[1] = 0;
|
|
state->CH_Ctrl[18].addr[2] = 107;
|
|
state->CH_Ctrl[18].bit[2] = 5;
|
|
state->CH_Ctrl[18].val[2] = 0;
|
|
state->CH_Ctrl[18].addr[3] = 107;
|
|
state->CH_Ctrl[18].bit[3] = 6;
|
|
state->CH_Ctrl[18].val[3] = 0;
|
|
|
|
state->CH_Ctrl[19].Ctrl_Num = TG_LO_SELVAL ;
|
|
state->CH_Ctrl[19].size = 3 ;
|
|
state->CH_Ctrl[19].addr[0] = 107;
|
|
state->CH_Ctrl[19].bit[0] = 7;
|
|
state->CH_Ctrl[19].val[0] = 1;
|
|
state->CH_Ctrl[19].addr[1] = 106;
|
|
state->CH_Ctrl[19].bit[1] = 0;
|
|
state->CH_Ctrl[19].val[1] = 1;
|
|
state->CH_Ctrl[19].addr[2] = 106;
|
|
state->CH_Ctrl[19].bit[2] = 1;
|
|
state->CH_Ctrl[19].val[2] = 1;
|
|
|
|
state->CH_Ctrl[20].Ctrl_Num = TG_DIV_VAL ;
|
|
state->CH_Ctrl[20].size = 11 ;
|
|
state->CH_Ctrl[20].addr[0] = 109;
|
|
state->CH_Ctrl[20].bit[0] = 2;
|
|
state->CH_Ctrl[20].val[0] = 0;
|
|
state->CH_Ctrl[20].addr[1] = 109;
|
|
state->CH_Ctrl[20].bit[1] = 3;
|
|
state->CH_Ctrl[20].val[1] = 0;
|
|
state->CH_Ctrl[20].addr[2] = 109;
|
|
state->CH_Ctrl[20].bit[2] = 4;
|
|
state->CH_Ctrl[20].val[2] = 0;
|
|
state->CH_Ctrl[20].addr[3] = 109;
|
|
state->CH_Ctrl[20].bit[3] = 5;
|
|
state->CH_Ctrl[20].val[3] = 0;
|
|
state->CH_Ctrl[20].addr[4] = 109;
|
|
state->CH_Ctrl[20].bit[4] = 6;
|
|
state->CH_Ctrl[20].val[4] = 0;
|
|
state->CH_Ctrl[20].addr[5] = 109;
|
|
state->CH_Ctrl[20].bit[5] = 7;
|
|
state->CH_Ctrl[20].val[5] = 0;
|
|
state->CH_Ctrl[20].addr[6] = 108;
|
|
state->CH_Ctrl[20].bit[6] = 0;
|
|
state->CH_Ctrl[20].val[6] = 0;
|
|
state->CH_Ctrl[20].addr[7] = 108;
|
|
state->CH_Ctrl[20].bit[7] = 1;
|
|
state->CH_Ctrl[20].val[7] = 0;
|
|
state->CH_Ctrl[20].addr[8] = 108;
|
|
state->CH_Ctrl[20].bit[8] = 2;
|
|
state->CH_Ctrl[20].val[8] = 1;
|
|
state->CH_Ctrl[20].addr[9] = 108;
|
|
state->CH_Ctrl[20].bit[9] = 3;
|
|
state->CH_Ctrl[20].val[9] = 1;
|
|
state->CH_Ctrl[20].addr[10] = 108;
|
|
state->CH_Ctrl[20].bit[10] = 4;
|
|
state->CH_Ctrl[20].val[10] = 1;
|
|
|
|
state->CH_Ctrl[21].Ctrl_Num = TG_VCO_BIAS ;
|
|
state->CH_Ctrl[21].size = 6 ;
|
|
state->CH_Ctrl[21].addr[0] = 106;
|
|
state->CH_Ctrl[21].bit[0] = 2;
|
|
state->CH_Ctrl[21].val[0] = 0;
|
|
state->CH_Ctrl[21].addr[1] = 106;
|
|
state->CH_Ctrl[21].bit[1] = 3;
|
|
state->CH_Ctrl[21].val[1] = 0;
|
|
state->CH_Ctrl[21].addr[2] = 106;
|
|
state->CH_Ctrl[21].bit[2] = 4;
|
|
state->CH_Ctrl[21].val[2] = 0;
|
|
state->CH_Ctrl[21].addr[3] = 106;
|
|
state->CH_Ctrl[21].bit[3] = 5;
|
|
state->CH_Ctrl[21].val[3] = 0;
|
|
state->CH_Ctrl[21].addr[4] = 106;
|
|
state->CH_Ctrl[21].bit[4] = 6;
|
|
state->CH_Ctrl[21].val[4] = 0;
|
|
state->CH_Ctrl[21].addr[5] = 106;
|
|
state->CH_Ctrl[21].bit[5] = 7;
|
|
state->CH_Ctrl[21].val[5] = 1;
|
|
|
|
state->CH_Ctrl[22].Ctrl_Num = SEQ_EXTPOWERUP ;
|
|
state->CH_Ctrl[22].size = 1 ;
|
|
state->CH_Ctrl[22].addr[0] = 138;
|
|
state->CH_Ctrl[22].bit[0] = 4;
|
|
state->CH_Ctrl[22].val[0] = 1;
|
|
|
|
state->CH_Ctrl[23].Ctrl_Num = OVERRIDE_2 ;
|
|
state->CH_Ctrl[23].size = 1 ;
|
|
state->CH_Ctrl[23].addr[0] = 17;
|
|
state->CH_Ctrl[23].bit[0] = 5;
|
|
state->CH_Ctrl[23].val[0] = 0;
|
|
|
|
state->CH_Ctrl[24].Ctrl_Num = OVERRIDE_3 ;
|
|
state->CH_Ctrl[24].size = 1 ;
|
|
state->CH_Ctrl[24].addr[0] = 111;
|
|
state->CH_Ctrl[24].bit[0] = 3;
|
|
state->CH_Ctrl[24].val[0] = 0;
|
|
|
|
state->CH_Ctrl[25].Ctrl_Num = OVERRIDE_4 ;
|
|
state->CH_Ctrl[25].size = 1 ;
|
|
state->CH_Ctrl[25].addr[0] = 112;
|
|
state->CH_Ctrl[25].bit[0] = 7;
|
|
state->CH_Ctrl[25].val[0] = 0;
|
|
|
|
state->CH_Ctrl[26].Ctrl_Num = SEQ_FSM_PULSE ;
|
|
state->CH_Ctrl[26].size = 1 ;
|
|
state->CH_Ctrl[26].addr[0] = 136;
|
|
state->CH_Ctrl[26].bit[0] = 7;
|
|
state->CH_Ctrl[26].val[0] = 0;
|
|
|
|
state->CH_Ctrl[27].Ctrl_Num = GPIO_4B ;
|
|
state->CH_Ctrl[27].size = 1 ;
|
|
state->CH_Ctrl[27].addr[0] = 149;
|
|
state->CH_Ctrl[27].bit[0] = 7;
|
|
state->CH_Ctrl[27].val[0] = 0;
|
|
|
|
state->CH_Ctrl[28].Ctrl_Num = GPIO_3B ;
|
|
state->CH_Ctrl[28].size = 1 ;
|
|
state->CH_Ctrl[28].addr[0] = 149;
|
|
state->CH_Ctrl[28].bit[0] = 6;
|
|
state->CH_Ctrl[28].val[0] = 0;
|
|
|
|
state->CH_Ctrl[29].Ctrl_Num = GPIO_4 ;
|
|
state->CH_Ctrl[29].size = 1 ;
|
|
state->CH_Ctrl[29].addr[0] = 149;
|
|
state->CH_Ctrl[29].bit[0] = 5;
|
|
state->CH_Ctrl[29].val[0] = 1;
|
|
|
|
state->CH_Ctrl[30].Ctrl_Num = GPIO_3 ;
|
|
state->CH_Ctrl[30].size = 1 ;
|
|
state->CH_Ctrl[30].addr[0] = 149;
|
|
state->CH_Ctrl[30].bit[0] = 4;
|
|
state->CH_Ctrl[30].val[0] = 1;
|
|
|
|
state->CH_Ctrl[31].Ctrl_Num = GPIO_1B ;
|
|
state->CH_Ctrl[31].size = 1 ;
|
|
state->CH_Ctrl[31].addr[0] = 149;
|
|
state->CH_Ctrl[31].bit[0] = 3;
|
|
state->CH_Ctrl[31].val[0] = 0;
|
|
|
|
state->CH_Ctrl[32].Ctrl_Num = DAC_A_ENABLE ;
|
|
state->CH_Ctrl[32].size = 1 ;
|
|
state->CH_Ctrl[32].addr[0] = 93;
|
|
state->CH_Ctrl[32].bit[0] = 1;
|
|
state->CH_Ctrl[32].val[0] = 0;
|
|
|
|
state->CH_Ctrl[33].Ctrl_Num = DAC_B_ENABLE ;
|
|
state->CH_Ctrl[33].size = 1 ;
|
|
state->CH_Ctrl[33].addr[0] = 93;
|
|
state->CH_Ctrl[33].bit[0] = 0;
|
|
state->CH_Ctrl[33].val[0] = 0;
|
|
|
|
state->CH_Ctrl[34].Ctrl_Num = DAC_DIN_A ;
|
|
state->CH_Ctrl[34].size = 6 ;
|
|
state->CH_Ctrl[34].addr[0] = 92;
|
|
state->CH_Ctrl[34].bit[0] = 2;
|
|
state->CH_Ctrl[34].val[0] = 0;
|
|
state->CH_Ctrl[34].addr[1] = 92;
|
|
state->CH_Ctrl[34].bit[1] = 3;
|
|
state->CH_Ctrl[34].val[1] = 0;
|
|
state->CH_Ctrl[34].addr[2] = 92;
|
|
state->CH_Ctrl[34].bit[2] = 4;
|
|
state->CH_Ctrl[34].val[2] = 0;
|
|
state->CH_Ctrl[34].addr[3] = 92;
|
|
state->CH_Ctrl[34].bit[3] = 5;
|
|
state->CH_Ctrl[34].val[3] = 0;
|
|
state->CH_Ctrl[34].addr[4] = 92;
|
|
state->CH_Ctrl[34].bit[4] = 6;
|
|
state->CH_Ctrl[34].val[4] = 0;
|
|
state->CH_Ctrl[34].addr[5] = 92;
|
|
state->CH_Ctrl[34].bit[5] = 7;
|
|
state->CH_Ctrl[34].val[5] = 0;
|
|
|
|
state->CH_Ctrl[35].Ctrl_Num = DAC_DIN_B ;
|
|
state->CH_Ctrl[35].size = 6 ;
|
|
state->CH_Ctrl[35].addr[0] = 93;
|
|
state->CH_Ctrl[35].bit[0] = 2;
|
|
state->CH_Ctrl[35].val[0] = 0;
|
|
state->CH_Ctrl[35].addr[1] = 93;
|
|
state->CH_Ctrl[35].bit[1] = 3;
|
|
state->CH_Ctrl[35].val[1] = 0;
|
|
state->CH_Ctrl[35].addr[2] = 93;
|
|
state->CH_Ctrl[35].bit[2] = 4;
|
|
state->CH_Ctrl[35].val[2] = 0;
|
|
state->CH_Ctrl[35].addr[3] = 93;
|
|
state->CH_Ctrl[35].bit[3] = 5;
|
|
state->CH_Ctrl[35].val[3] = 0;
|
|
state->CH_Ctrl[35].addr[4] = 93;
|
|
state->CH_Ctrl[35].bit[4] = 6;
|
|
state->CH_Ctrl[35].val[4] = 0;
|
|
state->CH_Ctrl[35].addr[5] = 93;
|
|
state->CH_Ctrl[35].bit[5] = 7;
|
|
state->CH_Ctrl[35].val[5] = 0;
|
|
|
|
#ifdef _MXL_PRODUCTION
|
|
state->CH_Ctrl[36].Ctrl_Num = RFSYN_EN_DIV ;
|
|
state->CH_Ctrl[36].size = 1 ;
|
|
state->CH_Ctrl[36].addr[0] = 109;
|
|
state->CH_Ctrl[36].bit[0] = 1;
|
|
state->CH_Ctrl[36].val[0] = 1;
|
|
|
|
state->CH_Ctrl[37].Ctrl_Num = RFSYN_DIVM ;
|
|
state->CH_Ctrl[37].size = 2 ;
|
|
state->CH_Ctrl[37].addr[0] = 112;
|
|
state->CH_Ctrl[37].bit[0] = 5;
|
|
state->CH_Ctrl[37].val[0] = 0;
|
|
state->CH_Ctrl[37].addr[1] = 112;
|
|
