linux-stable/arch/arm64/crypto/ghash-ce-glue.c
Ard Biesheuvel 11031c0d7d crypto: arm64/gcm-ce - implement 4 way interleave
To improve performance on cores with deep pipelines such as ThunderX2,
reimplement gcm(aes) using a 4-way interleave rather than the 2-way
interleave we use currently.

This comes down to a complete rewrite of the GCM part of the combined
GCM/GHASH driver, and instead of interleaving two invocations of AES
with the GHASH handling at the instruction level, the new version
uses a more coarse grained approach where each chunk of 64 bytes is
encrypted first and then ghashed (or ghashed and then decrypted in
the converse case).

The core NEON routine is now able to consume inputs of any size,
and tail blocks of less than 64 bytes are handled using overlapping
loads and stores, and processed by the same 4-way encryption and
hashing routines. This gets rid of most of the branches, and avoids
having to return to the C code to handle the tail block using a
stack buffer.

The table below compares the performance of the old driver and the new
one on various micro-architectures and running in various modes.

        |     AES-128      |     AES-192      |     AES-256      |
 #bytes | 512 | 1500 |  4k | 512 | 1500 |  4k | 512 | 1500 |  4k |
 -------+-----+------+-----+-----+------+-----+-----+------+-----+
    TX2 | 35% |  23% | 11% | 34% |  20% |  9% | 38% |  25% | 16% |
   EMAG | 11% |   6% |  3% | 12% |   4% |  2% | 11% |   4% |  2% |
    A72 |  8% |   5% | -4% |  9% |   4% | -5% |  7% |   4% | -5% |
    A53 | 11% |   6% | -1% | 10% |   8% | -1% | 10% |   8% | -2% |

