linux-stable/drivers/ufs/core/ufs-mcq.c
Bart Van Assche b62c8292d2 scsi: ufs: core: Fix kernel-doc syntax
Fix the following kernel-doc warnings:

drivers/ufs/core/ufs-mcq.c:87: warning: Function parameter or member 'hba' not described in 'ufshcd_mcq_config_mac'
drivers/ufs/core/ufs-mcq.c:87: warning: Function parameter or member 'max_active_cmds' not described in 'ufshcd_mcq_config_mac'
drivers/ufs/core/ufs-mcq.c:107: warning: Function parameter or member 'hba' not described in 'ufshcd_mcq_req_to_hwq'
drivers/ufs/core/ufs-mcq.c:107: warning: Function parameter or member 'req' not described in 'ufshcd_mcq_req_to_hwq'
drivers/ufs/core/ufs-mcq.c:128: warning: Function parameter or member 'hba' not described in 'ufshcd_mcq_decide_queue_depth'

Link: https://lore.kernel.org/r/20230202220155.561115-1-bvanassche@acm.org
Fixes: 854f84e7fe ("scsi: ufs: core: mcq: Find hardware queue to queue request")
Fixes: 2468da61ea ("scsi: ufs: core: mcq: Configure operation and runtime interface")
Fixes: 7224c80687 ("scsi: ufs: core: mcq: Calculate queue depth")
Cc: Asutosh Das <quic_asutoshd@quicinc.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Reviewed-by: Asutosh Das <quic_asutoshd@quicinc.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-02-08 18:56:51 -05:00

431 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved.
*
* Authors:
* Asutosh Das <quic_asutoshd@quicinc.com>
* Can Guo <quic_cang@quicinc.com>
*/
#include <asm/unaligned.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "ufshcd-priv.h"
#define MAX_QUEUE_SUP GENMASK(7, 0)
#define UFS_MCQ_MIN_RW_QUEUES 2
#define UFS_MCQ_MIN_READ_QUEUES 0
#define UFS_MCQ_NUM_DEV_CMD_QUEUES 1
#define UFS_MCQ_MIN_POLL_QUEUES 0
#define QUEUE_EN_OFFSET 31
#define QUEUE_ID_OFFSET 16
#define MAX_DEV_CMD_ENTRIES 2
#define MCQ_CFG_MAC_MASK GENMASK(16, 8)
#define MCQ_QCFG_SIZE 0x40
#define MCQ_ENTRY_SIZE_IN_DWORD 8
#define CQE_UCD_BA GENMASK_ULL(63, 7)
static int rw_queue_count_set(const char *val, const struct kernel_param *kp)
{
return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES,
num_possible_cpus());
}
static const struct kernel_param_ops rw_queue_count_ops = {
.set = rw_queue_count_set,
.get = param_get_uint,
};
static unsigned int rw_queues;
module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644);
MODULE_PARM_DESC(rw_queues,
"Number of interrupt driven I/O queues used for rw. Default value is nr_cpus");
static int read_queue_count_set(const char *val, const struct kernel_param *kp)
{
return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES,
num_possible_cpus());
}
static const struct kernel_param_ops read_queue_count_ops = {
.set = read_queue_count_set,
.get = param_get_uint,
};
static unsigned int read_queues;
module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644);
MODULE_PARM_DESC(read_queues,
"Number of interrupt driven read queues used for read. Default value is 0");
static int poll_queue_count_set(const char *val, const struct kernel_param *kp)
{
return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES,
num_possible_cpus());
}
static const struct kernel_param_ops poll_queue_count_ops = {
.set = poll_queue_count_set,
.get = param_get_uint,
};
static unsigned int poll_queues = 1;
module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644);
MODULE_PARM_DESC(poll_queues,
"Number of poll queues used for r/w. Default value is 1");
/**
* ufshcd_mcq_config_mac - Set the #Max Activ Cmds.
* @hba: per adapter instance
* @max_active_cmds: maximum # of active commands to the device at any time.
*
* The controller won't send more than the max_active_cmds to the device at
* any time.
*/
void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds)
{
u32 val;
val = ufshcd_readl(hba, REG_UFS_MCQ_CFG);
val &= ~MCQ_CFG_MAC_MASK;
val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds);
ufshcd_writel(hba, val, REG_UFS_MCQ_CFG);
}
/**
* ufshcd_mcq_req_to_hwq - find the hardware queue on which the
* request would be issued.
* @hba: per adapter instance
* @req: pointer to the request to be issued
*
* Returns the hardware queue instance on which the request would
* be queued.