state->CH_Ctrl[37].bit[1] = 6;
|
|
state->CH_Ctrl[37].val[1] = 0;
|
|
|
|
state->CH_Ctrl[38].Ctrl_Num = DN_BYPASS_AGC_I2C ;
|
|
state->CH_Ctrl[38].size = 1 ;
|
|
state->CH_Ctrl[38].addr[0] = 65;
|
|
state->CH_Ctrl[38].bit[0] = 1;
|
|
state->CH_Ctrl[38].val[0] = 0;
|
|
#endif
|
|
|
|
return 0 ;
|
|
}
|
|
|
|
static void InitTunerControls(struct dvb_frontend *fe)
|
|
{
|
|
MXL5005_RegisterInit(fe);
|
|
MXL5005_ControlInit(fe);
|
|
#ifdef _MXL_INTERNAL
|
|
MXL5005_MXLControlInit(fe);
|
|
#endif
|
|
}
|
|
|
|
static u16 MXL5005_TunerConfig(struct dvb_frontend *fe,
|
|
u8 Mode, /* 0: Analog Mode ; 1: Digital Mode */
|
|
u8 IF_mode, /* for Analog Mode, 0: zero IF; 1: low IF */
|
|
u32 Bandwidth, /* filter channel bandwidth (6, 7, 8) */
|
|
u32 IF_out, /* Desired IF Out Frequency */
|
|
u32 Fxtal, /* XTAL Frequency */
|
|
u8 AGC_Mode, /* AGC Mode - Dual AGC: 0, Single AGC: 1 */
|
|
u16 TOP, /* 0: Dual AGC; Value: take over point */
|
|
u16 IF_OUT_LOAD, /* IF Out Load Resistor (200 / 300 Ohms) */
|
|
u8 CLOCK_OUT, /* 0: turn off clk out; 1: turn on clock out */
|
|
u8 DIV_OUT, /* 0: Div-1; 1: Div-4 */
|
|
u8 CAPSELECT, /* 0: disable On-Chip pulling cap; 1: enable */
|
|
u8 EN_RSSI, /* 0: disable RSSI; 1: enable RSSI */
|
|
|
|
/* Modulation Type; */
|
|
/* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
|
|
u8 Mod_Type,
|
|
|
|
/* Tracking Filter */
|
|
/* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
|
|
u8 TF_Type
|
|
)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
|
|
state->Mode = Mode;
|
|
state->IF_Mode = IF_mode;
|
|
state->Chan_Bandwidth = Bandwidth;
|
|
state->IF_OUT = IF_out;
|
|
state->Fxtal = Fxtal;
|
|
state->AGC_Mode = AGC_Mode;
|
|
state->TOP = TOP;
|
|
state->IF_OUT_LOAD = IF_OUT_LOAD;
|
|
state->CLOCK_OUT = CLOCK_OUT;
|
|
state->DIV_OUT = DIV_OUT;
|
|
state->CAPSELECT = CAPSELECT;
|
|
state->EN_RSSI = EN_RSSI;
|
|
state->Mod_Type = Mod_Type;
|
|
state->TF_Type = TF_Type;
|
|
|
|
/* Initialize all the controls and registers */
|
|
InitTunerControls(fe);
|
|
|
|
/* Synthesizer LO frequency calculation */
|
|
MXL_SynthIFLO_Calc(fe);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void MXL_SynthIFLO_Calc(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
if (state->Mode == 1) /* Digital Mode */
|
|
state->IF_LO = state->IF_OUT;
|
|
else /* Analog Mode */ {
|
|
if (state->IF_Mode == 0) /* Analog Zero IF mode */
|
|
state->IF_LO = state->IF_OUT + 400000;
|
|
else /* Analog Low IF mode */
|
|
state->IF_LO = state->IF_OUT + state->Chan_Bandwidth/2;
|
|
}
|
|
}
|
|
|
|
static void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
|
|
if (state->Mode == 1) /* Digital Mode */ {
|
|
/* remove 20.48MHz setting for 2.6.10 */
|
|
state->RF_LO = state->RF_IN;
|
|
/* change for 2.6.6 */
|
|
state->TG_LO = state->RF_IN - 750000;
|
|
} else /* Analog Mode */ {
|
|
if (state->IF_Mode == 0) /* Analog Zero IF mode */ {
|
|
state->RF_LO = state->RF_IN - 400000;
|
|
state->TG_LO = state->RF_IN - 1750000;
|
|
} else /* Analog Low IF mode */ {
|
|
state->RF_LO = state->RF_IN - state->Chan_Bandwidth/2;
|
|
state->TG_LO = state->RF_IN -
|
|
state->Chan_Bandwidth + 500000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u16 MXL_OverwriteICDefault(struct dvb_frontend *fe)
|
|
{
|
|
u16 status = 0;
|
|
|
|
status += MXL_ControlWrite(fe, OVERRIDE_1, 1);
|
|
status += MXL_ControlWrite(fe, OVERRIDE_2, 1);
|
|
status += MXL_ControlWrite(fe, OVERRIDE_3, 1);
|
|
status += MXL_ControlWrite(fe, OVERRIDE_4, 1);
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_BlockInit(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 status = 0;
|
|
|
|
status += MXL_OverwriteICDefault(fe);
|
|
|
|
/* Downconverter Control Dig Ana */
|
|
status += MXL_ControlWrite(fe, DN_IQTN_AMP_CUT, state->Mode ? 1 : 0);
|
|
|
|
/* Filter Control Dig Ana */
|
|
status += MXL_ControlWrite(fe, BB_MODE, state->Mode ? 0 : 1);
|
|
status += MXL_ControlWrite(fe, BB_BUF, state->Mode ? 3 : 2);
|
|
status += MXL_ControlWrite(fe, BB_BUF_OA, state->Mode ? 1 : 0);
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, state->Mode ? 0 : 1);
|
|
status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 0);
|
|
|
|
/* Initialize Low-Pass Filter */
|
|
if (state->Mode) { /* Digital Mode */
|
|
switch (state->Chan_Bandwidth) {
|
|
case 8000000:
|
|
status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 0);
|
|
break;
|
|
case 7000000:
|
|
status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 2);
|
|
break;
|
|
case 6000000:
|
|
status += MXL_ControlWrite(fe,
|
|
BB_DLPF_BANDSEL, 3);
|
|
break;
|
|
}
|
|
} else { /* Analog Mode */
|
|
switch (state->Chan_Bandwidth) {
|
|
case 8000000: /* Low Zero */
|
|
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
|
|
(state->IF_Mode ? 0 : 3));
|
|
break;
|
|
case 7000000:
|
|
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
|
|
(state->IF_Mode ? 1 : 4));
|
|
break;
|
|
case 6000000:
|
|
status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
|
|
(state->IF_Mode ? 2 : 5));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Charge Pump Control Dig Ana */
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, state->Mode ? 5 : 8);
|
|
status += MXL_ControlWrite(fe,
|
|
RFSYN_EN_CHP_HIGAIN, state->Mode ? 1 : 1);
|
|
status += MXL_ControlWrite(fe, EN_CHP_LIN_B, state->Mode ? 0 : 0);
|
|
|
|
/* AGC TOP Control */
|
|
if (state->AGC_Mode == 0) /* Dual AGC */ {
|
|
status += MXL_ControlWrite(fe, AGC_IF, 15);
|
|
status += MXL_ControlWrite(fe, AGC_RF, 15);
|
|
} else /* Single AGC Mode Dig Ana */
|
|
status += MXL_ControlWrite(fe, AGC_RF, state->Mode ? 15 : 12);
|
|
|
|
if (state->TOP == 55) /* TOP == 5.5 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x0);
|
|
|
|
if (state->TOP == 72) /* TOP == 7.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x1);
|
|
|
|
if (state->TOP == 92) /* TOP == 9.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x2);
|
|
|
|
if (state->TOP == 110) /* TOP == 11.0 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x3);
|
|
|
|
if (state->TOP == 129) /* TOP == 12.9 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x4);
|
|
|
|
if (state->TOP == 147) /* TOP == 14.7 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x5);
|
|
|
|
if (state->TOP == 168) /* TOP == 16.8 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x6);
|
|
|
|
if (state->TOP == 194) /* TOP == 19.4 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x7);
|
|
|
|
if (state->TOP == 212) /* TOP == 21.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0x9);
|
|
|
|
if (state->TOP == 232) /* TOP == 23.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xA);
|
|
|
|
if (state->TOP == 252) /* TOP == 25.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xB);
|
|
|
|
if (state->TOP == 271) /* TOP == 27.1 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xC);
|
|
|
|