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-10-05 01:04:31 +10:00

687 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
*
* Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/module.h>
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("ghash");
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
#define GCM_IV_SIZE 12
struct ghash_key {
u64 h[2];
u64 h2[2];
u64 h3[2];
u64 h4[2];
be128 k;
};
struct ghash_desc_ctx {
u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
u8 buf[GHASH_BLOCK_SIZE];
u32 count;
};
struct gcm_aes_ctx {
struct crypto_aes_ctx aes_key;
struct ghash_key ghash_key;
};
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
struct ghash_key const *k, u64 dg[],
u8 ctr[], u32 const rk[], int rounds,
u8 tag[]);
asmlinkage void pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
struct ghash_key const *k, u64 dg[],
u8 ctr[], u32 const rk[], int rounds,
u8 tag[]);
static int ghash_init(struct shash_desc *desc)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
*ctx = (struct ghash_desc_ctx){};
return 0;
}
static void ghash_do_update(int blocks, u64 dg[], const char *src,
struct ghash_key *key, const char *head,
void (*simd_update)(int blocks, u64 dg[],
const char *src,
struct ghash_key const *k,
const char *head))
{
if (likely(crypto_simd_usable() && simd_update)) {
kernel_neon_begin();
simd_update(blocks, dg, src, key, head);
kernel_neon_end();
} else {
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
do {
const u8 *in = src;
if (head) {
in = head;
blocks++;
head = NULL;
} else {
src += GHASH_BLOCK_SIZE;
}
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
gf128mul_lle(&dst, &key->k);
} while (--blocks);
dg[0] = be64_to_cpu(dst.b);
dg[1] = be64_to_cpu(dst.a);
}
}
/* avoid hogging the CPU for too long */
#define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE)
static int __ghash_update(struct shash_desc *desc, const u8 *src,
unsigned int len,
void (*simd_update)(int blocks, u64 dg[],
const char *src,
struct ghash_key const *k,
const char *head))
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
ctx->count += len;
if ((partial + len) >= GHASH_BLOCK_SIZE) {
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
int blocks;
if (partial) {
int p = GHASH_BLOCK_SIZE - partial;
memcpy(ctx->buf + partial, src, p);
src += p;
len -= p;
}
blocks = len / GHASH_BLOCK_SIZE;
len %= GHASH_BLOCK_SIZE;
do {
int chunk = min(blocks, MAX_BLOCKS);
ghash_do_update(chunk, ctx->digest, src, key,
partial ? ctx->buf : NULL,
simd_update);
blocks -= chunk;
src += chunk * GHASH_BLOCK_SIZE;
partial = 0;
} while (unlikely(blocks > 0));
}
if (len)
memcpy(ctx->buf + partial, src, len);
return 0;
}
static int ghash_update_p8(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
return __ghash_update(desc, src, len, pmull_ghash_update_p8);
}
static int ghash_update_p64(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
return __ghash_update(desc, src, len, pmull_ghash_update_p64);
}
static int ghash_final_p8(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
if (partial) {
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
pmull_ghash_update_p8);
}
put_unaligned_be64(ctx->digest[1], dst);
put_unaligned_be64(ctx->digest[0], dst + 8);
*ctx = (struct ghash_desc_ctx){};
return 0;
}
static int ghash_final_p64(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
if (partial) {
struct ghash_key *key = crypto_shash_ctx(desc->tfm);
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL,
pmull_ghash_update_p64);
}
put_unaligned_be64(ctx->digest[1], dst);
put_unaligned_be64(ctx->digest[0], dst + 8);
*ctx = (struct ghash_desc_ctx){};
return 0;
}
static void ghash_reflect(u64 h[], const be128 *k)
{
u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
h[0] = (be64_to_cpu(k->b) << 1) | carry;
h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
if (carry)
h[1] ^= 0xc200000000000000UL;
}
static int __ghash_setkey(struct ghash_key *key,
const u8 *inkey, unsigned int keylen)
{
be128 h;
/* needed for the fallback */
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
ghash_reflect(key->h, &key->k);
h = key->k;
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h2, &h);
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h3, &h);
gf128mul_lle(&h, &key->k);
ghash_reflect(key->h4, &h);
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *inkey, unsigned int keylen)
{
struct ghash_key *key = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return __ghash_setkey(key, inkey, keylen);
}
static struct shash_alg ghash_alg[] = {{
.base.cra_name = "ghash",
.base.cra_driver_name = "ghash-neon",
.base.cra_priority = 100,
.base.cra_blocksize = GHASH_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ghash_key),
.base.cra_module = THIS_MODULE,
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update_p8,
.final = ghash_final_p8,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
}, {
.base.cra_name = "ghash",
.base.cra_driver_name = "ghash-ce",
.base.cra_priority = 200,
.base.cra_blocksize = GHASH_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ghash_key),
.base.cra_module = THIS_MODULE,
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update_p64,
.final = ghash_final_p64,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
}};
static int num_rounds(struct crypto_aes_ctx *ctx)
{
/*
* # of rounds specified by AES:
* 128 bit key 10 rounds
* 192 bit key 12 rounds
* 256 bit key 14 rounds
* => n byte key => 6 + (n/4) rounds
*/
return 6 + ctx->key_length / 4;
}
static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
u8 key[GHASH_BLOCK_SIZE];
int ret;
ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
if (ret) {
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128));
}
static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12 ... 16:
break;
default:
return -EINVAL;
}
return 0;
}
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
int *buf_count, struct gcm_aes_ctx *ctx)
{
if (*buf_count > 0) {
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
memcpy(&buf[*buf_count], src, buf_added);
*buf_count += buf_added;
src += buf_added;
count -= buf_added;
}
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
int blocks = count / GHASH_BLOCK_SIZE;
ghash_do_update(blocks, dg, src, &ctx->ghash_key,
*buf_count ? buf : NULL,
pmull_ghash_update_p64);
src += blocks * GHASH_BLOCK_SIZE;
count %= GHASH_BLOCK_SIZE;
*buf_count = 0;
}
if (count > 0) {
memcpy(buf, src, count);
*buf_count = count;
}
}
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
u8 buf[GHASH_BLOCK_SIZE];
struct scatter_walk walk;
u32 len = req->assoclen;