*/
struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba,
struct request *req)
{
u32 utag = blk_mq_unique_tag(req);
u32 hwq = blk_mq_unique_tag_to_hwq(utag);
/* uhq[0] is used to serve device commands */
return &hba->uhq[hwq + UFSHCD_MCQ_IO_QUEUE_OFFSET];
}
/**
* ufshcd_mcq_decide_queue_depth - decide the queue depth
* @hba: per adapter instance
*
* Returns queue-depth on success, non-zero on error
*
* MAC - Max. Active Command of the Host Controller (HC)
* HC wouldn't send more than this commands to the device.
* It is mandatory to implement get_hba_mac() to enable MCQ mode.
* Calculates and adjusts the queue depth based on the depth
* supported by the HC and ufs device.
*/
int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba)
{
int mac;
/* Mandatory to implement get_hba_mac() */
mac = ufshcd_mcq_vops_get_hba_mac(hba);
if (mac < 0) {
dev_err(hba->dev, "Failed to get mac, err=%d\n", mac);
return mac;
}
WARN_ON_ONCE(!hba->dev_info.bqueuedepth);
/*
* max. value of bqueuedepth = 256, mac is host dependent.
* It is mandatory for UFS device to define bQueueDepth if
* shared queuing architecture is enabled.
*/
return min_t(int, mac, hba->dev_info.bqueuedepth);
}
static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba)
{
int i;
u32 hba_maxq, rem, tot_queues;
struct Scsi_Host *host = hba->host;
hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities);
tot_queues = UFS_MCQ_NUM_DEV_CMD_QUEUES + read_queues + poll_queues +
rw_queues;
if (hba_maxq < tot_queues) {
dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n",
tot_queues, hba_maxq);
return -EOPNOTSUPP;
}
rem = hba_maxq - UFS_MCQ_NUM_DEV_CMD_QUEUES;
if (rw_queues) {
hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues;
rem -= hba->nr_queues[HCTX_TYPE_DEFAULT];
} else {
rw_queues = num_possible_cpus();
}
if (poll_queues) {
hba->nr_queues[HCTX_TYPE_POLL] = poll_queues;
rem -= hba->nr_queues[HCTX_TYPE_POLL];
}
if (read_queues) {
hba->nr_queues[HCTX_TYPE_READ] = read_queues;
rem -= hba->nr_queues[HCTX_TYPE_READ];
}
if (!hba->nr_queues[HCTX_TYPE_DEFAULT])
hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues,
num_possible_cpus());
for (i = 0; i < HCTX_MAX_TYPES; i++)
host->nr_hw_queues += hba->nr_queues[i];
hba->nr_hw_queues = host->nr_hw_queues + UFS_MCQ_NUM_DEV_CMD_QUEUES;
return 0;
}
int ufshcd_mcq_memory_alloc(struct ufs_hba *hba)
{
struct ufs_hw_queue *hwq;
size_t utrdl_size, cqe_size;
int i;
for (i = 0; i < hba->nr_hw_queues; i++) {
hwq = &hba->uhq[i];
utrdl_size = sizeof(struct utp_transfer_req_desc) *
hwq->max_entries;
hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size,
&hwq->sqe_dma_addr,
GFP_KERNEL);
if (!hwq->sqe_dma_addr) {
dev_err(hba->dev, "SQE allocation failed\n");
return -ENOMEM;
}
cqe_size = sizeof(struct cq_entry) * hwq->max_entries;
hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size,
&hwq->cqe_dma_addr,
GFP_KERNEL);
if (!hwq->cqe_dma_addr) {
dev_err(hba->dev, "CQE allocation failed\n");
return -ENOMEM;
}
}
return 0;
}
/* Operation and runtime registers configuration */
#define MCQ_CFG_n(r, i) ((r) + MCQ_QCFG_SIZE * (i))
#define MCQ_OPR_OFFSET_n(p, i) \
(hba->mcq_opr[(p)].offset + hba->mcq_opr[(p)].stride * (i))
static void __iomem *mcq_opr_base(struct ufs_hba *hba,
enum ufshcd_mcq_opr n, int i)
{
struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n];
return opr->base + opr->stride * i;
}
u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i)
{
return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
}
void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i)
{
writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis);
/*
* Current MCQ specification doesn't provide a Task Tag or its equivalent in
* the Completion Queue Entry. Find the Task Tag using an indirect method.