if (state->TOP == 292) /* TOP == 29.2 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xD);
|
|
|
|
if (state->TOP == 317) /* TOP == 31.7 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xE);
|
|
|
|
if (state->TOP == 349) /* TOP == 34.9 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 0xF);
|
|
|
|
/* IF Synthesizer Control */
|
|
status += MXL_IFSynthInit(fe);
|
|
|
|
/* IF UpConverter Control */
|
|
if (state->IF_OUT_LOAD == 200) {
|
|
status += MXL_ControlWrite(fe, DRV_RES_SEL, 6);
|
|
status += MXL_ControlWrite(fe, I_DRIVER, 2);
|
|
}
|
|
if (state->IF_OUT_LOAD == 300) {
|
|
status += MXL_ControlWrite(fe, DRV_RES_SEL, 4);
|
|
status += MXL_ControlWrite(fe, I_DRIVER, 1);
|
|
}
|
|
|
|
/* Anti-Alias Filtering Control
|
|
* initialise Anti-Aliasing Filter
|
|
*/
|
|
if (state->Mode) { /* Digital Mode */
|
|
if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 6280000UL) {
|
|
status += MXL_ControlWrite(fe, EN_AAF, 1);
|
|
status += MXL_ControlWrite(fe, EN_3P, 1);
|
|
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
|
|
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
|
|
}
|
|
if ((state->IF_OUT == 36125000UL) ||
|
|
(state->IF_OUT == 36150000UL)) {
|
|
status += MXL_ControlWrite(fe, EN_AAF, 1);
|
|
status += MXL_ControlWrite(fe, EN_3P, 1);
|
|
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
|
|
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1);
|
|
}
|
|
if (state->IF_OUT > 36150000UL) {
|
|
status += MXL_ControlWrite(fe, EN_AAF, 0);
|
|
status += MXL_ControlWrite(fe, EN_3P, 1);
|
|
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
|
|
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1);
|
|
}
|
|
} else { /* Analog Mode */
|
|
if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 5000000UL) {
|
|
status += MXL_ControlWrite(fe, EN_AAF, 1);
|
|
status += MXL_ControlWrite(fe, EN_3P, 1);
|
|
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
|
|
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
|
|
}
|
|
if (state->IF_OUT > 5000000UL) {
|
|
status += MXL_ControlWrite(fe, EN_AAF, 0);
|
|
status += MXL_ControlWrite(fe, EN_3P, 0);
|
|
status += MXL_ControlWrite(fe, EN_AUX_3P, 0);
|
|
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
|
|
}
|
|
}
|
|
|
|
/* Demod Clock Out */
|
|
if (state->CLOCK_OUT)
|
|
status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 1);
|
|
else
|
|
status += MXL_ControlWrite(fe, SEQ_ENCLK16_CLK_OUT, 0);
|
|
|
|
if (state->DIV_OUT == 1)
|
|
status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 1);
|
|
if (state->DIV_OUT == 0)
|
|
status += MXL_ControlWrite(fe, SEQ_SEL4_16B, 0);
|
|
|
|
/* Crystal Control */
|
|
if (state->CAPSELECT)
|
|
status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 1);
|
|
else
|
|
status += MXL_ControlWrite(fe, XTAL_CAPSELECT, 0);
|
|
|
|
if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL)
|
|
status += MXL_ControlWrite(fe, IF_SEL_DBL, 1);
|
|
if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL)
|
|
status += MXL_ControlWrite(fe, IF_SEL_DBL, 0);
|
|
|
|
if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL)
|
|
status += MXL_ControlWrite(fe, RFSYN_R_DIV, 3);
|
|
if (state->Fxtal > 22000000UL && state->Fxtal <= 32000000UL)
|
|
status += MXL_ControlWrite(fe, RFSYN_R_DIV, 0);
|
|
|
|
/* Misc Controls */
|
|
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog LowIF mode */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 0);
|
|
else
|
|
status += MXL_ControlWrite(fe, SEQ_EXTIQFSMPULSE, 1);
|
|
|
|
/* status += MXL_ControlRead(fe, IF_DIVVAL, &IF_DIVVAL_Val); */
|
|
|
|
/* Set TG_R_DIV */
|
|
status += MXL_ControlWrite(fe, TG_R_DIV,
|
|
MXL_Ceiling(state->Fxtal, 1000000));
|
|
|
|
/* Apply Default value to BB_INITSTATE_DLPF_TUNE */
|
|
|
|
/* RSSI Control */
|
|
if (state->EN_RSSI) {
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 3);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
|
|
|
|
/* TOP point */
|
|
status += MXL_ControlWrite(fe, RFA_FLR, 0);
|
|
status += MXL_ControlWrite(fe, RFA_CEIL, 12);
|
|
}
|
|
|
|
/* Modulation type bit settings
|
|
* Override the control values preset
|
|
*/
|
|
if (state->Mod_Type == MXL_DVBT) /* DVB-T Mode */ {
|
|
state->AGC_Mode = 1; /* Single AGC Mode */
|
|
|
|
/* Enable RSSI */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
|
|
|
|
/* TOP point */
|
|
status += MXL_ControlWrite(fe, RFA_FLR, 2);
|
|
status += MXL_ControlWrite(fe, RFA_CEIL, 13);
|
|
if (state->IF_OUT <= 6280000UL) /* Low IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
|
|
else /* High IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
|
|
|
|
}
|
|
if (state->Mod_Type == MXL_ATSC) /* ATSC Mode */ {
|
|
state->AGC_Mode = 1; /* Single AGC Mode */
|
|
|
|
/* Enable RSSI */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 2);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 4);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 1);
|
|
|
|
/* TOP point */
|
|
status += MXL_ControlWrite(fe, RFA_FLR, 2);
|
|
status += MXL_ControlWrite(fe, RFA_CEIL, 13);
|
|
status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 1);
|
|
/* Low Zero */
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5);
|
|
|
|
if (state->IF_OUT <= 6280000UL) /* Low IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
|
|
else /* High IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
|
|
}
|
|
if (state->Mod_Type == MXL_QAM) /* QAM Mode */ {
|
|
state->Mode = MXL_DIGITAL_MODE;
|
|
|
|
/* state->AGC_Mode = 1; */ /* Single AGC Mode */
|
|
|
|
/* Disable RSSI */ /* change here for v2.6.5 */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
|
|
/* change here for v2.6.5 */
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
|
|
|
|
if (state->IF_OUT <= 6280000UL) /* Low IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
|
|
else /* High IF */
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2);
|
|
|
|
}
|
|
if (state->Mod_Type == MXL_ANALOG_CABLE) {
|
|
/* Analog Cable Mode */
|
|
/* state->Mode = MXL_DIGITAL_MODE; */
|
|
|
|
state->AGC_Mode = 1; /* Single AGC Mode */
|
|
|
|
/* Disable RSSI */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
/* change for 2.6.3 */
|
|
status += MXL_ControlWrite(fe, AGC_IF, 1);
|
|
status += MXL_ControlWrite(fe, AGC_RF, 15);
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
|
|
}
|
|
|
|
if (state->Mod_Type == MXL_ANALOG_OTA) {
|
|
/* Analog OTA Terrestrial mode add for 2.6.7 */
|
|
/* state->Mode = MXL_ANALOG_MODE; */
|
|
|
|
/* Enable RSSI */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
|
|
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
|
|
}
|
|
|
|
/* RSSI disable */
|
|
if (state->EN_RSSI == 0) {
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_IFSynthInit(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 status = 0 ;
|
|
u32 Fref = 0 ;
|
|
u32 Kdbl, intModVal ;
|
|
u32 fracModVal ;
|
|
Kdbl = 2 ;
|
|
|
|
if (state->Fxtal >= 12000000UL && state->Fxtal <= 16000000UL)