int buf_count = 0;
scatterwalk_start(&walk, req->src);
do {
u32 n = scatterwalk_clamp(&walk, len);
u8 *p;
if (!n) {
scatterwalk_start(&walk, sg_next(walk.sg));
n = scatterwalk_clamp(&walk, len);
}
p = scatterwalk_map(&walk);
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
len -= n;
scatterwalk_unmap(p);
scatterwalk_advance(&walk, n);
scatterwalk_done(&walk, 0, len);
} while (len);
if (buf_count) {
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL,
pmull_ghash_update_p64);
}
}
static int gcm_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
int nrounds = num_rounds(&ctx->aes_key);
struct skcipher_walk walk;
u8 buf[AES_BLOCK_SIZE];
u8 iv[AES_BLOCK_SIZE];
u64 dg[2] = {};
u128 lengths;
u8 *tag;
int err;
lengths.a = cpu_to_be64(req->assoclen * 8);
lengths.b = cpu_to_be64(req->cryptlen * 8);
if (req->assoclen)
gcm_calculate_auth_mac(req, dg);
memcpy(iv, req->iv, GCM_IV_SIZE);
put_unaligned_be32(2, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_encrypt(&walk, req, false);
if (likely(crypto_simd_usable())) {
do {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
int nbytes = walk.nbytes;
tag = (u8 *)&lengths;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
} else if (nbytes < walk.total) {
nbytes &= ~(AES_BLOCK_SIZE - 1);
tag = NULL;
}
kernel_neon_begin();
pmull_gcm_encrypt(nbytes, dst, src, &ctx->ghash_key, dg,
iv, ctx->aes_key.key_enc, nrounds,
tag);
kernel_neon_end();
if (unlikely(!nbytes))
break;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
memcpy(walk.dst.virt.addr,
buf + sizeof(buf) - nbytes, nbytes);
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
} while (walk.nbytes);
} else {
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
int remaining = blocks;
do {
aes_encrypt(&ctx->aes_key, buf, iv);
crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
crypto_inc(iv, AES_BLOCK_SIZE);
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
} while (--remaining > 0);
ghash_do_update(blocks, dg, walk.dst.virt.addr,
&ctx->ghash_key, NULL, NULL);
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
/* handle the tail */
if (walk.nbytes) {
aes_encrypt(&ctx->aes_key, buf, iv);
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
buf, walk.nbytes);
memcpy(buf, walk.dst.virt.addr, walk.nbytes);
memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
}
tag = (u8 *)&lengths;
ghash_do_update(1, dg, tag, &ctx->ghash_key,
walk.nbytes ? buf : NULL, NULL);
if (walk.nbytes)
err = skcipher_walk_done(&walk, 0);
put_unaligned_be64(dg[1], tag);
put_unaligned_be64(dg[0], tag + 8);
put_unaligned_be32(1, iv + GCM_IV_SIZE);
aes_encrypt(&ctx->aes_key, iv, iv);
crypto_xor(tag, iv, AES_BLOCK_SIZE);
}
if (err)
return err;
/* copy authtag to end of dst */
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
crypto_aead_authsize(aead), 1);
return 0;
}
static int gcm_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
unsigned int authsize = crypto_aead_authsize(aead);
int nrounds = num_rounds(&ctx->aes_key);
struct skcipher_walk walk;
u8 buf[AES_BLOCK_SIZE];
u8 iv[AES_BLOCK_SIZE];
u64 dg[2] = {};
u128 lengths;
u8 *tag;
int err;
lengths.a = cpu_to_be64(req->assoclen * 8);
lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
if (req->assoclen)
gcm_calculate_auth_mac(req, dg);
memcpy(iv, req->iv, GCM_IV_SIZE);
put_unaligned_be32(2, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_decrypt(&walk, req, false);
if (likely(crypto_simd_usable())) {
do {
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
int nbytes = walk.nbytes;
tag = (u8 *)&lengths;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
src = dst = memcpy(buf + sizeof(buf) - nbytes,
src, nbytes);
} else if (nbytes < walk.total) {
nbytes &= ~(AES_BLOCK_SIZE - 1);
tag = NULL;
}
kernel_neon_begin();
pmull_gcm_decrypt(nbytes, dst, src, &ctx->ghash_key, dg,
iv, ctx->aes_key.key_enc, nrounds,
tag);
kernel_neon_end();
if (unlikely(!nbytes))
break;
if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
memcpy(walk.dst.virt.addr,
buf + sizeof(buf) - nbytes, nbytes);
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
} while (walk.nbytes);
} else {
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
const u8 *src = walk.src.virt.addr;
u8 *dst = walk.dst.virt.addr;
ghash_do_update(blocks, dg, walk.src.virt.addr,
&ctx->ghash_key, NULL, NULL);
do {
aes_encrypt(&ctx->aes_key, buf, iv);
crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
crypto_inc(iv, AES_BLOCK_SIZE);
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
} while (--blocks > 0);
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
/* handle the tail */
if (walk.nbytes) {
memcpy(buf, walk.src.virt.addr, walk.nbytes);
memset(buf + walk.nbytes, 0, sizeof(buf) - walk.nbytes);
}
tag = (u8 *)&lengths;
ghash_do_update(1, dg, tag, &ctx->ghash_key,
walk.nbytes ? buf : NULL, NULL);
if (walk.nbytes) {
aes_encrypt(&ctx->aes_key, buf, iv);
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr,
buf, walk.nbytes);
err = skcipher_walk_done(&walk, 0);
}
put_unaligned_be64(dg[1], tag);
put_unaligned_be64(dg[0], tag + 8);
put_unaligned_be32(1, iv + GCM_IV_SIZE);
aes_encrypt(&ctx->aes_key, iv, iv);
crypto_xor(tag, iv, AES_BLOCK_SIZE);
}
if (err)
return err;
/* compare calculated auth tag with the stored one */
scatterwalk_map_and_copy(buf, req->src,
req->assoclen + req->cryptlen - authsize,
authsize, 0);
if (crypto_memneq(tag, buf, authsize))
return -EBADMSG;
return 0;
}
static struct aead_alg gcm_aes_alg = {
.ivsize = GCM_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = gcm_encrypt,
.decrypt = gcm_decrypt,
.base.cra_name = "gcm(aes)",
.base.cra_driver_name = "gcm-aes-ce",
.base.cra_priority = 300,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx),
.base.cra_module = THIS_MODULE,
};
static int __init ghash_ce_mod_init(void)
{
int ret;
if (!cpu_have_named_feature(ASIMD))
return -ENODEV;
if (cpu_have_named_feature(PMULL))
ret = crypto_register_shashes(ghash_alg,
ARRAY_SIZE(ghash_alg));
else
/* only register the first array element */
ret = crypto_register_shash(ghash_alg);
if (ret)
return ret;
if (cpu_have_named_feature(PMULL)) {
ret = crypto_register_aead(&gcm_aes_alg);
if (ret)
crypto_unregister_shashes(ghash_alg,
ARRAY_SIZE(ghash_alg));
}
return ret;
}
static void __exit ghash_ce_mod_exit(void)
{
if (cpu_have_named_feature(PMULL))
crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg));
else
crypto_unregister_shash(ghash_alg);
crypto_unregister_aead(&gcm_aes_alg);
}
static const struct cpu_feature ghash_cpu_feature[] = {
{ cpu_feature(PMULL) }, { }
};
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);