*/
static int ufshcd_mcq_get_tag(struct ufs_hba *hba,
struct ufs_hw_queue *hwq,
struct cq_entry *cqe)
{
u64 addr;
/* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */
BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0));
/* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */
addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) -
hba->ucdl_dma_addr;
return div_u64(addr, sizeof(struct utp_transfer_cmd_desc));
}
static void ufshcd_mcq_process_cqe(struct ufs_hba *hba,
struct ufs_hw_queue *hwq)
{
struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq);
int tag = ufshcd_mcq_get_tag(hba, hwq, cqe);
ufshcd_compl_one_cqe(hba, tag, cqe);
}
unsigned long ufshcd_mcq_poll_cqe_nolock(struct ufs_hba *hba,
struct ufs_hw_queue *hwq)
{
unsigned long completed_reqs = 0;
ufshcd_mcq_update_cq_tail_slot(hwq);
while (!ufshcd_mcq_is_cq_empty(hwq)) {
ufshcd_mcq_process_cqe(hba, hwq);
ufshcd_mcq_inc_cq_head_slot(hwq);
completed_reqs++;
}
if (completed_reqs)
ufshcd_mcq_update_cq_head(hwq);
return completed_reqs;
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_nolock);
unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba,
struct ufs_hw_queue *hwq)
{
unsigned long completed_reqs;
spin_lock(&hwq->cq_lock);
completed_reqs = ufshcd_mcq_poll_cqe_nolock(hba, hwq);
spin_unlock(&hwq->cq_lock);
return completed_reqs;
}
void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba)
{
struct ufs_hw_queue *hwq;
u16 qsize;
int i;
for (i = 0; i < hba->nr_hw_queues; i++) {
hwq = &hba->uhq[i];
hwq->id = i;
qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1;
/* Submission Queue Lower Base Address */
ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr),
MCQ_CFG_n(REG_SQLBA, i));
/* Submission Queue Upper Base Address */
ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr),
MCQ_CFG_n(REG_SQUBA, i));
/* Submission Queue Doorbell Address Offset */
ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQD, i),
MCQ_CFG_n(REG_SQDAO, i));
/* Submission Queue Interrupt Status Address Offset */
ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQIS, i),
MCQ_CFG_n(REG_SQISAO, i));
/* Completion Queue Lower Base Address */
ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr),
MCQ_CFG_n(REG_CQLBA, i));
/* Completion Queue Upper Base Address */
ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr),
MCQ_CFG_n(REG_CQUBA, i));
/* Completion Queue Doorbell Address Offset */
ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQD, i),
MCQ_CFG_n(REG_CQDAO, i));
/* Completion Queue Interrupt Status Address Offset */
ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQIS, i),
MCQ_CFG_n(REG_CQISAO, i));
/* Save the base addresses for quicker access */
hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP;
hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP;
hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP;
hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP;
/* Reinitializing is needed upon HC reset */
hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0;
/* Enable Tail Entry Push Status interrupt only for non-poll queues */
if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL])
writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE);
/* Completion Queue Enable|Size to Completion Queue Attribute */
ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize,
MCQ_CFG_n(REG_CQATTR, i));
/*
* Submission Qeueue Enable|Size|Completion Queue ID to
* Submission Queue Attribute
*/
ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize |
(i << QUEUE_ID_OFFSET),
MCQ_CFG_n(REG_SQATTR, i));
}
}
void ufshcd_mcq_enable_esi(struct ufs_hba *hba)
{
ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2,
REG_UFS_MEM_CFG);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi);
void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg)
{
ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA);
ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi);
int ufshcd_mcq_init(struct ufs_hba *hba)
{
struct Scsi_Host *host = hba->host;
struct ufs_hw_queue *hwq;
int ret, i;
ret = ufshcd_mcq_config_nr_queues(hba);
if (ret)
return ret;
ret = ufshcd_vops_mcq_config_resource(hba);
if (ret)
return ret;
ret = ufshcd_mcq_vops_op_runtime_config(hba);
if (ret) {
dev_err(hba->dev, "Operation runtime config failed, ret=%d\n",
ret);
return ret;
}
hba->uhq = devm_kzalloc(hba->dev,
hba->nr_hw_queues * sizeof(struct ufs_hw_queue),
GFP_KERNEL);
if (!hba->uhq) {
dev_err(hba->dev, "ufs hw queue memory allocation failed\n");
return -ENOMEM;
}
for (i = 0; i < hba->nr_hw_queues; i++) {
hwq = &hba->uhq[i];
hwq->max_entries = hba->nutrs;
spin_lock_init(&hwq->sq_lock);
spin_lock_init(&hwq->cq_lock);
}
/* The very first HW queue serves device commands */
hba->dev_cmd_queue = &hba->uhq[0];
/* Give dev_cmd_queue the minimal number of entries */
hba->dev_cmd_queue->max_entries = MAX_DEV_CMD_ENTRIES;
host->host_tagset = 1;
return 0;
}