|
|
Kdbl = 2 ;
|
|
if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL)
|
|
Kdbl = 1 ;
|
|
|
|
/* IF Synthesizer Control */
|
|
if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF mode */ {
|
|
if (state->IF_LO == 41000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 328000000UL ;
|
|
}
|
|
if (state->IF_LO == 47000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 376000000UL ;
|
|
}
|
|
if (state->IF_LO == 54000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 324000000UL ;
|
|
}
|
|
if (state->IF_LO == 60000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 39250000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 314000000UL ;
|
|
}
|
|
if (state->IF_LO == 39650000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 317200000UL ;
|
|
}
|
|
if (state->IF_LO == 40150000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 321200000UL ;
|
|
}
|
|
if (state->IF_LO == 40650000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 325200000UL ;
|
|
}
|
|
}
|
|
|
|
if (state->Mode || (state->Mode == 0 && state->IF_Mode == 0)) {
|
|
if (state->IF_LO == 57000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 342000000UL ;
|
|
}
|
|
if (state->IF_LO == 44000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 352000000UL ;
|
|
}
|
|
if (state->IF_LO == 43750000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 350000000UL ;
|
|
}
|
|
if (state->IF_LO == 36650000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 366500000UL ;
|
|
}
|
|
if (state->IF_LO == 36150000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 361500000UL ;
|
|
}
|
|
if (state->IF_LO == 36000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 35250000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 352500000UL ;
|
|
}
|
|
if (state->IF_LO == 34750000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 347500000UL ;
|
|
}
|
|
if (state->IF_LO == 6280000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 376800000UL ;
|
|
}
|
|
if (state->IF_LO == 5000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 4500000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 4570000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 365600000UL ;
|
|
}
|
|
if (state->IF_LO == 4000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 57400000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 344400000UL ;
|
|
}
|
|
if (state->IF_LO == 44400000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 355200000UL ;
|
|
}
|
|
if (state->IF_LO == 44150000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 353200000UL ;
|
|
}
|
|
if (state->IF_LO == 37050000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 370500000UL ;
|
|
}
|
|
if (state->IF_LO == 36550000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 365500000UL ;
|
|
}
|
|
if (state->IF_LO == 36125000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 361250000UL ;
|
|
}
|
|
if (state->IF_LO == 6000000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 360000000UL ;
|
|
}
|
|
if (state->IF_LO == 5400000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 324000000UL ;
|
|
}
|
|
if (state->IF_LO == 5380000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
|
|
Fref = 322800000UL ;
|
|
}
|
|
if (state->IF_LO == 5200000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 374400000UL ;
|
|
}
|
|
if (state->IF_LO == 4900000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 352800000UL ;
|
|
}
|
|
if (state->IF_LO == 4400000UL) {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 352000000UL ;
|
|
}
|
|
if (state->IF_LO == 4063000UL) /* add for 2.6.8 */ {
|
|
status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05);
|
|
status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
|
|
Fref = 365670000UL ;
|
|
}
|
|
}
|
|
/* CHCAL_INT_MOD_IF */
|
|
/* CHCAL_FRAC_MOD_IF */
|
|
intModVal = Fref / (state->Fxtal * Kdbl/2);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_IF, intModVal);
|
|
|
|
fracModVal = (2<<15)*(Fref/1000 - (state->Fxtal/1000 * Kdbl/2) *
|
|
intModVal);
|
|
|
|
fracModVal = fracModVal / ((state->Fxtal * Kdbl/2)/1000);
|
|
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_IF, fracModVal);
|
|
|
|
return status ;
|
|
}
|
|
|
|
static u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 status = 0;
|
|
u32 divider_val, E3, E4, E5, E5A;
|
|
u32 Fmax, Fmin, FmaxBin, FminBin;
|
|
u32 Kdbl_RF = 2;
|
|
u32 tg_divval;
|
|
u32 tg_lo;
|
|
|
|
u32 Fref_TG;
|
|
u32 Fvco;
|
|
|
|
state->RF_IN = RF_Freq;
|
|
|
|
MXL_SynthRFTGLO_Calc(fe);
|
|
|
|
if (state->Fxtal >= 12000000UL && state->Fxtal <= 22000000UL)
|
|
Kdbl_RF = 2;
|
|
if (state->Fxtal > 22000000 && state->Fxtal <= 32000000)
|
|
Kdbl_RF = 1;
|
|
|
|
/* Downconverter Controls
|
|
* Look-Up Table Implementation for:
|
|
* DN_POLY
|
|
* DN_RFGAIN
|
|
* DN_CAP_RFLPF
|
|
* DN_EN_VHFUHFBAR
|
|
* DN_GAIN_ADJUST
|
|
* Change the boundary reference from RF_IN to RF_LO
|
|
*/
|
|
if (state->RF_LO < 40000000UL)
|
|
return -1;
|
|
|
|
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 2);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 423);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
|
|
}
|
|
if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 222);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
|
|
}
|
|
if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 147);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
|
|
}
|
|
if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 9);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
|
|
}
|
|
if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
|
|
}
|
|
if (state->RF_LO > 300000000UL && state->RF_LO <= 650000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 1);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
|
|
}
|
|
if (state->RF_LO > 650000000UL && state->RF_LO <= 900000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_POLY, 3);
|
|
status += MXL_ControlWrite(fe, DN_RFGAIN, 2);
|
|
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
|
|
status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0);
|
|
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
|
|
}
|
|
if (state->RF_LO > 900000000UL)
|
|
return -1;
|
|
|
|
/* DN_IQTNBUF_AMP */
|
|
/* DN_IQTNGNBFBIAS_BST */
|
|
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 300000000UL && state->RF_LO <= 400000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 400000000UL && state->RF_LO <= 450000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 450000000UL && state->RF_LO <= 500000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 500000000UL && state->RF_LO <= 550000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 550000000UL && state->RF_LO <= 600000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 600000000UL && state->RF_LO <= 650000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 650000000UL && state->RF_LO <= 700000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 700000000UL && state->RF_LO <= 750000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 750000000UL && state->RF_LO <= 800000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
|
|
}
|
|
if (state->RF_LO > 800000000UL && state->RF_LO <= 850000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1);
|
|
}
|
|
if (state->RF_LO > 850000000UL && state->RF_LO <= 900000000UL) {
|
|
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 10);
|
|
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1);
|
|
}
|
|
|
|
/*
|
|
* Set RF Synth and LO Path Control
|
|
*
|
|
* Look-Up table implementation for:
|
|
* RFSYN_EN_OUTMUX
|
|
* RFSYN_SEL_VCO_OUT
|
|
* RFSYN_SEL_VCO_HI
|
|
* RFSYN_SEL_DIVM
|
|
* RFSYN_RF_DIV_BIAS
|
|
* DN_SEL_FREQ
|
|
*
|
|
* Set divider_val, Fmax, Fmix to use in Equations
|
|
*/
|
|
FminBin = 28000000UL ;
|
|
FmaxBin = 42500000UL ;
|
|
if (state->RF_LO >= 40000000UL && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
|
|
divider_val = 64 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 42500000UL ;
|
|
FmaxBin = 56000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
|
|
divider_val = 64 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 56000000UL ;
|
|
FmaxBin = 85000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
|
|
divider_val = 32 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 85000000UL ;
|
|
FmaxBin = 112000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
|
|
divider_val = 32 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 112000000UL ;
|
|
FmaxBin = 170000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2);
|
|
divider_val = 16 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 170000000UL ;
|
|
FmaxBin = 225000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2);
|
|
divider_val = 16 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 225000000UL ;
|
|
FmaxBin = 300000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 4);
|
|
divider_val = 8 ;
|
|
Fmax = 340000000UL ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 300000000UL ;
|
|
FmaxBin = 340000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
divider_val = 8 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = 225000000UL ;
|
|
}
|
|
FminBin = 340000000UL ;
|
|
FmaxBin = 450000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 2);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
divider_val = 8 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 450000000UL ;
|
|
FmaxBin = 680000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
divider_val = 4 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 680000000UL ;
|
|
FmaxBin = 900000000UL ;
|
|
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
divider_val = 4 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
|
|
/* CHCAL_INT_MOD_RF
|
|
* CHCAL_FRAC_MOD_RF
|
|
* RFSYN_LPF_R
|
|
* CHCAL_EN_INT_RF
|
|
*/
|
|
/* Equation E3 RFSYN_VCO_BIAS */
|
|
E3 = (((Fmax-state->RF_LO)/1000)*32)/((Fmax-Fmin)/1000) + 8 ;
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, E3);
|
|
|
|
/* Equation E4 CHCAL_INT_MOD_RF */
|
|
E4 = (state->RF_LO*divider_val/1000)/(2*state->Fxtal*Kdbl_RF/1000);
|
|
MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, E4);
|
|
|
|
/* Equation E5 CHCAL_FRAC_MOD_RF CHCAL_EN_INT_RF */
|
|
E5 = ((2<<17)*(state->RF_LO/10000*divider_val -
|
|
(E4*(2*state->Fxtal*Kdbl_RF)/10000))) /
|
|
(2*state->Fxtal*Kdbl_RF/10000);
|
|
|
|
status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5);
|
|
|
|
/* Equation E5A RFSYN_LPF_R */
|
|
E5A = (((Fmax - state->RF_LO)/1000)*4/((Fmax-Fmin)/1000)) + 1 ;
|
|
status += MXL_ControlWrite(fe, RFSYN_LPF_R, E5A);
|
|
|
|
/* Euqation E5B CHCAL_EN_INIT_RF */
|
|
status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, ((E5 == 0) ? 1 : 0));
|
|
/*if (E5 == 0)
|
|
* status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, 1);
|
|
*else
|
|
* status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5);
|
|
*/
|
|
|
|
/*
|
|
* Set TG Synth
|
|
*
|
|
* Look-Up table implementation for:
|
|
* TG_LO_DIVVAL
|
|
* TG_LO_SELVAL
|
|
*
|
|
* Set divider_val, Fmax, Fmix to use in Equations
|
|
*/
|
|
if (state->TG_LO < 33000000UL)
|
|
return -1;
|
|
|
|
FminBin = 33000000UL ;
|
|
FmaxBin = 50000000UL ;
|
|
if (state->TG_LO >= FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x6);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0);
|
|
divider_val = 36 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 50000000UL ;
|
|
FmaxBin = 67000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x1);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0);
|
|
divider_val = 24 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 67000000UL ;
|
|
FmaxBin = 100000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0xC);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
|
|
divider_val = 18 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 100000000UL ;
|
|
FmaxBin = 150000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
|
|
divider_val = 12 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 150000000UL ;
|
|
FmaxBin = 200000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
|
|
divider_val = 8 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 200000000UL ;
|
|
FmaxBin = 300000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3);
|
|
divider_val = 6 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 300000000UL ;
|
|
FmaxBin = 400000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3);
|
|
divider_val = 4 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 400000000UL ;
|
|
FmaxBin = 600000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7);
|
|
divider_val = 3 ;
|
|
Fmax = FmaxBin ;
|
|
Fmin = FminBin ;
|
|
}
|
|
FminBin = 600000000UL ;
|
|
FmaxBin = 900000000UL ;
|
|
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
|
|
status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
|
|
status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7);
|
|
divider_val = 2 ;
|
|
}
|
|
|
|
/* TG_DIV_VAL */
|
|
tg_divval = (state->TG_LO*divider_val/100000) *
|
|
(MXL_Ceiling(state->Fxtal, 1000000) * 100) /
|
|
(state->Fxtal/1000);
|
|
|
|
status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval);
|
|
|
|
if (state->TG_LO > 600000000UL)
|
|
status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval + 1);
|
|
|
|
Fmax = 1800000000UL ;
|
|
Fmin = 1200000000UL ;
|
|
|
|
/* prevent overflow of 32 bit unsigned integer, use
|
|
* following equation. Edit for v2.6.4
|
|
*/
|
|
/* Fref_TF = Fref_TG * 1000 */
|
|
Fref_TG = (state->Fxtal/1000) / MXL_Ceiling(state->Fxtal, 1000000);
|
|
|
|
/* Fvco = Fvco/10 */
|
|
Fvco = (state->TG_LO/10000) * divider_val * Fref_TG;
|
|
|
|
tg_lo = (((Fmax/10 - Fvco)/100)*32) / ((Fmax-Fmin)/1000)+8;
|
|
|
|
/* below equation is same as above but much harder to debug.
|
|
*
|
|
* static u32 MXL_GetXtalInt(u32 Xtal_Freq)
|
|
* {
|
|
* if ((Xtal_Freq % 1000000) == 0)
|
|
* return (Xtal_Freq / 10000);
|
|
* else
|
|
* return (((Xtal_Freq / 1000000) + 1)*100);
|
|
* }
|
|
*
|
|
* u32 Xtal_Int = MXL_GetXtalInt(state->Fxtal);
|
|
* tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) -
|
|
* ((state->TG_LO/10000)*divider_val *
|
|
* (state->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 *
|
|
* Xtal_Int/100) + 8;
|
|
*/
|
|
|
|
status += MXL_ControlWrite(fe, TG_VCO_BIAS , tg_lo);
|
|
|
|
/* add for 2.6.5 Special setting for QAM */
|
|
if (state->Mod_Type == MXL_QAM) {
|
|
if (state->config->qam_gain != 0)
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN,
|
|
state->config->qam_gain);
|
|
else if (state->RF_IN < 680000000)
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
|
|
else
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2);
|
|
}
|
|
|
|
/* Off Chip Tracking Filter Control */
|
|
if (state->TF_Type == MXL_TF_OFF) {
|
|
/* Tracking Filter Off State; turn off all the banks */
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1); /* Bank1 Off */
|
|
status += MXL_SetGPIO(fe, 1, 1); /* Bank2 Off */
|
|
status += MXL_SetGPIO(fe, 4, 1); /* Bank3 Off */
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_C) /* Tracking Filter type C */ {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
}
|
|
if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
}
|
|
if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
}
|
|
if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
}
|
|
if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 29);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
}
|
|
if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
}
|
|
if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 16);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
}
|
|
if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 7);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
}
|
|
if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_C_H) {
|
|
|
|
/* Tracking Filter type C-H for Hauppauge only */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
}
|
|
if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
}
|
|
if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
}
|
|
if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
}
|
|
if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
}
|
|
if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
}
|
|
if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
}
|
|
if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
}
|
|
if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_D) { /* Tracking Filter type D */
|
|
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_D_L) {
|
|
|
|
/* Tracking Filter type D-L for Lumanate ONLY change 2.6.3 */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
|
|
|
|
/* if UHF and terrestrial => Turn off Tracking Filter */
|
|
if (state->RF_IN >= 471000000 &&
|
|
(state->RF_IN - 471000000)%6000000 != 0) {
|
|
/* Turn off all the banks */
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_ControlWrite(fe, AGC_IF, 10);
|
|
} else {
|
|
/* if VHF or cable => Turn on Tracking Filter */
|
|
if (state->RF_IN >= 43000000 &&
|
|
state->RF_IN < 140000000) {
|
|
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 140000000 &&
|
|
state->RF_IN < 240000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 240000000 &&
|
|
state->RF_IN < 340000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 340000000 &&
|
|
state->RF_IN < 430000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 430000000 &&
|
|
state->RF_IN < 470000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 470000000 &&
|
|
state->RF_IN < 570000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 570000000 &&
|
|
state->RF_IN < 620000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 620000000 &&
|
|
state->RF_IN < 760000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 760000000 &&
|
|
state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_E) /* Tracking Filter type E */ {
|
|
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_F) {
|
|
|
|
/* Tracking Filter type F */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 160000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 160000000 && state->RF_IN < 210000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 210000000 && state->RF_IN < 300000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 300000000 && state->RF_IN < 390000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 390000000 && state->RF_IN < 515000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 515000000 && state->RF_IN < 650000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 650000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_E_2) {
|
|
|
|
/* Tracking Filter type E_2 */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_G) {
|
|
|
|
/* Tracking Filter type G add for v2.6.8 */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
if (state->RF_IN >= 50000000 && state->RF_IN < 190000000) {
|
|
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 190000000 && state->RF_IN < 280000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 280000000 && state->RF_IN < 350000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 400000000 && state->RF_IN < 470000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 640000000 && state->RF_IN < 820000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 820000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
|
|
if (state->TF_Type == MXL_TF_E_NA) {
|
|
|
|
/* Tracking Filter type E-NA for Empia ONLY change for 2.6.8 */
|
|
status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
|
|
|
|
/* if UHF and terrestrial=> Turn off Tracking Filter */
|
|
if (state->RF_IN >= 471000000 &&
|
|
(state->RF_IN - 471000000)%6000000 != 0) {
|
|
|
|
/* Turn off all the banks */
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
|
|
/* 2.6.12 Turn on RSSI */
|
|
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
|
|
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
|
|
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
|
|
|
|
/* RSSI reference point */
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
|
|
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
|
|
|
|
/* following parameter is from analog OTA mode,
|
|
* can be change to seek better performance */
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
|
|
} else {
|
|
/* if VHF or Cable => Turn on Tracking Filter */
|
|
|
|
/* 2.6.12 Turn off RSSI */
|
|
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
|
|
|
|
/* change back from above condition */
|
|
status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5);
|
|
|
|
|
|
if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
|
|
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 0);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 0);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 0);
|
|
}
|
|
if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) {
|
|
status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
|
|
status += MXL_SetGPIO(fe, 4, 1);
|
|
status += MXL_SetGPIO(fe, 1, 1);
|
|
status += MXL_SetGPIO(fe, 3, 1);
|
|
}
|
|
}
|
|
}
|
|
return status ;
|
|
}
|
|
|
|
static u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val)
|
|
{
|
|
u16 status = 0;
|
|
|
|
if (GPIO_Num == 1)
|
|
status += MXL_ControlWrite(fe, GPIO_1B, GPIO_Val ? 0 : 1);
|
|
|
|
/* GPIO2 is not available */
|
|
|
|
if (GPIO_Num == 3) {
|
|
if (GPIO_Val == 1) {
|
|
status += MXL_ControlWrite(fe, GPIO_3, 0);
|
|
status += MXL_ControlWrite(fe, GPIO_3B, 0);
|
|
}
|
|
if (GPIO_Val == 0) {
|
|
status += MXL_ControlWrite(fe, GPIO_3, 1);
|
|
status += MXL_ControlWrite(fe, GPIO_3B, 1);
|
|
}
|
|
if (GPIO_Val == 3) { /* tri-state */
|
|
status += MXL_ControlWrite(fe, GPIO_3, 0);
|
|
status += MXL_ControlWrite(fe, GPIO_3B, 1);
|
|
}
|
|
}
|
|
if (GPIO_Num == 4) {
|
|
if (GPIO_Val == 1) {
|
|
status += MXL_ControlWrite(fe, GPIO_4, 0);
|
|
status += MXL_ControlWrite(fe, GPIO_4B, 0);
|
|
}
|
|
if (GPIO_Val == 0) {
|
|
status += MXL_ControlWrite(fe, GPIO_4, 1);
|
|
status += MXL_ControlWrite(fe, GPIO_4B, 1);
|
|
}
|
|
if (GPIO_Val == 3) { /* tri-state */
|
|
status += MXL_ControlWrite(fe, GPIO_4, 0);
|
|
status += MXL_ControlWrite(fe, GPIO_4B, 1);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value)
|
|
{
|
|
u16 status = 0;
|
|
|
|
/* Will write ALL Matching Control Name */
|
|
/* Write Matching INIT Control */
|
|
status += MXL_ControlWrite_Group(fe, ControlNum, value, 1);
|
|
/* Write Matching CH Control */
|
|
status += MXL_ControlWrite_Group(fe, ControlNum, value, 2);
|
|
#ifdef _MXL_INTERNAL
|
|
/* Write Matching MXL Control */
|
|
status += MXL_ControlWrite_Group(fe, ControlNum, value, 3);
|
|
#endif
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum,
|
|
u32 value, u16 controlGroup)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 i, j, k;
|
|
u32 highLimit;
|
|
u32 ctrlVal;
|
|
|
|
if (controlGroup == 1) /* Initial Control */ {
|
|
|
|
for (i = 0; i < state->Init_Ctrl_Num; i++) {
|
|
|
|
if (controlNum == state->Init_Ctrl[i].Ctrl_Num) {
|
|
|
|
highLimit = 1 << state->Init_Ctrl[i].size;
|
|
if (value < highLimit) {
|
|
for (j = 0; j < state->Init_Ctrl[i].size; j++) {
|
|
state->Init_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
|
|
MXL_RegWriteBit(fe, (u8)(state->Init_Ctrl[i].addr[j]),
|
|
(u8)(state->Init_Ctrl[i].bit[j]),
|
|
(u8)((value>>j) & 0x01));
|
|
}
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->Init_Ctrl[i].size; k++)
|
|
ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k);
|
|
} else
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
if (controlGroup == 2) /* Chan change Control */ {
|
|
|
|
for (i = 0; i < state->CH_Ctrl_Num; i++) {
|
|
|
|
if (controlNum == state->CH_Ctrl[i].Ctrl_Num) {
|
|
|
|
highLimit = 1 << state->CH_Ctrl[i].size;
|
|
if (value < highLimit) {
|
|
for (j = 0; j < state->CH_Ctrl[i].size; j++) {
|
|
state->CH_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
|
|
MXL_RegWriteBit(fe, (u8)(state->CH_Ctrl[i].addr[j]),
|
|
(u8)(state->CH_Ctrl[i].bit[j]),
|
|
(u8)((value>>j) & 0x01));
|
|
}
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->CH_Ctrl[i].size; k++)
|
|
ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k);
|
|
} else
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
#ifdef _MXL_INTERNAL
|
|
if (controlGroup == 3) /* Maxlinear Control */ {
|
|
|
|
for (i = 0; i < state->MXL_Ctrl_Num; i++) {
|
|
|
|
if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) {
|
|
|
|
highLimit = (1 << state->MXL_Ctrl[i].size);
|
|
if (value < highLimit) {
|
|
for (j = 0; j < state->MXL_Ctrl[i].size; j++) {
|
|
state->MXL_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
|
|
MXL_RegWriteBit(fe, (u8)(state->MXL_Ctrl[i].addr[j]),
|
|
(u8)(state->MXL_Ctrl[i].bit[j]),
|
|
(u8)((value>>j) & 0x01));
|
|
}
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->MXL_Ctrl[i].size; k++)
|
|
ctrlVal += state->
|
|
MXL_Ctrl[i].val[k] *
|
|
(1 << k);
|
|
} else
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return 0 ; /* successful return */
|
|
}
|
|
|
|
static u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
int i ;
|
|
|
|
for (i = 0; i < 104; i++) {
|
|
if (RegNum == state->TunerRegs[i].Reg_Num) {
|
|
*RegVal = (u8)(state->TunerRegs[i].Reg_Val);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u32 ctrlVal ;
|
|
u16 i, k ;
|
|
|
|
for (i = 0; i < state->Init_Ctrl_Num ; i++) {
|
|
|
|
if (controlNum == state->Init_Ctrl[i].Ctrl_Num) {
|
|
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->Init_Ctrl[i].size; k++)
|
|
ctrlVal += state->Init_Ctrl[i].val[k] * (1<<k);
|
|
*value = ctrlVal;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < state->CH_Ctrl_Num ; i++) {
|
|
|
|
if (controlNum == state->CH_Ctrl[i].Ctrl_Num) {
|
|
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->CH_Ctrl[i].size; k++)
|
|
ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k);
|
|
*value = ctrlVal;
|
|
return 0;
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef _MXL_INTERNAL
|
|
for (i = 0; i < state->MXL_Ctrl_Num ; i++) {
|
|
|
|
if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) {
|
|
|
|
ctrlVal = 0;
|
|
for (k = 0; k < state->MXL_Ctrl[i].size; k++)
|
|
ctrlVal += state->MXL_Ctrl[i].val[k] * (1<<k);
|
|
*value = ctrlVal;
|
|
return 0;
|
|
|
|
}
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit,
|
|
u8 bitVal)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
int i ;
|
|
|
|
const u8 AND_MAP[8] = {
|
|
0xFE, 0xFD, 0xFB, 0xF7,
|
|
0xEF, 0xDF, 0xBF, 0x7F } ;
|
|
|
|
const u8 OR_MAP[8] = {
|
|
0x01, 0x02, 0x04, 0x08,
|
|
0x10, 0x20, 0x40, 0x80 } ;
|
|
|
|
for (i = 0; i < state->TunerRegs_Num; i++) {
|
|
if (state->TunerRegs[i].Reg_Num == address) {
|
|
if (bitVal)
|
|
state->TunerRegs[i].Reg_Val |= OR_MAP[bit];
|
|
else
|
|
state->TunerRegs[i].Reg_Val &= AND_MAP[bit];
|
|
break ;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u32 MXL_Ceiling(u32 value, u32 resolution)
|
|
{
|
|
return value / resolution + (value % resolution > 0 ? 1 : 0);
|
|
}
|
|
|
|
/* Retrieve the Initialzation Registers */
|
|
static u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 *RegNum,
|
|
u8 *RegVal, int *count)
|
|
{
|
|
u16 status = 0;
|
|
int i ;
|
|
|
|
static const u8 RegAddr[] = {
|
|
11, 12, 13, 22, 32, 43, 44, 53, 56, 59, 73,
|
|
76, 77, 91, 134, 135, 137, 147,
|
|
156, 166, 167, 168, 25
|
|
};
|
|
|
|
*count = ARRAY_SIZE(RegAddr);
|
|
|
|
status += MXL_BlockInit(fe);
|
|
|
|
for (i = 0 ; i < *count; i++) {
|
|
RegNum[i] = RegAddr[i];
|
|
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal,
|
|
int *count)
|
|
{
|
|
u16 status = 0;
|
|
int i ;
|
|
|
|
/* add 77, 166, 167, 168 register for 2.6.12 */
|
|
#ifdef _MXL_PRODUCTION
|
|
static const u8 RegAddr[] = {
|
|
14, 15, 16, 17, 22, 43, 65, 68, 69, 70, 73, 92, 93, 106,
|
|
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168
|
|
};
|
|
#else
|
|
static const u8 RegAddr[] = {
|
|
14, 15, 16, 17, 22, 43, 68, 69, 70, 73, 92, 93, 106,
|
|
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168
|
|
};
|
|
/*
|
|
u8 RegAddr[171];
|
|
for (i = 0; i <= 170; i++)
|
|
RegAddr[i] = i;
|
|
*/
|
|
#endif
|
|
|
|
*count = ARRAY_SIZE(RegAddr);
|
|
|
|
for (i = 0 ; i < *count; i++) {
|
|
RegNum[i] = RegAddr[i];
|
|
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum,
|
|
u8 *RegVal, int *count)
|
|
{
|
|
u16 status = 0;
|
|
int i;
|
|
|
|
u8 RegAddr[] = {43, 136};
|
|
|
|
*count = ARRAY_SIZE(RegAddr);
|
|
|
|
for (i = 0; i < *count; i++) {
|
|
RegNum[i] = RegAddr[i];
|
|
status += MXL_RegRead(fe, RegNum[i], &RegVal[i]);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_GetMasterControl(u8 *MasterReg, int state)
|
|
{
|
|
if (state == 1) /* Load_Start */
|
|
*MasterReg = 0xF3;
|
|
if (state == 2) /* Power_Down */
|
|
*MasterReg = 0x41;
|
|
if (state == 3) /* Synth_Reset */
|
|
*MasterReg = 0xB1;
|
|
if (state == 4) /* Seq_Off */
|
|
*MasterReg = 0xF1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef _MXL_PRODUCTION
|
|
static u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 status = 0 ;
|
|
|
|
if (VCO_Range == 1) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
if (state->Mode == 0 && state->IF_Mode == 1) {
|
|
/* Analog Low IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 180224);
|
|
}
|
|
if (state->Mode == 0 && state->IF_Mode == 0) {
|
|
/* Analog Zero IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 222822);
|
|
}
|
|
if (state->Mode == 1) /* Digital Mode */ {
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 229376);
|
|
}
|
|
}
|
|
|
|
if (VCO_Range == 2) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
|
|
if (state->Mode == 0 && state->IF_Mode == 1) {
|
|
/* Analog Low IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 206438);
|
|
}
|
|
if (state->Mode == 0 && state->IF_Mode == 0) {
|
|
/* Analog Zero IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 206438);
|
|
}
|
|
if (state->Mode == 1) /* Digital Mode */ {
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 16384);
|
|
}
|
|
}
|
|
|
|
if (VCO_Range == 3) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
|
|
if (state->Mode == 0 && state->IF_Mode == 1) {
|
|
/* Analog Low IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 173670);
|
|
}
|
|
if (state->Mode == 0 && state->IF_Mode == 0) {
|
|
/* Analog Zero IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 173670);
|
|
}
|
|
if (state->Mode == 1) /* Digital Mode */ {
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 245760);
|
|
}
|
|
}
|
|
|
|
if (VCO_Range == 4) {
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_DIV, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_DIVM, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
|
|
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
|
|
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
|
|
if (state->Mode == 0 && state->IF_Mode == 1) {
|
|
/* Analog Low IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 206438);
|
|
}
|
|
if (state->Mode == 0 && state->IF_Mode == 0) {
|
|
/* Analog Zero IF Mode */
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 206438);
|
|
}
|
|
if (state->Mode == 1) /* Digital Mode */ {
|
|
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
|
|
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
|
|
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
|
|
status += MXL_ControlWrite(fe,
|
|
CHCAL_FRAC_MOD_RF, 212992);
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static u16 MXL_Hystersis_Test(struct dvb_frontend *fe, int Hystersis)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u16 status = 0;
|
|
|
|
if (Hystersis == 1)
|
|
status += MXL_ControlWrite(fe, DN_BYPASS_AGC_I2C, 1);
|
|
|
|
return status;
|
|
}
|
|
#endif
|
|
/* End: Reference driver code found in the Realtek driver that
|
|
* is copyright MaxLinear */
|
|
|
|
/* ----------------------------------------------------------------
|
|
* Begin: Everything after here is new code to adapt the
|
|
* proprietary Realtek driver into a Linux API tuner.
|
|
* Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
|
|
*/
|
|
static int mxl5005s_reset(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
int ret = 0;
|
|
|
|
u8 buf[2] = { 0xff, 0x00 };
|
|
struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0,
|
|
.buf = buf, .len = 2 };
|
|
|
|
dprintk(2, "%s()\n", __func__);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
printk(KERN_WARNING "mxl5005s I2C reset failed\n");
|
|
ret = -EREMOTEIO;
|
|
}
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write a single byte to a single reg, latch the value if required by
|
|
* following the transaction with the latch byte.
|
|
*/
|
|
static int mxl5005s_writereg(struct dvb_frontend *fe, u8 reg, u8 val, int latch)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
u8 buf[3] = { reg, val, MXL5005S_LATCH_BYTE };
|
|
struct i2c_msg msg = { .addr = state->config->i2c_address, .flags = 0,
|
|
.buf = buf, .len = 3 };
|
|
|
|
if (latch == 0)
|
|
msg.len = 2;
|
|
|
|
dprintk(2, "%s(0x%x, 0x%x, 0x%x)\n", __func__, reg, val, msg.addr);
|
|
|
|
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
|
|
printk(KERN_WARNING "mxl5005s I2C write failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable,
|
|
u8 *datatable, u8 len)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
|
|
for (i = 0 ; i < len-1; i++) {
|
|
ret = mxl5005s_writereg(fe, addrtable[i], datatable[i], 0);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
ret = mxl5005s_writereg(fe, addrtable[i], datatable[i], 1);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxl5005s_init(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
state->current_mode = MXL_QAM;
|
|
return mxl5005s_reconfigure(fe, MXL_QAM, MXL5005S_BANDWIDTH_6MHZ);
|
|
}
|
|
|
|
static int mxl5005s_reconfigure(struct dvb_frontend *fe, u32 mod_type,
|
|
u32 bandwidth)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
|
|
u8 AddrTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
|
|
u8 ByteTable[MXL5005S_REG_WRITING_TABLE_LEN_MAX];
|
|
int TableLen;
|
|
|
|
dprintk(1, "%s(type=%d, bw=%d)\n", __func__, mod_type, bandwidth);
|
|
|
|
mxl5005s_reset(fe);
|
|
|
|
/* Tuner initialization stage 0 */
|
|
MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET);
|
|
AddrTable[0] = MASTER_CONTROL_ADDR;
|
|
ByteTable[0] |= state->config->AgcMasterByte;
|
|
|
|
mxl5005s_writeregs(fe, AddrTable, ByteTable, 1);
|
|
|
|
mxl5005s_AssignTunerMode(fe, mod_type, bandwidth);
|
|
|
|
/* Tuner initialization stage 1 */
|
|
MXL_GetInitRegister(fe, AddrTable, ByteTable, &TableLen);
|
|
|
|
mxl5005s_writeregs(fe, AddrTable, ByteTable, TableLen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type,
|
|
u32 bandwidth)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
struct mxl5005s_config *c = state->config;
|
|
|
|
InitTunerControls(fe);
|
|
|
|
/* Set MxL5005S parameters. */
|
|
MXL5005_TunerConfig(
|
|
fe,
|
|
c->mod_mode,
|
|
c->if_mode,
|
|
bandwidth,
|
|
c->if_freq,
|
|
c->xtal_freq,
|
|
c->agc_mode,
|
|
c->top,
|
|
c->output_load,
|
|
c->clock_out,
|
|
c->div_out,
|
|
c->cap_select,
|
|
c->rssi_enable,
|
|
mod_type,
|
|
c->tracking_filter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxl5005s_set_params(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
|
|
u32 delsys = c->delivery_system;
|
|
u32 bw = c->bandwidth_hz;
|
|
u32 req_mode, req_bw = 0;
|
|
int ret;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
switch (delsys) {
|
|
case SYS_ATSC:
|
|
req_mode = MXL_ATSC;
|
|
req_bw = MXL5005S_BANDWIDTH_6MHZ;
|
|
break;
|
|
case SYS_DVBC_ANNEX_B:
|
|
req_mode = MXL_QAM;
|
|
req_bw = MXL5005S_BANDWIDTH_6MHZ;
|
|
break;
|
|
default: /* Assume DVB-T */
|
|
req_mode = MXL_DVBT;
|
|
switch (bw) {
|
|
case 6000000:
|
|
req_bw = MXL5005S_BANDWIDTH_6MHZ;
|
|
break;
|
|
case 7000000:
|
|
req_bw = MXL5005S_BANDWIDTH_7MHZ;
|
|
break;
|
|
case 8000000:
|
|
case 0:
|
|
req_bw = MXL5005S_BANDWIDTH_8MHZ;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Change tuner for new modulation type if reqd */
|
|
if (req_mode != state->current_mode ||
|
|
req_bw != state->Chan_Bandwidth) {
|
|
state->current_mode = req_mode;
|
|
ret = mxl5005s_reconfigure(fe, req_mode, req_bw);
|
|
|
|
} else
|
|
ret = 0;
|
|
|
|
if (ret == 0) {
|
|
dprintk(1, "%s() freq=%d\n", __func__, c->frequency);
|
|
ret = mxl5005s_SetRfFreqHz(fe, c->frequency);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mxl5005s_get_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
*frequency = state->RF_IN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxl5005s_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
*bandwidth = state->Chan_Bandwidth;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mxl5005s_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
|
|
{
|
|
struct mxl5005s_state *state = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
*frequency = state->IF_OUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mxl5005s_release(struct dvb_frontend *fe)
|
|
{
|
|
dprintk(1, "%s()\n", __func__);
|
|
kfree(fe->tuner_priv);
|
|
fe->tuner_priv = NULL;
|
|
}
|
|
|
|
static const struct dvb_tuner_ops mxl5005s_tuner_ops = {
|
|
.info = {
|
|
.name = "MaxLinear MXL5005S",
|
|
.frequency_min = 48000000,
|
|
.frequency_max = 860000000,
|
|
.frequency_step = 50000,
|
|
},
|
|
|
|
.release = mxl5005s_release,
|
|
.init = mxl5005s_init,
|
|
|
|
.set_params = mxl5005s_set_params,
|
|
.get_frequency = mxl5005s_get_frequency,
|
|
.get_bandwidth = mxl5005s_get_bandwidth,
|
|
.get_if_frequency = mxl5005s_get_if_frequency,
|
|
};
|
|
|
|
struct dvb_frontend *mxl5005s_attach(struct dvb_frontend *fe,
|
|
struct i2c_adapter *i2c,
|
|
struct mxl5005s_config *config)
|
|
{
|
|
struct mxl5005s_state *state = NULL;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
state = kzalloc(sizeof(struct mxl5005s_state), GFP_KERNEL);
|
|
if (state == NULL)
|
|
return NULL;
|
|
|
|
state->frontend = fe;
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
|
|
printk(KERN_INFO "MXL5005S: Attached at address 0x%02x\n",
|
|
config->i2c_address);
|
|
|
|
memcpy(&fe->ops.tuner_ops, &mxl5005s_tuner_ops,
|
|
sizeof(struct dvb_tuner_ops));
|
|
|
|
fe->tuner_priv = state;
|
|
return fe;
|
|
}
|
|
EXPORT_SYMBOL(mxl5005s_attach);
|
|
|
|
MODULE_DESCRIPTION("MaxLinear MXL5005S silicon tuner driver");
|
|
MODULE_AUTHOR("Steven Toth");
|
|
MODULE_LICENSE("GPL");
|